Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.716
Filtrar
1.
J Toxicol Sci ; 45(9): 549-558, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32879254

RESUMO

Trimethyltin chloride (TMT) is a stabilizer by-product in the process of manufacturing plastic, which is a kind of very strong toxic substance, and has acute, cumulative and chronic toxicity. TMT may cause bradycardia in patients with occupational poisoning, the mechanism of which has not been reported. This study explored the mechanism of TMT resulting in bradycardia of C57BL/6 mice. TMT was administered to mice to measure heart rate, serum succinate dehydrogenase (SDH) level, and myocardial Na+/K+-ATPase activity and expression. The effects of TMT on myocardial apoptosis were observed by changing the expressions of caspase-3, Bax and Bcl-2 in myocardium. It was found that the heart rate and SDH activity in serum of mice gradually decreased with the increase of TMT dose compared with the control group. The activity and the expression of Na+/K+-ATPase in the heart tissue of mice exposed to TMT was measured and gradually decreased with the increase of dose and time. We measured the expression of Bcl-2, Bax, caspase-3 and cleaved caspase-3 in the heart tissues of TMT exposed mice and found that the expressions of Bax, caspase-3 and cleaved caspase-3 increased and the expressions of Bcl-2 decreased in the heart tissues of the TMT-exposed mice at different doses. With the extension of TMT exposure time, the expression of Bax and caspase-3 increased and the expression of Bcl-2 decreased in the heart tissues of TMT exposed mice. Our findings suggest the mechanisms of TMT resulting in bradycardia may be associated with the inhibited activity and decreased content of Na+/K+-ATPase, thus further leading to the changes of Bcl-2, Bax, caspase-3 and cleaved caspase-3 in the mice's ventricular tissues.


Assuntos
Apoptose/efeitos dos fármacos , Bradicardia/etiologia , Miocárdio/metabolismo , Miocárdio/patologia , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Compostos de Trimetilestanho/toxicidade , Animais , Apoptose/genética , Bradicardia/genética , Caspase 3/genética , Caspase 3/metabolismo , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
2.
PLoS One ; 15(8): e0237098, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32745124

RESUMO

The EGFR-targeting cancer therapies are commonly facing drug resistance, mostly due to mutations. Gene therapy with artificial microRNA targeting EGFR conserved sequence may avoid such problem. In this study, we constructed a recombinant adenovirus expressing EGFR-targeting artificial microRNA and active revCASP3 (Ad-EC), under the control of tumor-specific SLPI promoter, and evaluated its inhibitory effect on HEP-2 cancer cells both in vitro and in vivo. MTT assay showed that cell growth inhibition rate at 72h was 44.0% in Ad-EC group at MOI 50, while the rate was 7.7% in the control virus Ad-GFP group and 3.6% in Cetuximab (500 µg/ml) group respectively. Flow cytometry analysis revealed the late apoptotic cells rate was 36.1% in Ad-EC group, significantly higher than 6.5% of Ad-GFP group (p < 0.001). When Ad-EC (MOI 50) was combined with CDDP (0.25 µg/ml), late apoptotic cells rate increased to 61.2%, significantly higher than each monotherapy group (P < 0.001). The real-time xCELLigence system recorded an effective cell growth inhibition in Ad-EC and CDDP groups, and more enhanced effect in Ad-EC plus CDDP group. Western blot revealed that Ad-EC could inhibit the activation of AKT pathway and ERK1/2 pathway, while Cetuximab had the AKT pathway over-activated. In vivo experiments with HEP-2 xenograft in nude mice confirmed the tumor inhibition in Ad-EC, CDDP and Ad-EC plus CDDP groups compared with PBS group (P < 0.01). Collectively, these data support the effective inhibition of cancer cells by this novel gene therapy strategy.


Assuntos
Caspase 3/metabolismo , Receptores ErbB/genética , MicroRNAs/genética , Neoplasias Experimentais/terapia , Terapêutica com RNAi/métodos , Adenoviridae/genética , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptose , Caspase 3/genética , Linhagem Celular Tumoral , Proliferação de Células , Cetuximab/administração & dosagem , Cetuximab/uso terapêutico , Cisplatino/administração & dosagem , Cisplatino/uso terapêutico , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neoplasias Experimentais/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo
3.
DNA Cell Biol ; 39(9): 1595-1605, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32783661

RESUMO

Autophagy, a highly conserved cellular protein degradation process, has been involved in acute myeloid leukemia (AML). The present study aims to establish a novel, autophagy-related prognostic signature for prediction of AML prognosis. Differentially expressed autophagy-related genes in AML and healthy samples were screened using GSE1159. Univariate Cox regression analysis was applied to determine survival-associated autophagy-related genes in The Cancer Genome Atlas (TCGA) AML cohort. Lasso regression was performed to develop multiple-gene prognostic signatures. A novel six-gene signature (including CASP3, CHAF1B, KLHL24, OPTN, VEGFA, and VPS37C) DC was established for AML prognosis prediction. The Kaplan-Meier survival analysis revealed that patients in the high-risk score group had poorer overall survival (OS). The receiver operating characteristic (ROC) curve validated its good performance in survival prediction in TCGA AML cohort, and the area under the curve value was 0.817. Moreover, our signature could independently predict OS. A nomogram was constructed, including the six-gene signature and other clinical parameters, and predictive efficiency was confirmed using the ROC curve and calibration curve. Furthermore, gene set enrichment analyses identified several tumor-associated pathways that may contribute to explain the potential molecular mechanisms of our signature. Overall, we developed a new autophagy-associated gene signature and nomogram to predict OS of AML patients, which may help in clinical decision-making for AML treatment.


Assuntos
Autofagia , Biomarcadores Tumorais/genética , Leucemia Mieloide Aguda/genética , Transcriptoma , Biomarcadores Tumorais/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fator 1 de Modelagem da Cromatina/genética , Fator 1 de Modelagem da Cromatina/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Humanos , Leucemia Mieloide Aguda/patologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Chem Biol Interact ; 328: 109197, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32710900

RESUMO

The present study was undertaken to assess the effect of imatinib mesylate; a tyrosine kinase inhibitor and a well-known anticancer with numerous medical benefits on blood sugar levels, insulin, and glucagon secretion in an experimental model of STZ-induced diabetes mellitus. Type 1 diabetes mellitus (T1DM) was induced by a single I.P. injection of Streptozotocin (STZ) (50 mg/kg) in male Sprague-Dawley rats. Daily oral imatinib (10 mg/kg) and (20 mg/kg) for 4 weeks induced a significant attenuation in signs of DM in rats reflected in their assessed lab values. Biomarkers of cell injury, tissue necrosis, and apoptosis; caspase-3 were significantly reduced with imatinib treatment. Furthermore, pancreatic antioxidants defenses of which; superoxide dismutase (SOD) and catalase activities, reduced glutathione (GSH) concentration, and total antioxidant capacity have significantly improved with a simultaneous reduction in malondialdehyde (MDA) content. Histopathologically, imatinib treatment was associated with a minimal pancreatic injury and marked restoration of insulin content in ß-cells. Moreover, imatinib treatment revealed a significant reduction in the infiltration of macrophages in ß-cells. Imatinib's ameliorative impact on DM may be attributed to it's mediated protection and preservation of pancreatic ß-cells function and the improvement in serum insulin levels and hence the improvement of blood glucose and overall glycemic control.


Assuntos
Diabetes Mellitus Experimental/patologia , Mesilato de Imatinib/farmacologia , Células Secretoras de Insulina/metabolismo , Administração Oral , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antioxidantes/metabolismo , Biomarcadores/sangue , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Caspase 3/metabolismo , Catalase/metabolismo , Diabetes Mellitus Experimental/sangue , Modelos Animais de Doenças , Glucagon/sangue , Glutationa/metabolismo , Insulina/sangue , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Estreptozocina , Superóxido Dismutase/metabolismo
5.
Life Sci ; 257: 118104, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679143

RESUMO

Halofuginone (HF) from Dichroa febrifuga has shown therapeutic potential in hepatocellular, lung and colorectal cancer cell models. Evidence has also indicated that HF plays roles in caustic induced esophageal strictures and oxidative injury. However, the role of HF in esophageal squamous carcinoma (ESCC) remains unclear. In this study, we investigated HF actions and mechanisms during ESCC cell apoptosis. We observed different HF concentrations (5, 10 and 20 nM) inhibited ESCC cell survival in a time and dose-dependent manner. HF treatment markedly induced KYSE-30 and TE-1 cell apoptosis, and caspase-3 activity. Apoptosis related protein Bax expression was dramatically increased, whereas Bcl-2 levels were reduced in KYSE-30 and TE-1 cells, after HF exposure. Also, we showed that HF treatment induced DNA damage by promoting γH2AX, pATM and pATR expression. HF treatment also reduced hypoxia-inducible factor-1α (HIF-1α) and forkhead box class O 3a (FOXO3a) expression in KYSE-30 and TE-1 cells. We also showed that HF inhibited FOXO3a expression, but this was dependent on HIF-1α inhibition. Finally, FOXO3a overexpression reversed HF induced cell survival inhibition, cell apoptosis and DNA damage. FOXO3a knockdown enhanced the effects of HF on cell survival, cell apoptosis and DNA damage. In summary, HF plays inhibitory roles in ESCC cell apoptosis, via HIF-1α-FOXO3a-dependent signaling. These data support the notion that HF could act as an effective therapeutic reagent towards ESCC.


Assuntos
Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias Esofágicas/tratamento farmacológico , Proteína Forkhead Box O3/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Piperidinas/uso terapêutico , Quinazolinonas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Western Blotting , Carcinoma de Células Escamosas/metabolismo , Caspase 3/metabolismo , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Neoplasias Esofágicas/metabolismo , Humanos
6.
Int Heart J ; 61(4): 806-814, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32728001

RESUMO

This study aimed to explore the function of miR-24 in hypoxia/reoxygenation (H/R) -induced cardiomyocyte injury.We constructed a cardiomyocyte model of H/R using the primary cardiomyocytes isolated from Sprague-Dawley rats. To explore the role of miR-24, cells were transfected with a miR-24 mimic or miR-24 inhibitor. The RNA expression levels of miR-24 and Mapk14 were determined using qRT-PCR. The proliferation and apoptosis of cells were determined using a CCK8 assay and a flow cytometer. The TargetScan website was used to predict the targets of miR-24. A dual-luciferase reporter gene assay was conducted to verify whether Mapk14 is indeed a target of miR-24. A Western blot was applied for protein detection.H/R exposure decreased the expression of miR-24 in rat cardiomyocytes. Transfection of the miR-24 mimic into cardiomyocytes reduced H/R-induced injury as evidenced by an increase in proliferation and a decrease in the apoptotic rate. By contrast, transfection of the miR-24 inhibitor aggravated H/R-induced injury. The expression of Bcl-2 was increased while the levels of Bax and Active-caspase 3 were reduced in the H/R+miR-24 mimic group compared to those in the H/R group. H/R+miR-24 inhibitor group showed the opposite results. Mapk14 was identified as a target of miR-24. The mRNA level of Mapk14 and its protein (p38 MAPK) level were negatively affected by miR-24. Furthermore, we discovered that depletion of Mapk14 reduced the promoting effect of the miR-24 inhibitor on cell apoptosis.Overall, our results illustrated that miR-24 could attenuate H/R-induced injury partly by regulating Mapk14.


Assuntos
Hipóxia/metabolismo , MicroRNAs/genética , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Apoptose/fisiologia , Caspase 3/metabolismo , Genes Reporter/genética , Genes bcl-2/genética , Humanos , Ratos , Ratos Sprague-Dawley , Transfecção/métodos , Proteína X Associada a bcl-2/metabolismo
7.
Int J Nanomedicine ; 15: 3605-3620, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547017

RESUMO

Purpose: Osteonecrosis of the femoral head (ONFH) is a chronic and irreversible disease that eventually develops into a joint collapse and results in joint dysfunction. Early intervention and treatment are essential for preserving the joints and avoiding hip replacement. In this study, a system of human umbilical mesenchymal stem cells-supermagnetic iron oxide nanoparticles (NPs) @polydopamine (SCIOPs) was constructed. The magnetic targeting system gathers in the lesion area, inhibits the apoptosis of bone cells, enhances osteogenic effect, and effectively treats ONFH under external magnetic field. Materials and Methods: The supermagnetic iron oxide NPs @polydopamine (SPION@PDA NPs) were characterized by transmission electron microscopy and zeta potential, respectively. The effects of SPION@PDA NPs on the viability, proliferation, and differentiation of stem cells were detected by the CCK8 method, flow cytometry, and staining, respectively. The serum inflammatory indicators were detected by Luminex method. The bone mass of the femoral head was analyzed by micro computed tomography. The expression of apoptosis and osteoblast-related cytokines was detected by Western blotting. The osteogenesis of the femoral head was detected by histological and immunohistochemical sections. Results: The SCIOPs decreased the pro-inflammatory factors, and the micro CT showed that the bone repair of the femoral head was enhanced after treatment. The hematoxylin and eosin sections also showed an increase in the osteogenesis in the femoral head. Western blotting results showed and increased expression of anti-apoptotic proteins Akt and Bcl-2, decreased expression of apoptotic proteins caspase-3 and Bad, and increased expression of osteogenic proteins Runx-2 and Osterix in the femoral head. Conclusion: Under the effect of magnetic field and homing ability of stem cells, SCIOPs inhibited the apoptosis of osteoblasts, improved the proliferation ability of osteoblasts, and promoted bone repair in the femoral head through the Akt/Bcl-2/Bad/caspase-3 signaling pathway, thereby optimizing the tissue repair ability.


Assuntos
Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/terapia , Glucocorticoides/efeitos adversos , Fenômenos Magnéticos , Nanopartículas de Magnetita/química , Células-Tronco Mesenquimais/citologia , Transdução de Sinais , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Feminino , Hemólise/efeitos dos fármacos , Humanos , Indóis/química , Nanopartículas de Magnetita/toxicidade , Nanopartículas de Magnetita/ultraestrutura , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Polímeros/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Microtomografia por Raio-X , Proteína de Morte Celular Associada a bcl/metabolismo
8.
PLoS One ; 15(6): e0233612, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32479520

RESUMO

BACKGROUND: Necrotizing enterocolitis (NEC) is a devastating gastrointestinal disease of neonates, especially premature neonates. To date, there is no prophylactic treatment against NEC, except breast milk and slow increase in enteral feeding, and there is no antenatal prophylaxis. AIMS: To assess possible protective effects of antenatal N-Acetyl Cysteine (NAC) against the intestinal pathophysiological changes associated with NEC in a rat model of NEC and against its associated mortality. METHODS: Newborn Sprague-Dawley rats were divided into 5 groups: control (n = 33); NEC (n = 32)-subjected to hypoxia and formula feeding for 4 days to induce NEC; NEC-NAC (n = 34)-with induced NEC and concomitant postnatal NAC administration; NAC-NEC (n = 33)-born to dams treated with NAC for the last 3 days of pregnancy starting at gestational age of 18 days, and then subjected to induced NEC after birth; NAC-NEC-NAC (n = 36)-subjected to induced NEC with both prenatal and postnatal NAC treatment. At day of life 5, weight and survival of pups in the different groups were examined, and pups were euthanized. Ileal TNF-α, IL-6, IL-1ß, IL-10, NFkB p65, iNOS and cleaved caspase 3 protein levels (western blot) and mRNA expression (RT-PCR) were compared between groups. RESULTS: Pup mortality was significantly reduced in the NAC-NEC-NAC group compared to NEC (11% vs. 34%, P<0.05). Ileal protein levels and mRNA expression of all injury markers tested except IL-10 were significantly increased in NEC compared to control. These markers were significantly reduced in all NAC treatment groups (NEC-NAC, NAC-NEC, and NAC-NEC-NAC) compared to NEC. The most pronounced decrease was observed in the NAC-NEC NAC group. CONCLUSIONS: Antenatal NAC decreases injury markers and mortality associated with NEC in a rat model. Antenatal administration of NAC may present a novel approach for NEC prophylaxis in pregnancies with risk for preterm birth.


Assuntos
Acetilcisteína/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Enterocolite Necrosante/prevenção & controle , Depuradores de Radicais Livres/uso terapêutico , Acetilcisteína/administração & dosagem , Animais , Anti-Inflamatórios/administração & dosagem , Caspase 3/metabolismo , Enterocolite Necrosante/tratamento farmacológico , Enterocolite Necrosante/metabolismo , Feminino , Depuradores de Radicais Livres/administração & dosagem , Interleucinas/metabolismo , Masculino , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
9.
Life Sci ; 256: 117958, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32553929

RESUMO

PROPOSE: Understanding the protective effect of exercise against ethanol-induced toxicity through the oxidative stress signaling pathway, apoptosis, and cholesterol metabolism is important to prevent development of cardiovascular diseases. METHODS: Thirty-two male Wistar rats were randomly divided into four equal groups as follow: control, exercise training (ET), ethanol (4 g/kg of body weight/day) and ET + ethanol. The ET and ET + Ethanol groups ran on the treadmill at 65% maximum running speed for 60 min for five sessions per week for eight weeks. The ethanol and ET + Ethanol groups received ethanol for eight weeks. At the end of the study, animals were anesthetized and blood and tissues were sampled to examine the biochemical and molecular evaluation. RESULTS: The results showed that the antioxidant enzymes activity decreased and MDA levels increased in the heart and liver of animals in ethanol group compared to control group. The levels of these oxidative biomarkers improved by ET in ET + Ethanol group compared to ethanol group. It showed that ET could protect the heart and liver against oxidative damage induced by ethanol through up-regulating the expression of the Nrf2/Keap-1/HO-1 pathway. ET could exert a cardioprotective effect on ethanol-induced apoptosis through down-regulating the Bax and the caspase-3 and via up-regulating the Bcl-2 expression in the heart. ET could also improve the impairment of cholesterol metabolism induced by ethanol. CONCLUSION: Exercise can protect against ethanol-induced toxicity through moderating the expression of genes which are involved in oxidative status, apoptosis and cholesterol metabolism.


Assuntos
Apoptose , Etanol/toxicidade , Heme Oxigenase-1/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fígado/patologia , Miocárdio/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Condicionamento Físico Animal , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Biomarcadores/sangue , Caspase 3/genética , Caspase 3/metabolismo , Colesterol/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Lipídeos/sangue , Fígado/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
10.
PLoS One ; 15(6): e0234038, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32492075

RESUMO

Extracellular adenosine triphosphate (eATP) released by damaged cells, and its purinergic receptors, comprise a crucial signaling network after injury. Purinergic receptor P2X7 (P2RX7), a major driver of NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation and IL-1ß processing, has been shown to play a role in liver injury in murine diet- and chemically-induced liver injury models. It is unclear, however, whether P2RX7 plays a role in non-alcoholic steatohepatitis (NASH) and which cell type is the main target of P2RX7 pharmacological inhibition. Here, we report that P2RX7 is expressed by infiltrating monocytes and resident Kupffer cells in livers from NASH-affected individuals. Using primary isolated human cells, we demonstrate that P2RX7 expression in CD14+ monocytes and Kupffer cells primarily mediates IL-1ß release. In addition, we show that pharmacological inhibition of P2RX7 in monocytes and Kupffer cells, blocks IL-1ß release, reducing hepatocyte caspase 3/7 activity, IL-1ß-mediated CCL2 and CCL5 chemokine gene expression and secretion, and hepatic stellate cell (HSC) procollagen secretion. Consequently, in a chemically-induced nonhuman primate model of liver fibrosis, treatment with a P2RX7 inhibitor improved histological characteristics of NASH, protecting from liver inflammation and fibrosis. Taken together, these findings underscore the critical role of P2RX7 in the pathogenesis of NASH and implicate P2RX7 as a promising therapeutic target for the management of this disease.


Assuntos
Inflamação/prevenção & controle , Cirrose Hepática/tratamento farmacológico , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Receptores Purinérgicos P2X7/metabolismo , Animais , Caspase 3/metabolismo , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Inflamação/patologia , Interleucina-1beta/metabolismo , Macrófagos do Fígado/citologia , Macrófagos do Fígado/efeitos dos fármacos , Macrófagos do Fígado/metabolismo , Lipopolissacarídeos/farmacologia , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Macaca fascicularis , Masculino , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Pró-Colágeno/metabolismo , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X7/química , Receptores Purinérgicos P2X7/genética
12.
Anat Sci Int ; 95(4): 523-539, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32476103

RESUMO

Type 1 diabetes mellitus (T1DM) is a chronic metabolic disease caused by the destruction of pancreatic ß-cells. Human dental pulp stem cells represent a promising source for cell-based therapies, owing to their easy, minimally invasive surgical access, and high proliferative capacity. It was reported that human dental pulp stem cells can differentiate into a pancreatic cell lineage in vitro; however, few studies have investigated their effects on diabetes. Our study aimed to investigate the therapeutic potential of intravenous and intrapancreatic transplantation of human dental pulp stem cells in a rat model of streptozotocin-induced type 1 diabetes. Forty Sprague Dawley male rats were randomly categorized into four groups: control, diabetic (STZ), intravenous treatment group (IV), and intrapancreatic treatment group (IP). Human dental pulp stem cells (1 × 106 cells) or vehicle were injected into the pancreas or tail vein 7 days after streptozotocin injection. Fasting blood glucose levels were monitored weekly. Glucose tolerance test, rat and human serum insulin and C-peptide, pancreas histology, and caspase-3, vascular endothelial growth factor, and Ki67 expression in pancreatic tissues were assessed 28 days post-transplantation. We found that both IV and IP transplantation of human dental pulp stem cells reduced blood glucose and increased levels of rat and human serum insulin and C-peptide. The cells engrafted and survived in the streptozotocin-injured pancreas. Islet-like clusters and scattered human dental pulp stem cells expressing insulin were observed in the pancreas of diabetic rats with some difference in the distribution pattern between the two injection routes. RT-PCR analyses revealed the expression of the human-specific pancreatic ß-cell genes neurogenin 3 (NGN3), paired box 4 (PAX4), glucose transporter 2 (GLUT2), and insulin in the pancreatic tissues of both the IP and IV groups. In addition, the transplanted cells downregulated the expression of caspase-3 and upregulated the expression of vascular endothelial growth factor and Ki67, suggesting that the injected cells exerted pro-angiogenetic and antiapoptotic effects, and promoted endogenous ß-cell replication. Our study is the first to show that human dental pulp stem cells can migrate and survive within streptozotocin-injured pancreas, and induce antidiabetic effects through the differentiation and replacement of lost ß-cells and paracrine-mediated pancreatic regeneration. Thus, human dental pulp stem cells may have therapeutic potential to treat patients with long term T1DM.


Assuntos
Polpa Dentária/citologia , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/terapia , Pâncreas/fisiologia , Transplante de Células-Tronco , Células-Tronco/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Caspase 3/metabolismo , Diferenciação Celular , Movimento Celular , Sobrevivência Celular , Modelos Animais de Doenças , Transportador de Glucose Tipo 2/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Antígeno Ki-67/metabolismo , Masculino , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , Pâncreas/citologia , Pâncreas/metabolismo , Ratos , Ratos Sprague-Dawley , Regeneração , Estreptozocina
13.
Life Sci ; 256: 117887, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32497629

RESUMO

Vascular complications are a leading cause of morbidity and mortality among diabetic patients. This work aimed to investigate possible influences of dimethyl fumarate (DMF) on streptozotocin (STZ) diabetes-associated vascular complications in rats, exploring its potential to modulate ROS-TXNIP-NLRP3 inflammasome pathway. Two weeks after induction of diabetes (via a single injection of 50 mg/kg STZ, i.p.), diabetic rats were administered either DMF (25 mg/kg/day) or its vehicle for further eight weeks. Age-matched normal and DMF-administered non-diabetic rats served as controls. DMF treatment elicited a mild ameliorative effect on diabetic glycemia. DMF reduced serum TG and AGE levels and enhanced serum HDL-C concentrations in diabetic rats. Moreover, DMF significantly diminished aortic levels of ROS and MDA and restored aortic GSH, SOD and Nrf2 to near-normal levels in STZ rats. Aortic mRNA levels of TXNIP, NLRP3 and NF-κB p65 in diabetic rats were significantly reduced by DMF treatment. Serum and aortic protein levels of TXNIP and aortic contents of IL-1ß, iNOS, NLRP3 and TGF-ß1 were significantly lower in DMF-diabetic animals than non-treated diabetic rats. Furthermore, protein expression of TNF-α and caspase-3 in diabetic aortas was greatly attenuated by DMF administration. DMF enhanced eNOS mRNA and protein levels and increased bioavailable NO in diabetic aortas. Functionally, DMF attenuated contractile responses of diabetic aortic rings to KCl and phenylephrine and enhanced their relaxant responses to acetylcholine. DMF also mitigated diabetes-induced fibrous tissue proliferation in aortic tunica media. Collectively, these findings demonstrate that DMF offered vasculoprotective influences on diabetic aortas via attenuation of ROS-TXNIP-NLRP3 inflammasome pathway.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Angiopatias Diabéticas/tratamento farmacológico , Angiopatias Diabéticas/metabolismo , Fumarato de Dimetilo/uso terapêutico , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Aorta/metabolismo , Aorta/patologia , Biomarcadores/metabolismo , Caspase 3/metabolismo , Proteínas de Ciclo Celular/sangue , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Angiopatias Diabéticas/sangue , Fumarato de Dimetilo/farmacologia , Interleucina-1beta/metabolismo , Masculino , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Oxirredução , Ratos Sprague-Dawley , Estreptozocina , Fator de Crescimento Transformador beta1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
15.
Int J Nanomedicine ; 15: 3827-3842, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581533

RESUMO

Introduction: Copper oxide nanoparticles (CuO-NPs) are widely used as feed additives for livestock and poultry and implicated in many biomedical applications; however, overload of copper NPs induces various toxicological changes and dysfunction of animal's organs. Thus, this study was designed to evaluate the comparative toxicological effects of biologically and chemically synthesized CuO-NPs on mice. Methods: Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) were used to characterize the sizes, shapes and functional groups of CuO-NPs. Forty-five mice were randomly allocated into three groups. Control group received distilled water. The second group was administered a single dose of biologically synthesized CuO-NPs (500 mg/kg bw) orally. The third group was administered a single dose of chemically synthesized CuO-NPs (500 mg/kg bw) orally. Results: TEM revealed that biologically synthesized NPs were spherical in shape, whereas chemically synthesized NPs were spherical or elongated in shape. XRD showed that the size of biologically synthesized NPs ranged from 4.14 to 12.82 nm and that of chemically synthesized NPs ranged from 4.06 to 26.82 nm. FT-IR spectroscopy indicated that the peaks appeared between 779 cm-1 and 425 cm-1 in biologically synthesized NPs and between 858 cm-1 and 524 cm-1 in chemically synthesized NPs were for Cu-O nanostructure. Four mice died due to administration of biologically synthesized CuO-NPs. Both biologically and chemically synthesized CuO-NPs induced leukocytosis, elevated serum activities of alanine aminotransferase and aspartate aminotransferase and serum levels of urea and creatinine and increased P53 mRNA and caspase-3 protein expressions in hepatic tissues. Moreover, CuO-NPs induced degenerative and necrotized changes in hepatic, renal and splenic tissues. Biochemical, apoptotic and pathological changes were more serious in mice administered with biologically synthesized CuO-NPs. Conclusion: This study indicated that a high dose of biologically and chemically synthesized CuO-NPs induced adverse effects on hepatic, renal and splenic tissues. At the same dose level, the biologically synthesized CuO-NPs evoked more potent toxic effects than the chemically synthesized CuO-NPs.


Assuntos
Cobre/toxicidade , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Administração Oral , Animais , Caspase 3/metabolismo , Cobre/administração & dosagem , Rim/efeitos dos fármacos , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Nanopartículas Metálicas/administração & dosagem , Camundongos , Microscopia Eletrônica de Transmissão , Nanopartículas , Espectroscopia de Infravermelho com Transformada de Fourier , Baço/efeitos dos fármacos , Baço/patologia , Ulva/metabolismo , Difração de Raios X
16.
Chem Biol Interact ; 325: 109109, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32376239

RESUMO

A series of 10 natural and semisynthetic flavonoids (1 to 10) were obtained from Gardenia oudiepe (Rubiaceae), an endemic plant from New Caledonia. Most of them were polymethoxylated flavones (PMFs) of rare occurrence. After a cell viability screening test, PMFs 2 and 3 showed significant cytotoxic activity against A2058 human melanoma cells (IC50 = 3.92 and 8.18 µM, respectively) and were selected for in-depth pharmacological assays. Both compounds inhibited cell migration and induced apoptosis and cell cycle arrest after 72h of treatment. Immunofluorescence assays indicated that these outcomes were possibly related to the induction of cytoskeleton disruption associated to actin and tubulin depolymerization. These data were confirmed by molecular docking studies, which showed a good interaction between PMFs 2 and 3 and tubulin, particularly at the colchicine binding site. As A2058 are considered as chemoresistant to conventional chemotherapy, compounds 2 and 3 (½IC50) were associated to clinically-used antimelanoma drugs (vemurafenib and dacarbazine) and combined therapies efficacy was assessed by the MTT assay. PMFs 2 restored the sensitivity of A2058 cells to dacarbazine treatment (IC50 = 49.38 µM vs. >100 µM). Taken together, these data suggest that PMFs from G. oudiepe could be potential leaders for the design of new antimelanoma drugs.


Assuntos
Apoptose/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Flavonas/farmacologia , Gardenia/química , Melanoma/patologia , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Antineoplásicos/farmacologia , Caspase 3/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citoesqueleto/metabolismo , Sinergismo Farmacológico , Ativação Enzimática/efeitos dos fármacos , Flavonas/química , Flavonas/metabolismo , Humanos , Simulação de Acoplamento Molecular , Conformação Proteica , Relação Estrutura-Atividade , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
17.
Anticancer Res ; 40(5): 2613-2625, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32366406

RESUMO

BACKGROUND/AIM: The occurrence of BRAFV600E mutation causes an up-regulation of the B-raf kinase activity leading to the stabilization of hypoxia-inducible factor 1-alpha (HIF-1α) - the promoter of the 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) enzyme. The aim of the study was to examine the effect of the (2E)-3-(3-Pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO), as an inhibitor of PFKFB3, on human melanoma cells (A375) with endogenous BRAFV600E mutation. MATERIALS AND METHODS: A375 cells were exposed to different concentrations of 3PO and the following tests were performed: docking, cytotoxicity assay, immunocytochemistry staining glucose uptake, clonogenic assay, holotomography imaging, and flow cytometry. RESULTS: Our studies revealed that 3PO presents a dose-dependent and time-independent cytotoxic effect and promotes apoptosis of A375 cells. Furthermore, the obtained data indicate that 3PO induces cell cycle arrest in G1/0 and glucose uptake reduction. CONCLUSION: Taking all together, our research demonstrated a here should be proapoptotic and antiproliferative effect of 3PO on A375 human melanoma cells.


Assuntos
Inibidores Enzimáticos/farmacologia , Melanoma/enzimologia , Fosfofrutoquinase-2/antagonistas & inibidores , Piridinas/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 8/metabolismo , Domínio Catalítico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Glucose/metabolismo , Humanos , Melanoma/patologia , Simulação de Acoplamento Molecular , Terapia de Alvo Molecular , Fosfofrutoquinase-2/metabolismo , Piridinas/química , Ensaio Tumoral de Célula-Tronco
18.
Chem Biol Interact ; 326: 109134, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32464120

RESUMO

Montelukast is a cysteinyl leukotriene (CysLT) receptor antagonist with efficacy against a variety of diseases, including asthma and inflammation-related conditions. However, various neuropsychiatric events (NEs) suspected to be related to montelukast have been reported recently, with limited understanding on their association and underlying mechanisms. This study aimed to investigate whether montelukast can induce neuroinflammation and neurotoxicity in microglial HAPI cells and neural SH-SY5Y cells. The present study also compared the effects of montelukast with a 5-lipoxygenase inhibitor (zileuton) and a cyclooxygenase-2 inhibitor (celecoxib) to better understand modulation of related pathways. HAPI or SH-SY5Y cells were treated with the indicated drugs (3.125 µM-100 µM) for 24 h to investigate drug-induced neuroinflammation and neurotoxicity. Montelukast induced cytotoxicity in HAPI cells (50-100 µM), accompanied with caspase-3/7 activation, prostaglandin E2 (PGE2) release, and reactive oxygen species (ROS) production. Whilst both montelukast and zileuton down-regulated CysLT release in HAPI cells, zileuton did not significantly affect cell viability or inflammatory and oxidative factors. Celecoxib decreased HAPI cell viability (6.25-100 µM), accompanied with increasing caspase-3/7 activation and ROS production, but in contrast to montelukast increased CysLT release and decreased PGE2 production. Similar to observations in HAPI cells, both montelukast and celecoxib (50-100 µM) but not zileuton produced toxicity in SH-SY5Y neuroblastoma cells. Similarly, CM from HAPI cells treated with either montelukast or zileuton produced toxicity in SH-SY5Y cells. The results of the current study show the capability of montelukast to directly induce toxicity and inflammation in HAPI cells, possibly through the involvement of PGE2 and ROS, and toxicity in undifferentiated SH-SY5Y neuroblastoma cells. The current study highlights the importance of consideration between benefit and risk of montelukast usage and provides references for future investigation on decreasing montelukast-related NEs.


Assuntos
Acetatos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Quinolinas/farmacologia , Animais , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Dinoprostona/metabolismo , Humanos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo
19.
Life Sci ; 254: 117778, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32407850

RESUMO

Long non-coding RNA (LncRNA) involved in types of physiological insults and diseases via regulating the responses of complex molecular, including cerebral ischemia-reperfusion (I/R) injury. LncRNA SNHG16 played a potential role in ketamine-induced neurotoxicity. In this study, we utilized an in vitro cell model of I/R to examine the specific function and mechanism of LncRNA SNHG16 in oxygen-glucose deprivation and reperfusion (OGD/R) induced SH-SY5Y cells. After in vitro treatment of OGD/R, the lower the SH-SY5Y cell survival, the higher cell the apoptosis and increased caspase-3 activity was observed. Also, OGD/R induced endoplasmic reticulum stress (ERS) through increasing GRP78 and CHOP expressions and down-regulated LncRNA SNHG16 in SH-SY5Y cells. Conversely, LncRNA SNHG16 overexpression promoted OGD/R induced SH-SY5Y cell survival, suppressed its apoptosis, and caspase-3 activity. GRP78 and CHOP expressions were significantly suppressed in LncRNA SNHG16 overexpressing cells. MiR-106b-5p expression was increased and LIMK1 expression was down-regulated in OGD/R induced SH-SY5Y cells, and these effects were reversed by LncRNA SNHG16 overexpression, respectively. Moreover, LIMK1 is a direct target of MiR-106b-5p, and knockdown of LIMK1 reversed the effects of LncRNA SNHG16 on OGD/R-induced SH-SY5Y cells biology. Altogether, these results confirmed an important neuroprotection role of LncRNA SNHG16 in OGD/R induced SH-SY5Y cells injury, and miR-106b-5p/LIMK1 signal axis was involved in the action of LncRNA SNHG16.


Assuntos
Sobrevivência Celular/fisiologia , Quinases Lim/fisiologia , MicroRNAs/fisiologia , RNA Longo não Codificante/biossíntese , RNA Longo não Codificante/fisiologia , Traumatismo por Reperfusão/metabolismo , Apoptose/fisiologia , Caspase 3/metabolismo , Células Cultivadas , Regulação para Baixo , Estresse do Retículo Endoplasmático , Técnicas de Silenciamento de Genes , Proteínas de Choque Térmico/biossíntese , Humanos , Quinases Lim/genética , Quinases Lim/metabolismo , MicroRNAs/metabolismo , Transdução de Sinais/fisiologia , Fator de Transcrição CHOP/biossíntese
20.
Life Sci ; 254: 117760, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32418889

RESUMO

AIM: The present study focused on the possible underlying protective mechanisms of UDCA against GNT-induced hepatic injury. METHODS: For achieving this goal, adult male rats were allocated into 4 groups: normal control (received vehicle), GNT (100 mg/kg, i.p. for 8 days), UDCA (60 mg/kg, P.O. for 15 days), and GNT + UDCA (received UDCA for 15 days and GNT started from the 7th day and lasted for 8 days). RESULTS: The results revealed that UDCA significantly improved GNT-induced hepatic injury, oxidative stress, apoptosis, and inflammatory response. Interestingly, UDCA inhibited apoptosis by marked down-regulation of the Bax gene, Caspase-3, and cleaved Caspase-3 protein expressions while the level of Bcl-xL gene significantly increased. Moreover, UDCA strongly inhibited the inflammatory response through the down-regulation of both NF-κB-p65 and TNF-α accompanied by IL-10 elevation. Furthermore, the obtained results ended with the restored of mitochondria function that confirmed by electron microscopy. Histological analysis showed that UDCA remarkably ameliorated the histopathological changes induced by GNT. SIGNIFICANCE: UDCA may be a promising agent that can be used to prevent hepatotoxicity observed in GNT treatment. This effect could be attributed to, at least in part, the ability of UDCA to modulate NF-κB-p65/TNF-α, Bax/Bcl-xl/Caspase-3, and eNOS/iNOS signaling pathways.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Gentamicinas/antagonistas & inibidores , Gentamicinas/toxicidade , Hepatócitos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ácido Ursodesoxicólico/farmacologia , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Interações Medicamentosas , Hepatócitos/metabolismo , Hepatócitos/patologia , Masculino , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Wistar , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA