RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: The Shenqisherong (SQSR) pill is an empirical prescription of traditional Chinese medicine (TCM), which originated from the National Chinese Medical Science Master, Shi Qi. It has been widely used in the treatment of cervical spondylotic myelopathy (CSM) and promote the recovery of spinal cord function, but underlying molecular mechanism remains unclear. AIM OF THE STUDY: The objective of this study was to confirm the neuroprotective effects of the SQSR pill. MATERIALS AND METHODS: A rat model of chronic compression at double-level cervical cord was used in vivo. The protective role of SQSR pill on CSM rats was measured by Basso, Beattie, and Bresnahan (BBB) locomotor scale, inclined plane test, forelimb grip strength assessment, hindlimb pain threshold assessment, and gait analysis. The levels of reactive oxygen species (ROS) were examined by Dihydroethidium (DHE) staining and 2',7'-Dichlorofluorescein (DCF) assay, and apoptosis was detected by TdT-mediated dUTP nick-end labeling (TUNEL) assay. The expression of apoptosis proteins was evaluated by immunofluorescence staining and Western blot. RESULTS: SQSR pill could facilitate locomotor function recovery in rats with chronic cervical cord compression, reduce local ROS in the spinal cord and downregulate the c-Jun-N-terminal kinase (JNK)/caspase-3 signaling pathway. In addition, the SQSR pill could protect primary rat cortical neurons from glutamate-treated toxicity in vitro by reducing the ROS and downregulating the phosphorylation of JNK and its downstream factors related to neuronal apoptosis meditated by the caspase cascade. Then, the neuroprotective effect was counteracted by a JNK activator. CONCLUSIONS: Together, SQSR pill could ameliorate neuronal apoptosis by restraining ROS accumulation and inhibiting the JNK/caspase-3 signaling pathway, indicating that SQSR pill could be a candidate drug for CSM.
Assuntos
Medula Cervical , Fármacos Neuroprotetores , Traumatismos da Medula Espinal , Ratos , Animais , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Medula Cervical/metabolismo , Caspase 3/metabolismo , Transdução de Sinais , Apoptose , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêuticoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Sharbat-e-bazoori Motadil (SBM) is a polyherbal formulation that have been used for centuries as a part of the Unani system of medicine for renal disease. AIM OF THE STUDY: The objective of this study was to explore and validate the nephroprotective potential of sugar-free SBM (SF-SBM) and its mechanisms of action against sodium fluoride (NaF)-induced nephrotoxicity in HEK-293 cells. Additionally, the study aimed to assess the quality control of SF-SBM and investigate its effects using an in vivo rat model with pattern recognition following oral administration of SF-SBM. MATERIALS AND METHODS: The nephroprotective effect of SF-SBM was investigated using both an HEK-293 cell line and Wistar rats. Nephrotoxicity was induced in these models by administering NaF at a concentration of 600 ppm (parts per million) for a duration of seven days. The SF-SBM formulation was standardized using high-performance thin-layer chromatography (HPTLC) to assess the presence of marker compounds, namely gallic acid, quercetin, and ferulic acid. Metabolite characterization of SF-SBM was carried out using ultra-high-performance liquid chromatography mass spectrometry (UPLC-MS) with a monolithic capillary silica-based C18 column. This analytical technique allowed for the identification of bioactive substances and verification of the identified markers. Acute toxicity of SF-SBM was evaluated in Wistar rats by administering a single oral dose of 2000 mg/kg of SF-SBM. The nephroprotective efficacy of SF-SBM was further assessed at low (LD), medium (MD) and high (HD) doses of 32.1, 64.2, and 128.4 mg/kg, respectively, administered orally. Nephrotoxicity was induced in Wistar rats by adding NaF to their drinking water for seven days. Biochemical and urine markers were analyzed to evaluate the antioxidant, inflammatory, and apoptotic potential of SF-SBM. Additionally, histopathological analysis and immunohistochemical alterations in the expression of caspase-3 and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-4 (NOX-4) in kidney tissue were performed to confirm the findings of the in vivo experiments. Furthermore, in vivo pattern recognition of SF-SBM metabolites, identified through GC-MS metabolomics, and in-silico docking analysis of major metabolites in plasma were conducted to gain further insights. RESULT: Phytochemical analysis using HPTLC, TLC-bioautography, and UPLC-MS revealed the presence of several bioactive constituents in SF-SBM, including ferulic acid, gallic acid (GA), ellagic acid, quercetin, and apigenin. These compounds exhibit diverse pharmacological properties. In vitro studies demonstrated the protective effect of SF-SBM on HEK-293 cell line against nephrotoxicity. The acute toxicity study of SF-SBM at a dose of 2000 mg/kg showed no mortality or signs of toxicity throughout the 14-day observation period. In the in vivo studies, administration of NaF resulted in significant elevation (P < 0.001) of biochemical and urine parameters, indicating oxidative, inflammatory, and apoptotic stress. Histopathological examination revealed severe depletion of Bowman's capsule, and immunohistochemistry demonstrated negative immunostaining for caspase-3 and reduced NOX-4 reactions. Pre-treatment with SF-SBM significantly attenuated the elevated biochemical and urine markers, restored the antioxidant enzyme levels (such as SOD, CAT, GSH, GPx and NO), and regulated the expression of inflammatory cytokines (TNF-α, IL-1ß, CASP-3) in kidney tissue at doses of SF-SBM-MD (64.2 mg/kg) and SF-SBM-HD (128.4 mg/kg), showing comparable results to those of α-Ketoanalogue. Histopathological assessment demonstrated improvements in tissue damage. Pattern recognition analysis of SF-SBM identified the presence of 56 metabolites at different time intervals. Additionally, in-silico studies revealed strong interactions of SF-SBM with a binding energy of -6.5 and -5.6 kcal for 4C2N. CONCLUSION: The phytoconstituents present in SF-SBM play a crucial role in its nephroprotective action by acting as potent antioxidants and reducing proinflammatory and apoptotic damage in rat cells. This indicates that SF-SBM has promising potential for the treatment of nephrotoxicity.
Assuntos
Antioxidantes , Fluoreto de Sódio , Ratos , Humanos , Animais , Antioxidantes/uso terapêutico , Ratos Wistar , Fluoreto de Sódio/toxicidade , Fluoreto de Sódio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Quercetina/farmacologia , Caspase 3/metabolismo , Cromatografia Líquida , Células HEK293 , Espectrometria de Massas em Tandem , Estresse Oxidativo , Rim , Ácido Gálico/farmacologiaRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Xiaobanxia Decoction (XBXD), a traditional antiemetic formula, is effective in preventing chemotherapy-induced nausea and vomiting (CINV), but its underlying mechanism has not been fully clarified. AIM OF THE STUDY: To investigate whether the antiemetic mechanisms of XBXD against CINV is associated with the reduction of GSDME-mediated pyroptosis and the alleviation of gastrointestinal inflammation induced by cisplatin. MATERIALS AND METHODS: We established the in vivo pica rat model and the in vitro small intestinal epithelial cell (IEC-6 cell) injury model by cisplatin challenge. The levels of ROS, IL-1ß, IL-18, HMGB1 were measured by ELISA. The histopathological changes of gastrointestinal (GI) tissues were examined by HE staining. The expression and localization of GSDME in GI tissues were determined by IHC. The GSDME mRNA expression in GI tissues was determined by RT-PCR. The IEC-6 cell viability was detected by CCK-8. The morphology of IEC-6 cells was observed by optical microscope and scanning electron microscopy. Pyroptosis was examined using Hoechst33342/PI staining. The intracellular ROS levels were measured with the fluorescent probe DCFH-DA. The expression levels of JNK, p-JNK, Bax, Bcl-2, caspase-9, caspase-3 and GSDME in GI tissues and IEC-6 cells were determined by WB. RESULTS: We found that the cumulative kaolin intake (pica behavior, analogous to emesis) significantly increased in cisplatin-treated rats, accompanied by significant inflammatory pathological changes of GI tissues. XBXD decreased the cumulative kaolin intake and alleviated GI inflammation in cisplatin-treated rats by inhibiting the activation of the ROS/JNK/Bax signaling pathway and by reducing GSDME-mediated pyroptosis. Additionally, cisplatin damaged IEC-6 cells by activating GSDME-dependent pyroptosis. XBXD reduced GSDME-mediated IEC-6 cell pyroptotic death by regulating the ROS/JNK/Bax signaling pathway. CONCLUSIONS: This study suggested that GSDME-mediated pyroptosis greatly contributes to the occurrence of CINV, and suppressing GSDME-mediated pyroptosis is the important antiemetic mechanism of XBXD.
Assuntos
Antieméticos , Antineoplásicos , Ratos , Animais , Piroptose , Cisplatino/toxicidade , Antieméticos/farmacologia , Antieméticos/uso terapêutico , Proteína X Associada a bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Caulim , Pica , Antineoplásicos/farmacologia , Vômito/induzido quimicamente , Vômito/tratamento farmacológico , Vômito/prevenção & controle , Náusea/induzido quimicamente , Náusea/tratamento farmacológico , Náusea/prevenção & controle , Inflamação , Caspase 3/metabolismoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: The traditional Chinese medicine formula Lizhong Pill (LZP) and its herbal constituents are frequently utilized in Asian (China, Saudi Arabia, India, Japan, etc.) and some European (Russia, Sweden, UK, etc.) nations to treat various gastrointestinal ailments. AIM OF THE STUDY: This study aimed to investigate the protective impact and potential mechanism of LZP against indomethacin (IND)-induced gastric mucosal injury in rats. MATERIAL AND METHODS: Using a biochemical kit, we investigated the levels of superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST) in rat serum, as well as pepsin in rat stomach tissue, using an IND-induced rat model of gastric mucosal injury. Various imaging tools, including HE staining, scanning electron microscopy (SEM), and transmission electron microscopy (TEM), were used to examine the gastric mucosa's surface morphology and ultrastructure. Furthermore, molecular docking was employed to predict the binding capacity of the primary bioactive components of LZP to the critical molecular protein targets in the IL-17 and TNF signaling pathways. At the same time, immunofluorescence was used to determine the protein expressions of CASP3, VCAM1, MAPK15, MMP3, IL-17RA, and TNFR1. RESULTS: The present study demonstrates that LZP (3.75 and 7.50 g/kg) significantly reduces the gastric mucosal injury index induced by IND. This effect is evidenced by the improved morphology, surface, and structure of the gastric mucosa, as determined by HE, SEM, and TEM findings. Additionally, 3.75 and 7.50 g/kg LZP intervention significantly increased SOD and CAT contents and inhibited pepsin and GST activities. Molecular docking analysis revealed that the small molecular components of LZP can bind spontaneously to crucial proteins involved in the IL-17 and TNF signaling pathways, including MAPK15, MMP3, VCAM1, and CASP3. The immunofluorescence findings proved that LZP (3.75 and 7.50 g/kg) can inhibit the protein expressions of MAPK15, MMP3, VCAM1, CASP3, IL-17RA, and TNFR1. CONCLUSIONS: Our investigation findings demonstrate that LZP can potentially ameliorate IND-induced damage to the gastric mucosa by inhibiting IL-17 and TNF signaling pathways. These results offer encouraging support for using alternative medicine to manage drug-induced gastric mucosal injury.
Assuntos
Gastropatias , Úlcera Gástrica , Ratos , Animais , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Caspase 3/metabolismo , Pepsina A/metabolismo , Interleucina-17/metabolismo , Simulação de Acoplamento Molecular , Mucosa Gástrica , Anti-Inflamatórios não Esteroides/farmacologia , Gastropatias/tratamento farmacológico , Indometacina/toxicidade , Superóxido Dismutase/metabolismo , Transdução de Sinais , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/prevenção & controleRESUMO
Mitochondrial dysfunction is a significant factor in the development of Alzheimer's disease (AD). Previous studies have demonstrated that the expression of tau cleaved at Asp421 by caspase-3 leads to mitochondrial abnormalities and bioenergetic impairment. However, the underlying mechanism behind these alterations and their impact on neuronal function remains unknown. To investigate the mechanism behind mitochondrial dysfunction caused by this tau form, we used transient transfection and pharmacological approaches in immortalized cortical neurons and mouse primary hippocampal neurons. We assessed mitochondrial morphology and bioenergetics function after expression of full-length tau and caspase-3-cleaved tau. We also evaluated the mitochondrial permeability transition pore (mPTP) opening and its conformation as a possible mechanism to explain mitochondrial impairment induced by caspase-3 cleaved tau. Our studies showed that pharmacological inhibition of mPTP by cyclosporine A (CsA) prevented all mitochondrial length and bioenergetics abnormalities in neuronal cells expressing caspase-3 cleaved tau. Neuronal cells expressing caspase-3-cleaved tau showed sustained mPTP opening which is mostly dependent on cyclophilin D (CypD) protein expression. Moreover, the impairment of mitochondrial length and bioenergetics induced by caspase-3-cleaved tau were prevented in hippocampal neurons obtained from CypD knock-out mice. Interestingly, previous studies using these mice showed a prevention of mPTP opening and a reduction of mitochondrial failure and neurodegeneration induced by AD. Therefore, our findings showed that caspase-3-cleaved tau negatively impacts mitochondrial bioenergetics through mPTP activation, highlighting the importance of this channel and its regulatory protein, CypD, in the neuronal damage induced by tau pathology in AD.
Assuntos
Doença de Alzheimer , Poro de Transição de Permeabilidade Mitocondrial , Animais , Camundongos , Doença de Alzheimer/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Ciclofilina D/metabolismo , Mitocôndrias/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismoRESUMO
Doxorubicin (DOX) is broadly used as a medication for cancer treatment. However, DOX has been connected with chemotherapy-related complications, for instance, cognitive impairment (chemobrain). Chemobrain developed in up to 70% of cancer patients; therapeutic is unavailable. This study investigated the preventive effect of pioglitazone (PIO) on neurotoxicity caused by (DOX) in the hippocampus. Forty rats were separated into four groups; control (normal saline 10 ml/kg), DOX (5 mg/kg, intraperitoneally every 3rd day, equivalent to 20 mg/kg cumulative dose), PIO (2 mg/kg in drinking water), and DOX+PIO (DOX, 5 mg/kg, intraperitoneally every 3rd day concurrently PIO, 2 mg/kg in drinking water) and duration of drug treatment lasted for 14 days. The animals were subjected to contextual fear memory tests to characterize the cognitive impairment following DOX treatment. ELISA assessed hippocampal protein expression related to inflammation, oxidative damage, and apoptosis. DOX-treatment produced significant reduction in freezing duration in contextual fear memory tests, which was reversed by PIO co-administration. DOX increased neuroinflammation, oxidative stress, apoptosis, and mitochondrial activity by increasing NF-κB and COX-2 levels, reducing SOD levels, and increasing Bax, caspase-3, and lipid peroxidation. However, DOX did not affect GSH or catalase levels. PIO co-administration reduces NF-κB, COX-2, MDA, Bax, and caspase-3 levels and improves mitochondrial activity and SOD expression. To sum up, DOX therapy accelerates cognitive decline in rats by increasing neuroinflammation, oxidative stress, mitochondrial dysfunction, lipid peroxidation, and apoptosis. PIO is a promising treatment for DOX-induced cognitive impairment.
Assuntos
Comprometimento Cognitivo Relacionado à Quimioterapia , Disfunção Cognitiva , Água Potável , Humanos , Ratos , Animais , Pioglitazona/farmacologia , Caspase 3/metabolismo , Proteína X Associada a bcl-2/metabolismo , NF-kappa B/metabolismo , Doenças Neuroinflamatórias , Ciclo-Oxigenase 2/metabolismo , Água Potável/efeitos adversos , Água Potável/metabolismo , Doxorrubicina/toxicidade , Estresse Oxidativo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Apoptose , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Superóxido Dismutase/metabolismoRESUMO
Pyroptosis induction is anticipated to be a new approach to developing anti-tumor medications. A novel class of spirocyclic compounds was designed by hybridization of 1H-Benzo[e]indole-2(3H)-one with 1,4-dihydroquinoline and synthesized through a new green "one-pot" synthesis method using 10 wt% SDS/H2O as a solvent to screen novel tumor cell pyroptosis inducers. The anti-tumor activity of all compounds in vitro was determined by the MTT method, and a fraction of the compounds showed good cell growth inhibitory activity. The quantitative structure-activity relationship models of the compounds were established by artificial intelligence random forest algorithm (R2 = 0.9656 and 0.9747). The ideal compound A9 could, in a concentration-dependent manner, prevent ovarian cancer cells from forming colonies, migrating, and invading. Furthermore, A9 could significantly induce pyroptosis and upregulate the expression of pyroptosis-related proteins GSDME-N, in addition to inducing apoptosis and mediating the expression of apoptosis-related proteins in ovarian cancer cells. A9 (5 mg/kg) significantly reduced tumor volume and weight of ovarian cancer in vivo, decreased caspase-3 expression in tumor tissue, and induced the production of GSDME-N. This study provides a green and efficient atom-economic synthesis method for 1H-Benzo[e]indole-2(3H)-one spirocyclic derivatives and a promising pyroptosis inducer with anti-tumor activity.
Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Piroptose , Antineoplásicos/farmacologia , Inteligência Artificial , Linhagem Celular Tumoral , Neoplasias Ovarianas/tratamento farmacológico , Indóis/farmacologia , Caspase 3/metabolismoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Zishen Huoxue Decoction (ZSHXD) is a Traditional Chinese Medicine (TCM) prescription for the treatment of vascular dementia (VD). Although the clinical effects of ZSHXD have been demonstrated, the molecular mechanisms underlying the neuroprotective effects of ZSHXD remain unclear. AIM OF THE STUDY: To explore whether the neuroprotective effect of Zishen Huoxue Decoction (ZSHXD) treatment is associated with the PINK1/Parkin pathway-mediated mitophagy in hippocampal CA1 region of 2-VO model rats. MATERIALS AND METHODS: Seventy-two male SD rats were randomly divided into the sham group, model group, Donepezil (0.45 mg/kg) group, ZSHXD low dose group (8.9 g/kg), ZSHXD medium dose group (17.8 g/kg), and ZSHXD high dose group (35.6 g/kg). Two-vessel occlusion (2-VO) rat model is established to evaluate the therapeutic effect of ZSHXD pretreatment. Hematoxylin-eosin (HE) staining is conducted to detect the morphological changes of neurons and the number of normal neurons in the hippocampal CA1 region. Then, the mitochondrial function and structure were reflected by the mitochondrial membrane potential (MMP) levels and transmission electron microscopy (TEM). Meanwhile, the expression of mitophagy related proteins mediated by PINK1/Parkin was detected by western blot (WB). After that, malondialdehyde (MDA) and superoxide dismutase (SOD) levels were measured by Elisa. At last, the apoptosis-related proteins Caspase-3ãBaxãBcl-2 were measured by WB. RESULTS: The results depict that ZSHXD has dose-dependently improved the cognitive function in 2-VO model rats. It has also been showed that ZSHXD can alleviate neuron damage, rescue the mitochondrial structural injury and dysfunction in hippocampal CA1 region. Besides, ZSHXD has increased the activity of SOD and decreased the activity of MDA. In addition, ZSHXD can inhibit apoptosis with Caspase-3, Bax decreasing and Bcl-2 increasing. Specially, the protection of ZSHXD showed in 2-VO model rats is along with the upregulation of PINK1, Parkin and LC3-â ¡/â , and downregulation of p62 in the hippocampal CA1 region. CONCLUSIONS: This study reveals that ZSHXD protects the 2-VO model rats from ischemic injury by activating the PINK1/Parkin-mediated mitophagy in the hippocampal CA1 region.
Assuntos
Demência Vascular , Fármacos Neuroprotetores , Ratos , Masculino , Animais , Mitofagia , Região CA1 Hipocampal/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos Sprague-Dawley , Caspase 3/metabolismo , Demência Vascular/tratamento farmacológico , Proteína X Associada a bcl-2/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases/metabolismo , Superóxido Dismutase/metabolismoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Panax notoginseng (Burk) F. H. Chen has been a popular traditional Chinese medicine with a long history of treating low back pain. Its main active ingredient, Panax notoginseng saponins (PNS), can be found in several Chinese patent medicines that are frequently used to treat blood stasis type low back pain. Intervertebral disc degeneration (IDD) is the most common cause of back pain, and the injection of PNS has been used to relieve IDD-induced back pain in clinical practice. Despite its effectiveness, the exact mechanisms of action for PNS injections remain unclear. AIM OF THE STUDY: IDD as a consequence of aging involves apoptosis of nucleus pulposus (NP) cells and imbalanced degradation of extracellular matrix (ECM) induced by several factors including oxidative stress. We hypothesized that PNS may have a therapeutic effect on IDD via inhibiting apoptosis of NP cells and degradation of ECM under oxidative stress. MATERIALS AND METHODS: In this study, network pharmacology was initially employed to predict the targets of PNS against IDD. Subsequently, commercial PNS was analyzed by high-performance liquid chromatography to confirm the ingredients for in vitro and in vivo experiments. In vitro experiments were conducted on human nucleus pulposus (HNP) cells, including CCK-8, RT-PCR, Western blot, immunofluorescence staining, autophagic flux detection, and TUNEL assay. In vivo experiments were also performed on rats with IDD of tail discs induced by annular fibrosus needle puncture, which involved MRI, HE staining, and immunohistochemistry. RESULTS: Our study demonstrated the theoretical targets of PNS against IDD, including Caspase 3, MMP13, Akt, and autophagy, based on network pharmacology. Subsequently, in vitro experiments revealed that PNS attenuated cellular apoptosis of NP by suppressing the expression of cleaved-caspase 3 and the ratio of Bax/Bcl-2 under H2O2 stimulation. Autophagy was also inhibited by PNS treatment, and the protective effect was abolished with rapamycin, an autophagy inducer, indicating that autophagy inhibition was involved in the protective effect of PNS on IDD. Furthermore, Akt/mTOR pathway activation was observed in HNP cells responding to H2O2 with PNS treatment, which played a role in autophagy downregulation. PNS was also shown to promote the expression of anabolic genes such as COL2A1 and ACAN while inhibiting the expression of catabolic gene MMP13 in HNP cells. In addition, the in vivo study revealed that PNS treatment could ameliorate IDD in a puncture-induced rat tail model. The development of IDD was significantly reduced, and there was decreased MMP13 expression, as well as increased COL2A1 protein expression in NP tissues. CONCLUSION: Our study showed that PNS could protect HNP cells against apoptosis via autophagy inhibition and ameliorate disc degeneration in vivo, indicating its potential to be a therapeutic agent for IDD.
Assuntos
Degeneração do Disco Intervertebral , Dor Lombar , Núcleo Pulposo , Panax notoginseng , Saponinas , Humanos , Ratos , Animais , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Caspase 3/metabolismo , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Saponinas/farmacologia , Saponinas/uso terapêutico , Saponinas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Peróxido de Hidrogênio/metabolismo , Dor Lombar/metabolismo , Apoptose , Estresse OxidativoRESUMO
Endoplasmic reticulum stress (ER stress) is suggested to promote cardiomyocyte apoptosis and ultimately lead to ischemic injury. Inhibition of ER stress-induced apoptosis may be a therapeutic strategy for MI injury. Astragaloside-IV (AST) from Astragalus membranaceus (Fisch) Bge, was reported to have cardioprotective properties. In this study, we investigated the protective effect of AST on cardiomyocytes against hypoxia injury by regulating ER stress and inhibiting apoptosis. H9c2 cardiomyocytes were divided into three groups, normal group, hypoxia group and AST group. Cell viability was determined by CCK-8 assay. Intracellular reactive oxygen species (ROS) production was detected by DCFH-DA (2,7- dichloro-dihydrofluorescein diacetate) florescent staining. The study showed that AST treatment could significantly increase the cell viability of H9c2 cells exposed to hypoxia. Furthermore, AST could restrain cell apoptosis and decrease the production of ROS. Compared with normal group, the protein levels of Bax, caspase-3, caspase-9, GRP78, p-eIF2α, and CHOP were enhanced in the hypoxia group, whereas the protein level of Bcl-2 was dramatically reduced. Compared with hypoxia group, AST markedly inhibited the phosphorylation of eIF2α and the expression of caspase-3, caspase-9 and CHOP, and promoted the protein expression of Bcl-2. Thus, AST can inhibit the ER stress-mediated apoptosis, partly through the eIF2α/CHOP pathway suppression to inhibit ER stress.
Assuntos
Fator de Iniciação 2 em Eucariotos , Miócitos Cardíacos , Humanos , Caspase 3/metabolismo , Caspase 9/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/farmacologia , Estresse do Retículo Endoplasmático , Transdução de Sinais , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Hipóxia/tratamento farmacológico , ApoptoseRESUMO
Renal ischemia-reperfusion injury is caused by a temporary reduction in oxygen-carrying blood flow to the kidney, followed by reperfusion. During ischemia, kidney tissue damage induces overproduction of reactive oxygen species, which produces oxidative stress. The blood flow restoration during the reperfusion period causes further production of reactive oxygen species that ends with apoptosis and cell death. This study aimed to investigate the potential renoprotective effects of Raloxifene on bilateral renal ischemia-reperfusion injury in rats by looking into kidney function biomarkers, urea and creatinine, inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1ß). Additionally, antioxidant markers such as total antioxidant capacity (TAC) and the pro-apoptotic marker caspase-3 were assessed. Histopathological scores were also employed for evaluation. Our experimental design involved 20 rats divided into four groups: the sham group underwent median laparotomy without ischemia induction, the control group experienced bilateral renal ischemia for 30 minutes followed by 2 hours of reperfusion, the vehicle group received pretreatment with a mixture of corn oil and dimethyl sulfoxide (DMSO) before ischemia induction, and the Raloxifene-treated group was administered Raloxifene at a dose of 10 mg/kg before ischemia induction, followed by ischemia-reperfusion. Urea and creatinine, TNF-α, IL-1ß, and caspase-3 in the Raloxifene group were significantly lower compared to the control and vehicle groups. On the other hand, TAC levels in the Raloxifene group were significantly higher than in the control and vehicle groups. This study concluded that Raloxifene had a renoprotective impact via multiple actions as an anti-inflammatory, anti-apoptotic, and antioxidant agent.
Assuntos
Nefropatias , Traumatismo por Reperfusão , Ratos , Masculino , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Caspase 3/metabolismo , Caspase 3/farmacologia , Caspase 3/uso terapêutico , Cloridrato de Raloxifeno/farmacologia , Cloridrato de Raloxifeno/uso terapêutico , Cloridrato de Raloxifeno/metabolismo , Espécies Reativas de Oxigênio , Fator de Necrose Tumoral alfa , Creatinina , Rim , Estresse Oxidativo , Nefropatias/patologia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Ureia/metabolismo , Ureia/farmacologia , Ureia/uso terapêutico , IsquemiaRESUMO
Hepatocytes play a crucial role in host response to infection. Ehrlichia is an obligate intracellular bacterium that causes potentially life-threatening human monocytic ehrlichiosis (HME) characterized by an initial liver injury followed by sepsis and multi-organ failure. We previously showed that infection with highly virulent Ehrlichia japonica (E. japonica) induces liver damage and fatal ehrlichiosis in mice via deleterious MyD88-dependent activation of CASP11 and inhibition of autophagy in macrophage. While macrophages are major target cells for Ehrlichia, the role of hepatocytes (HCs) in ehrlichiosis remains unclear. We investigated here the role of MyD88 signaling in HCs during infection with E. japonica using primary cells from wild-type (WT) and MyD88-/- mice, along with pharmacologic inhibitors of MyD88 in a murine HC cell line. Similar to macrophages, MyD88 signaling in infected HCs led to deleterious CASP11 activation, cleavage of Gasdermin D, secretion of high mobility group box 1, IL-6 production, and inflammatory cell death, while controlling bacterial replication. Unlike macrophages, MyD88 signaling in Ehrlichia-infected HCs attenuated CASP1 activation but activated CASP3. Mechanistically, active CASP1/canonical inflammasome pathway negatively regulated the activation of CASP3 in infected MyD88-/- HCs. Further, MyD88 promoted autophagy induction in HCs, which was surprisingly associated with the activation of the mammalian target of rapamycin complex 1 (mTORC1), a known negative regulator of autophagy. Pharmacologic blocking mTORC1 activation in E. japonica-infected WT, but not infected MyD88-/- HCs, resulted in significant induction of autophagy, suggesting that MyD88 promotes autophagy during Ehrlichia infection not only in an mTORC1-indpenedent manner, but also abrogates mTORC1-mediated inhibition of autophagy in HCs. In conclusion, this study demonstrates that hepatocyte-specific regulation of autophagy and inflammasome pathway via MyD88 is distinct than MyD88 signaling in macrophages during fatal ehrlichiosis. Understanding hepatocyte-specific signaling is critical for the development of new therapeutics against liver-targeting pathogens such as Ehrlichia.
Assuntos
Ehrlichiose , Inflamassomos , Animais , Humanos , Camundongos , Autofagia , Caspase 3/metabolismo , Ehrlichia , Ehrlichiose/microbiologia , Hepatócitos/metabolismo , Inflamassomos/metabolismo , Mamíferos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismoRESUMO
PURPOSE: Previous research has highlighted the impact of X-ray irradiation-induced organ damage, on cancer patients after radiation therapy. The ionizing radiation-induced oxidative stress causes injury to the pancreatic islet cells of Langerhans. We used histopathological, immunohistochemical, and biochemical analyses to examine α- and ß-cells in the islets of Langerhans in rats undergoing whole-body x-ray ionizing radiation, a group of which was treated with NAC. MATERIAL AND METHODS: Twenty-four male rats were randomly divided into 3 groups, one control, and two experimental groups. Group I (Control) was administered only saline solution (0.09% NaCl) by oral gavage for 7 days. Group II (IR) was administrated whole body single dose 6 Gray ionizing radiation (IR) and saline solution (0.09% NaCl) by oral gavage for 7 days. Group III (IR + NAC) was administered 300 mg/kg NAC (N-acetylcysteine) by oral gavage for 7 days, 5 days before, and 2 days after 6 Gray IR application. RESULTS: In the X-ray irradiation group, we observed diffuse necrotic endocrine cells in the islets of Langerhans. In addition, we found that Caspase-3, malondialdehyde (MDA) levels increased, and insulin, glucagon, and glutathione (GSH) levels decreased in the IR group compared to the control group. In contrast, we observed a decrease in Caspase-3, and MDA levels in necrotic endocrine cells, and an increase in insulin, glucagon, and GSH levels in the IR + NAC group compared to the IR group. CONCLUSION: This study provides evidence for the beneficial effects of N-acetyl cysteine on islets of Langerhans cells with X-ray ionizing-radiation-induced damage in a rat model.
Assuntos
Insulinas , Ilhotas Pancreáticas , Lesões por Radiação , Humanos , Masculino , Ratos , Animais , Antioxidantes/farmacologia , Acetilcisteína/farmacologia , Raios X , Caspase 3/metabolismo , Glucagon , Solução Salina/farmacologia , Cloreto de Sódio/farmacologia , Estresse Oxidativo , Glutationa/metabolismo , Radiação Ionizante , Lesões por Radiação/tratamento farmacológico , Lesões por Radiação/prevenção & controle , Ilhotas Pancreáticas/metabolismoRESUMO
BACKGROUND: Steroid-induced avascular necrosis of the femoral head (SANFH) is characterized by osteoblast apoptosis, leading to a loss of bone structure and impaired hip joint function. It has been demonstrated that erythropoietin (EPO) performs a number of biological roles. OBJECTIVE: We examined the effects of EPO on SANFH and its regulation of the STAT1-caspase 3 signaling pathway. METHOD: In vitro, osteoblasts were treated with dexamethasone (Dex) or EPO. We identified the cytotoxicity of EPO by CCK-8, the protein expression of P-STAT1, cleaved-caspase9, cleaved-caspase3, Bcl-2, BAX, and cytochrome c by Western blotting, and evaluated the apoptosis of osteoblasts by flow cytometry. In vivo, we analyzed the protective effect of EPO against SANFH by hematoxylin and eosin (H&E), Immunohistochemical staining, and Micro-computed tomography (CT). RESULTS: In vitro, EPO had no apparent toxic effect on osteoblasts. In Dex-stimulated cells, EPO therapy lowered the protein expression of BAX, cytochrome c, p-STAT1, cleaved-caspase9, and cleaved-caspase3 while increasing the expression of Bcl-2. EPO can alleviate the apoptosis induced by Dex. In vivo, EPO can lower the percentage of empty bone lacunae in SANFH rats. CONCLUSION: The present study shows that EPO conferred beneficial effects in rats with SANFH by inhibiting STAT1-caspase 3 signaling, suggesting that EPO may be developed as a treatment for SANFH.
Assuntos
Eritropoetina , Necrose da Cabeça do Fêmur , Ratos , Animais , Caspase 3/metabolismo , Proteína X Associada a bcl-2/metabolismo , Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/tratamento farmacológico , Necrose da Cabeça do Fêmur/metabolismo , Citocromos c/metabolismo , Citocromos c/farmacologia , Microtomografia por Raio-X , Apoptose , Transdução de Sinais , Osteoblastos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Eritropoetina/farmacologia , Esteroides/efeitos adversosRESUMO
Objective To investigate the effect of adipocytokine Apelin-13 (AP13) on mitochondrial autophagy in myocardial ischemia reperfusion injury (MIRI) and its mechanism. Methods MIRI model was established by ligating the coronary artery branches of rats. The rats are divided into sham group, AP13-treated sham group, MIRI group and AP13-treated MIRI group. 24 h after the establishment of MIRI model, serum creatine kinase (CK), lactate dehydrogenase (LDH) and cardiac troponin I (cTnI) levels were detected by ELISA, and the size of myocardial infarction was detected by 2, 3, 5-triphenyltetrazole chloride (TTC) staining. Terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling (TUNEL) was used to detect the apoptosis of myocardial cells in MIRI myocardium, and transmission electron microscopy (TEM) was employed to observe the mitochondrial damage of myocardial cells and the formation of autophagosomes in the damaged myocardium. Western blot analysis was used to detect the microtubule-associated protein 1 light chain 3 II (LC3 II)/LC3 I ratio and protein expression level of the ubiquitin-binding protein (P62), phosphatase and tensin homologous (PTEN)-induced kinase 1 (PINK1), E3 ubiquitin ligase parkin and cleaved-caspase-3(c-caspase-3)in myocardial infarction tissues of rats in each group. The myocardial cells isolated from myocardial infarction area of rats were infected with adenovirus carrying GFP-LC3, and the co-localization of translocase of outer mitochondrial membrane 20 (TOM20) and LC3 was observed by immunofluorescence cytochemical staining. Results Compared with sham operation group or AP13-treated sham group, serum CK, LDH, cTnI, myocardial infarction area and apoptosis rate of MIRI group or AP13-treated MIRI rats were significantly increased, and there was no significant difference between the first two groups. Compared with MIRI group, the above changes were significantly decreased in AP13-treated MIRI rats. The integrity of mitochondrial structure in cardiomyocytes was significantly damaged, and a large number of autophagosomes enclosing mitochondria appeared in MIRI group and AP13-treated MIRI group compared with the sham group or AP13-treated sham group. However, compared with MIRI group, mitochondrial damage of myocardial cells in AP13-treated MIRI group was significantly reduced, and the number of autophagosomes was significantly increased. LC3 II/LC3 I ratio, PINK1, parkin and c-caspase-3 protein expression were significantly increased, while the expression level of P62 was significantly decreased in MIRI group or AP13-treated MIRI group compared with the other two groups. The change trend of above protein levels in AP13-treated MIRI group was significantly decreased compared with MIRI group. LC3 and TOM20 were co-located in the mitochondria of cardiomyocytes after MIRI modeling, and the expression intensity of LC3 in AP13-treated MIRI group was significantly increased compared with that in MIRI group. Conclusion Aplein-13 may promote the level of mitochondrial autophagy through PINK1/parkin signaling pathway, which can effectively reduce the size of myocardial infarction caused by I/R and reduce the rate of apoptosis.
Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Ratos , Animais , Traumatismo por Reperfusão Miocárdica/metabolismo , Caspase 3/metabolismo , Ratos Sprague-Dawley , Autofagia , Mitocôndrias/metabolismo , Apoptose , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Transdução de SinaisRESUMO
Pain within the trigeminal system, particularly dental pain, is poorly understood. This study aimed to determine whether single or multiple dental pulp injuries induce persistent pain, its association with trigeminal central nociceptive pathways and whether electroacupuncture (EA) provides prolonged analgesic and neuroprotective effects in a persistent dental pain model. Models of single dental pulp injury (SDPI) and multiple dental pulp injuries (MDPI) were used to induce trigeminal neuropathic pain. The signs of dental pain-related behavior were assessed using the mechanical head withdrawal threshold (HWT). Immunofluorescence and western blot protocols were used to monitor astrocyte activation, changes in apoptosis-related proteins, and GABAergic interneuron plasticity. SDPI mice exhibited an initial marked decrease in HWT from days one to 14, followed by progressive recovery from days 21 to 42. From days 49 to 70, the HWT increased and returned to the control values. In contrast, MDPI mice showed a persistent decrease in HWT from days one to 70. MDPI increased glial fibrillary acidic protein (GFAP) and decreased glutamine synthetase (GS) and glutamate transporter-1 (GLT1) expression in the Vi/Vc transition zone of the brainstem on day 70, whereas no changes in astrocytic markers were observed on day 70 after SDPI. Increased expression of cleaved cysteine-aspartic protease-3 (cleaved caspase-3) and Bcl-2-associated X protein (Bax), along with decreased B-cell lymphoma/leukemia 2 (Bcl-2), were observed at day 70 after MDPI but not after SDPI. The downregulation of glutamic acid decarboxylase (GAD65) expression was observed on day 70 only after MDPI. The effects of MDPI-induced lower HWT from days one to 70 were attenuated by 12 sessions of EA treatment (days one to 21 after MDPI). Changes in astrocytic GFAP, GS, and GLT-1, along with cleaved caspase-3, Bax, Bcl-2, and GAD65 expression observed 70 days after MDPI, were reversed by EA treatment. The results suggest that persistent dental pain in mice was induced by MDPI but not by SDPI. This effect was associated with trigeminal GABAergic interneuron plasticity along with morphological and functional changes in astrocytes. EA exerts prolonged analgesic and neuroprotective effects that might be associated with the modulation of neuron-glia crosstalk mechanisms.
Assuntos
Eletroacupuntura , Neuralgia , Fármacos Neuroprotetores , Camundongos , Animais , Astrócitos/metabolismo , Fármacos Neuroprotetores/metabolismo , Caspase 3/metabolismo , Proteína X Associada a bcl-2 , Eletroacupuntura/métodos , Polpa Dentária/metabolismo , Neuralgia/metabolismo , Analgésicos/metabolismo , Interneurônios/metabolismoRESUMO
OBJECTIVE: To observe the effect of propofol on the expression of myelin basic protein (MBP) in developing zebrafish and explore the possible mechanisms. METHODS: A total of 180 zebrafish embryos at 6-48 h post-fertilization were randomly allocated into 3 equal groups and raised in fresh water (control group), water containing dimethyl sulfoxide (DMSO group) and water containing 30 µg/mL propofol (propofol group). On 3, 4, 5, 6, 7, 10 d post-fertilization, the juvenile fish were collected for detection of mRNA and protein expressions of MBP using RT-qPCR and Western blotting. TUNEL assay and immunofluorescence assay were used to detect apoptosis of the oligodendrocytes of the fish at 3 d post-fertilization; RT-qPCR and Western blotting were performed to detect the expressions of apoptosis-related factors caspase-8, caspase-9 and caspase-3. RESULTS: Compared with the control group, the fish with propofol exposure showed significantly decreased mRNA and protein expression of MBP at 3-7 d post-fertilization (P<0.05) with increased apoptosis of the oligodendrocytes and upregulated expressions of caspase-8, caspase-9 and caspase-3 at both the mRNA and protein levels. CONCLUSION: Propofol persistently inhibits MBP expression in developing zebrafish within a short term possibly by mediating apoptosis of the oligodendrocytes.
Assuntos
Proteína Básica da Mielina , Propofol , Peixe-Zebra , Animais , Apoptose , Caspase 3/metabolismo , Caspase 8/metabolismo , Caspase 9/metabolismo , Proteína Básica da Mielina/metabolismo , Propofol/farmacologia , RNA Mensageiro/metabolismo , Peixe-Zebra/embriologiaRESUMO
Cisplatin (Cis) is considered to be one of the most effective drugs for killing cancer cells and remains a first-line chemotherapeutic agent. However, Cis's multiple toxicities (especially nephrotoxicity) have limited its clinical use. Marsdenia tenacissima (Roxb.) Wight et Arn. (MT), a traditional Chinese medicine (TCM) employed extensively in China, not only enhances the antitumor effect in combination with Cis, but is also used for its detoxifying effect, as it reduces the toxic side effects of chemotherapy drugs. The aim of this study was to explore the therapeutic effect of MT on Cis-induced nephrotoxicity, along with its underlying mechanisms. In this study, liquid-mass spectrometry was performed to identify the complex composition of the extracts of MT. In addition, we measured the renal function, antioxidant enzymes, and inflammatory cytokines in mice with Cis-induced nephrotoxicity and conducted renal histology evaluations to assess renal injury. The expressions of the proteins related to antioxidant, anti-inflammatory, and apoptotic markers in renal tissues was detected by Western blotting (WB). MT treatment improved the renal function, decreased the mRNA expression of the inflammatory factors, and increased the antioxidant enzyme activity in mice. A better renal histology was observed after MT treatment. Further, MT inhibited the expression of the phospho-NFκB p65 protein/NFκB p65 protein (p-p65)/p65, phospho-inhibitor of nuclear factor kappa B kinase beta subunit/inhibitor of nuclear factor kappa B kinase beta subunit (p-IKKß/IKKß), Bcl-2-associated X (Bax), and Cleaved Caspase 3/Caspase 3 proteins, while the expression of nuclear factor-erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), Recombinant NADH Dehydrogenase, Quinone 1 (NQO1), and B-cell lymphoma-2 (Bcl-2) was increased. The present study showed that MT ameliorated renal injury, which mainly occurs through the regulation of the Nrf2 pathway, the NF-κB pathway, and the suppression of renal tissue apoptosis. It also suggests that MT can be used as an adjuvant to mitigate the nephrotoxicity of Cis chemotherapy.
Assuntos
Cisplatino , Marsdenia , Camundongos , Animais , Cisplatino/efeitos adversos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Caspase 3/metabolismo , Marsdenia/metabolismo , Quinase I-kappa B/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Apoptose , Estresse Oxidativo , NF-kappa B/metabolismo , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Proteínas Proto-Oncogênicas c-bcl-2/metabolismoRESUMO
BACKGROUND: Contrast-induced nephropathy (CIN) is a major clinical problem associated with acute kidney injury during hospitalization. However, effective treatments for CIN are currently lacking. Mesenchymal stem cells (MSCs) have protective effects against kidney injury by suppressing inflammation and fibrosis. We previously showed that MSCs cultured in serum-free medium (SF-MSCs) enhance their anti-inflammatory and anti-fibrotic effects. However, whether SF-MSCs potentiate their anti-apoptotic effects is unknown. Here, we investigated the effects of SF-MSCs on a CIN mouse model. METHODS: To create CIN model mice, we removed right kidney at first. One week later, the left renal artery was clamped for 30 min to cause ischemia-reperfusion injury, and mice were injected with iohexol. Then the kidney received 10 Gy of irradiation, and MSCs or SF-MSCs were injected immediately. At 24 h post-injection, mice were sacrificed, and their blood and kidneys were collected to evaluate renal function, DNA damage, and apoptosis. In addition, apoptosis was induced in HEK-293 cells by irradiation and cells were treated with conditioned medium from MSCs or SF-MSCs. RESULTS: Treatment of CIN model mice with SF-MSCs markedly improved renal function compared with MSCs treatment. Cleaved caspase-3 levels and TUNEL-positive cell numbers were strongly suppressed in CIN model mice treated with SF-MSCs compared with the findings in those treated with MSCs. γH2AX levels, a chromosome damage marker, were reduced by MSCs and further reduced by SF-MSCs. In addition, cleaved caspase-3 in irradiated HEK-293 cells was more strongly suppressed by conditioned medium from SF-MSCs than by that from MSCs. Secretion of epidermal growth factor (EGF) was enhanced by culturing MSCs in serum-free medium. Knockdown of EGF by siRNA attenuated the inhibitory effects of SF-MSCs on CIN-induced renal dysfunction and tubular apoptosis. CONCLUSIONS: These findings strongly suggest that SF-MSCs improve CIN in model mice by exerting anti-apoptotic effects in a paracrine manner. Thus, SF-MSCs represent a potential novel therapy for CIN.
Assuntos
Injúria Renal Aguda , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Caspase 3/genética , Caspase 3/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Células HEK293 , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/terapia , Injúria Renal Aguda/metabolismo , Fibrose , Células-Tronco Mesenquimais/metabolismo , Células CultivadasRESUMO
BACKGROUND: Sodium-glucose cotransporter-2 (SGLT-2) inhibitors, as a new type of hypoglycemic drug, can prevent proximal renal tubule injury related to glucose toxicity and play a renoprotective role. Canagliflozin, a recognized SGLT-2 inhibitor, has been proved to have potential protection in diabetic nephropathy (DN), but its mechanism has not been fully elucidated. In this study, the protective effect of canagliflozin against high glucose (HG)-induced renal tubular epithelial cell (NRK-52E) injury in vitro was assessed. METHODS: The viability and apoptosis of NRK-52E cells were detected using cell counting kit-8 (CCK-8) assay and flow cytometry analysis, respectively. The expression levels of cleaved caspase-3, oxidative stress-related proteins (NOX4 and Nrf2), autophagy marker light chain 3 (LC3) I/II, and adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway-related proteins were evaluated by Western blot. Reactive oxygen species (ROS) level was evaluated by dihydroethidium (DHE) reactive oxygen species assay, the activities of SOD, CAT, GSH-Px and MDA were analyzed using kits. The changes of morphology and red fluorescent protein (RFP)-LC3 fluorescence were observed under microscopy. RESULTS: Canagliflozin significantly ameliorated HG-induced NRK-52E cell apoptosis and caspase-3 cleavage. Furthermore, canagliflozin markedly ameliorated HG-induced NRK-52E cell oxidative stress. Moreover, canagliflozin significantly increased LC3-II levels and induced RFP-LC3-containing punctate structures in NRK-52E cells. Finally, canagliflozin increased the phosphorylation of AMPK and suppressed the phosphorylation of mTOR. The AMPK inhibitor compound C abolished canagliflozin-induced autophagy activation, as well as the anti-apoptotic effect of canagliflozin. CONCLUSION: Canagliflozin effectively ameliorate HG-induced apoptosis of NRK-52E cells in vitro that involved its antioxidant effect and induction of autophagy through the AMPK/mTOR pathway.