Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.249
Filtrar
1.
Molecules ; 26(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34299649

RESUMO

Cosmetics has recently focused on biobased skin-compatible materials. Materials from natural sources can be used to produce more sustainable skin contact products with enhanced bioactivity. Surface functionalization using natural-based nano/microparticles is thus a subject of study, aimed at better understanding the skin compatibility of many biopolymers also deriving from biowaste. This research investigated electrospray as a method for surface modification of cellulose tissues with chitin nanofibrils (CNs) using two different sources-namely, vegetable (i.e., from fungi), and animal (from crustaceans)-and different solvent systems to obtain a biobased and skin-compatible product. The surface of cellulose tissues was uniformly decorated with electrosprayed CNs. Biological analysis revealed that all treated samples were suitable for skin applications since human dermal keratinocytes (i.e., HaCaT cells) successfully adhered to the processed tissues and were viable after being in contact with released substances in culture media. These results indicate that the use of solvents did not affect the final cytocompatibility due to their effective evaporation during the electrospray process. Such treatments did not also affect the characteristics of cellulose; in addition, they showed promising anti-inflammatory and indirect antimicrobial activity toward dermal keratinocytes in vitro. Specifically, cellulosic substrates decorated with nanochitins from shrimp showed strong immunomodulatory activity by first upregulating then downregulating the pro-inflammatory cytokines, whereas nanochitins from mushrooms displayed an overall anti-inflammatory activity via a slight decrement of the pro-inflammatory cytokines and increment of the anti-inflammatory marker. Electrospray could represent a green method for surface modification of sustainable and biofunctional skincare products.


Assuntos
Agaricales/química , Celulose/farmacologia , Quitina/farmacologia , Cosméticos/farmacologia , Derme/metabolismo , Queratinócitos/metabolismo , Penaeidae/química , Animais , Linhagem Celular , Celulose/química , Quitina/química , Cosméticos/química , Humanos , Nanoestruturas
2.
Molecules ; 26(10)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064907

RESUMO

The constant increase of antibiotic-resistant bacteria demands the design of novel antibiotic-free materials. The combination of antibacterials in a biocompatible biomaterial is a very promising strategy to treat infections caused by a broader spectrum of resistant pathogens. Here, we combined two antibacterials, silver nanoparticles (AgNPs) and living probiotics (Lactobacillus fermentum, Lf), using bacterial cellulose (BC) as scaffold. By controlling the loading of each antibacterial at opposite BC sides, we obtained a two-sided biomaterial (AgNP-BC-Lf) with a high density of alive and metabolically active probiotics on one surface and AgNPs on the opposite one, being probiotics well preserved from the killer effect of AgNPs. The resulting two-sided biomaterial was characterized by Field-Emission Scanning Electron Microscopy (FESEM) and Confocal Laser Scanning Microscopy (CLSM). The antibacterial capacity against Pseudomonas aeruginosa (PA), an opportunistic pathogen responsible for a broad range of skin infections, was also assessed by agar diffusion tests in pathogen-favorable media. Results showed an enhanced activity against PA when both antibacterials were combined into BC (AgNP-BC-Lf) with respect to BC containing only one of the antibacterials, BC-Lf or AgNP-BC. Therefore, AgNP-BC-Lf is an antibiotic-free biomaterial that can be useful for the therapy of topical bacterial infections.


Assuntos
Antibacterianos/farmacologia , Celulose/farmacologia , Nanopartículas Metálicas/química , Probióticos/farmacologia , Prata/farmacologia , Materiais Biocompatíveis , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos
3.
Nat Commun ; 12(1): 3838, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158480

RESUMO

Chronic dietary protein-restriction can create essential amino acid deficiencies and induce metabolic adaptation through the hepatic FGF21 pathway which serves to maintain host fitness during prolonged states of nutritional imbalance. Similarly, the gut microbiome undergoes metabolic adaptations when dietary nutrients are added or withdrawn. Here we confirm previous reports that dietary protein-restriction triggers the hepatic FGF21 adaptive metabolic pathway and further demonstrate that this response is mediated by the gut microbiome and can be tuned through dietary supplementation of fibers that alter the gut microbiome. In the absence of a gut microbiome, we discover that FGF21 is de-sensitized to the effect of protein-restriction. These data suggest that host-intrinsic adaptive pathways to chronic dietary protein-restriction, such as the hepatic FGF21 pathway, may in-fact be responding first to adaptive metabolic changes in the gut microbiome.


Assuntos
Adaptação Fisiológica/fisiologia , Dieta com Restrição de Proteínas , Proteínas na Dieta/administração & dosagem , Fatores de Crescimento de Fibroblastos/metabolismo , Microbioma Gastrointestinal/fisiologia , Estresse Fisiológico/fisiologia , Animais , Bactérias/classificação , Bactérias/genética , Celulose/administração & dosagem , Celulose/farmacologia , Proteínas na Dieta/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Insulina/administração & dosagem , Insulina/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Dinâmica Populacional , RNA Ribossômico 16S/genética , Fatores de Tempo
4.
ACS Appl Mater Interfaces ; 13(27): 32115-32125, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34185490

RESUMO

Cellulose nanopaper (CNP) has been considered as a promising material with great application potential in diverse fields. However, the hydrophilic nature of CNP significantly limits its practical application. In order to improve its water resistance, we demonstrate a facile approach to functionalize CNP by impregnating it with chitosan (CS), followed by in situ polymerization of polypyrrole (PPy). The results indicate that the obtained CNP/CS/PPy shows excellent water resistance with the wet tensile strength of up to 80 MPa, which is more than 10 times higher than that of the pure CNP. Intriguingly, new features (e.g., electrical conductivity, antibacterial activity, and so forth) are achieved at the same time. The functionalized CNP/CS/PPy shows a high conductivity of 6.5 S cm-1, which can be used for electromagnetic interference shielding applications with a high shielding performance of around 18 dB. In addition, the CNP/CS/PPy exhibits good antibacterial activity toward Staphylococcus aureus and Escherichia coli, with the bacterial reductions of 99.28 and 95.59%, respectively. Thus, this work provides a simple and versatile approach to functionalize CNP for achieving multifunctional properties.


Assuntos
Celulose/química , Celulose/farmacologia , Quitosana/química , Nanoestruturas/química , Papel , Polímeros/química , Pirróis/química , Água/química , Antibacterianos/química , Antibacterianos/farmacologia , Condutividade Elétrica , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
5.
Mater Sci Eng C Mater Biol Appl ; 126: 112171, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34082972

RESUMO

The lack of antibacterial properties limits the application of bacterial cellulose hydrogels in wound dressings. To overcome this deficiency, silver nanoparticles (AgNPs) were introduced as antibacterial agents into a polyvinyl alcohol (PVA)/bacterial cellulose (BC) solution. A freeze-thaw method promoted formation of PVA/BC/Ag hydrogels and improved their mechanical properties. The physicochemical and biological properties of this hydrogel were systematically characterized. Those results showed the hydrogels contained a porous three-dimensional reticulum structure and had high mechanical properties. Also, the hydrogels possessed outstanding antibacterial properties and good biocompatibilities. More importantly, it effectively repaired wound defects in mice models and wound healing reached 97.89% within 15 days, and far exceeded other groups and indicated its potential for use in wound treatment applications.


Assuntos
Nanopartículas Metálicas , Álcool de Polivinil , Animais , Antibacterianos/farmacologia , Celulose/farmacologia , Hidrogéis/farmacologia , Camundongos , Prata/farmacologia , Cicatrização
6.
Int J Biol Macromol ; 185: 419-433, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34166695

RESUMO

Hydrogels were prepared by mixing protein and carbohydrate-based biopolymers to increase the mechanical properties and efficient cell adhesion and proliferation for wound healing applications. Microcrystalline cellulose (MCC) and its 6-deoxy-aminocellulose derivatives (6-deoxy-6-hydrazide Cellulose (Cell-Hyd), 6-deoxy-6-diethylamide Cellulose (Cell-DEA), and 6-deoxy-6-diethyltriamide Cellulose (Cell-DETA)) were embedded in methacrylated gelatin (GelMA). GelMA and 6-deoxy-aminocellulose derivatives were synthesized and characterized by spectroscopic techniques. MCC and cellulose derivatives embedded GelMA gels were characterized by FTIR, SEM and Tensile mechanical testing. SEM images revealed that, porosity of the amine MCC incorporated GelMA was decreased compared to GelMA and MCC incorporated GelMA. Tensile strain of GelMA 61.30% at break was increased to 64.3% in case of GelMA/Cell-HYD. In vitro cytocompatibility and cell proliferation using NIH-3T3 cell lines showed cell density trend on scaffold as GelMA/Cell-DETA>GelMA/Cell-Hyd > GelMA. Scratch assay for wound healing revealed that GelMA/Cell-DETA showed complete wound closure, while GelMA/Cell-Hyd and GelMA exhibited 85.7%, and 66.1% wound healing, respectively in 8 h. In vivo tests on rats revealed that GelMA/Cell-DETA exhibited 98% wound closure on day 9, whereas GelMA/Cell-Hyd exhibited 97.7% and GelMA 66.1% wound healing on day 14. Our findings revealed that GelMA embedded amine MCC derivatives hydrogels can be applied for achieving accelerated wound healing.


Assuntos
Celulose/farmacologia , Gelatina/química , Metacrilatos/química , Cicatrização/efeitos dos fármacos , Animais , Proliferação de Células , Celulose/química , Modelos Animais de Doenças , Feminino , Hidrogéis/química , Camundongos , Células NIH 3T3 , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração , Tecidos Suporte
7.
Carbohydr Polym ; 265: 118043, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33966826

RESUMO

Hemorrhage remains a significant cause of morbidity and mortality following trauma and during complex surgeries. A variety of nanomaterials, including oxidized cellulose nanofibers (OCNFs), have been studied to overcome the disadvantages of current commercial topical hemostats. However, the relationship between nano-structural characteristics and hemostatic efficacy of non-oxidized cellulose nanofibers (CNFs) has not been elucidated. Herein, we present the first report of the correlation between structure and hemostatic performance of CNFs. In vitro thromboelastometry studies on CNFs, synthesized by ball-milling, showed that there is an optimum balance point between the aspect ratio (AR) and specific surface area (SSA) of nanofibers in terms of their maximum contribution to platelet function and plasma coagulation. The optimized CNFs with high SSA (17 m2/g) and a high AR (166) shortened normal whole blood clotting time by 68 %, outperforming cellulose-based hemostats. Additionally, CNFs reduced clotting time in platelet-deficient blood (by 80 %) and heparinized blood (by 54 %).


Assuntos
Celulose/química , Hemostáticos/química , Nanofibras/química , Tromboelastografia/métodos , Celulose/farmacologia , Celulose Oxidada/química , Hemorragia/patologia , Hemorragia/terapia , Hemostáticos/farmacologia , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
8.
Int J Biol Macromol ; 183: 651-659, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33957200

RESUMO

Electroless silver plating on fabrics can obtain conductive and antibacterial bifunctional materials which can be used as electrodes in wearable electronic products. However, these activities are deteriorated easily after washing because of the falling off of silver coating resulted from the weak adhesion. In order to improve the binding force between silver and cellulose fabrics, 3-mercaptopropytrimethoxysilane (MPTS) was applied to modify cellulose fabrics before silver electroless plating to develop the durable conductive fabrics with excellent antibacterial. The silver nanoparticles (Ag NPs) deposition process was observed via field emission scanning electron microscopy (FESEM), thermal properties were evaluated by thermogravimetric analysis (TGA). A dense and uniform silver layer was formed on the fabric. The initial electrical resistance of the conductive fabric was 0.04 Ω/sq and lowered than 2 Ω/sq after 200 washing cycles. The antibacterial efficiency of the fabric after 200 washing cycles remained 92.82%, compared to 100% with the fabric before washing. Moreover, the inhibition rate was determined by optical density of bacteria suspension at 260 nm and further substantiated by releasing of Ag+ from the fabric. The conductive fabrics were applied as wearable electrodes to capture electrocardiogram (ECG) signals of human in static states and running states.


Assuntos
Antibacterianos/química , Celulose/química , Eletrocardiografia/instrumentação , Eletrodos , Prata/química , Têxteis , Dispositivos Eletrônicos Vestíveis , Adulto , Antibacterianos/farmacologia , Celulose/farmacologia , Impedância Elétrica , Desenho de Equipamento , Frequência Cardíaca , Humanos , Lavanderia , Masculino , Compostos de Organossilício/química , Valor Preditivo dos Testes , Corrida , Prata/farmacologia , Propriedades de Superfície
9.
Carbohydr Polym ; 264: 118002, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33910735

RESUMO

Incorporation of chitosan (CS) into Bacterial nanocellulose (BNC) matrix is of great interests in biomedical field due to the advantageous properties of each material. However, the conventional strategies result in poor composite effect with low efficiency. In this study, the three-dimensional fibrillar network of BNC was utilized as a template for the first time to homogeneously disperse CS to form nanoparticles (CSNPs) in BNC matrix via ionic gelation method, to develop chitosan nanoparticles-embedded bacterial nanocellulose (CSNPs-BNC) composites. This composite method is simple and efficient, without introducing dispersants and crosslinking agents, while retaining the mechanical properties and native 3D network structure of BNC. The CSNPs-BNC composites had excellent antibacterial activity to support potential clinical application. The CSNPs-BNC composites could promote the adhesion and proliferation of Schwann cells, and demonstrate good biocompatibility both in vitro and in vivo. The results indicated that CSNPs-BNC can provide a promising candidate for biomedical applications.


Assuntos
Bactérias/química , Celulose/química , Quitosana/química , Nanopartículas/química , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Celulose/farmacologia , Quitosana/farmacologia , Módulo de Elasticidade , Nanocompostos/química , Tamanho da Partícula , Próteses e Implantes , Ratos , Células de Schwann , Resistência à Tração
10.
Bioorg Med Chem Lett ; 41: 128024, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33845130

RESUMO

Two protoporphyrin IX (PpIX) adamantane derivatives were synthesized and then metallated with zinc. The Zn-PpIX derivatives, exhibiting a high singlet oxygen quantum yield, were tested for their photodynamic activity against the HT-29 cell line. In order to enhance their water-solubility and their cellular bioavailability, these photosensitizers were encapsulated into the hydrophobic cavity of cyclodextrins (CD) previously attached to cellulose nanocrystals (CNCs) via electrostatic interactions. Under illumination, the encapsulated adamantanyl-porphyrins exerted an enhanced in vitro cytotoxicity, as compared with the corresponding free photosensitizers.


Assuntos
Adamantano/farmacologia , Antineoplásicos/farmacologia , Celulose/farmacologia , Ciclodextrinas/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Protoporfirinas/farmacologia , Adamantano/química , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Celulose/química , Ciclodextrinas/química , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células HT29 , Humanos , Estrutura Molecular , Nanopartículas/química , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Protoporfirinas/química , Relação Estrutura-Atividade
11.
Int J Biol Macromol ; 183: 35-44, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33901555

RESUMO

The study reports designing of a new, low-cost and environmentally friendly colorimetric and fluorometric sensor by using cellulose-based materials for detection and determination of Fe(III). To make powder cellulose (Cel) and filter paper (PCel) fluorescent, they were modified with hexamethylene diisocyanate (HMDI) and 4-sulfo-1,8-naphthalimide (Nap). Fluorescent Cel-Nap and PCel-Nap materials were used for spectroscopic detection of Fe(III). The working range of the designed sensor was determined as 1.0 × 10-5-4.5 × 10-5 M with a low limit of detection (LOD) (7.51 µM). Antimicrobial properties of cel-based compounds and Ag(I)-containing compounds were tested against five bacteria; Bacillus cereus, Streptococcus mutans, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and two fungi; Candida albicans and Candida tropicalis. The materials exhibited antimicrobial effects and their antifungal properties were more effective than their antibacterial properties.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Técnicas Biossensoriais , Celulose/farmacologia , Ferro/análise , Compostos de Prata/farmacologia , Antibacterianos/química , Antifúngicos/química , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Candida/efeitos dos fármacos , Candida/crescimento & desenvolvimento , Celulose/química , Fluorometria , Isocianatos/química , Naftalimidas/química , Compostos de Prata/química
12.
Carbohydr Polym ; 262: 117922, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33838801

RESUMO

Polysaccharide nanocrystals (PNs) are attractive pharmaceutical excipients due to their abundant surface hydroxyl groups, high surface charges, prominent mechanical properties, excellent fluidity, and good swelling properties. In this review, we summarize three kinds of PNs, including cellulose nanocrystals (CNCs), starch nanocrystals (SNCs), and chitin nanocrystals (ChNCs). We introduce the applications of PNs as stabilizers, adsorbents, film-forming materials, gel materials, disintegrants, and ointment matrices. We focus on the advantages of PNs to improve mechanical properties, thermal stability, therapeutic effect, biocompatibility, and release of active pharmaceutical ingredients. We discuss regulatory issues of PNs. We finally propose the challenges and future perspectives of PNs as pharmaceutical excipients.


Assuntos
Excipientes/química , Nanopartículas/química , Polissacarídeos/química , Adsorção , Materiais Biocompatíveis/química , Celulose/química , Celulose/farmacologia , Quitina/química , Quitina/farmacologia , Liberação Controlada de Fármacos , Excipientes/farmacologia , Humanos , Hidrogéis/química , Nanocompostos/química , Polissacarídeos/farmacologia , Solubilidade , Amido/química , Amido/farmacologia
13.
Int J Biol Macromol ; 181: 905-918, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33872612

RESUMO

Tissue-engineering has become the best alternative solution for replacing the damaged tissues. However, the cost of scaffold materials is still a big challenge, so the development of cost-effective scaffolds is highly encouraged. In this research, different types of cotton textile-scaffolds as a cellulosic material were developed to be utilized as a substrate for cells proliferation. They were loaded with bioactive glass (BG) doped with silver nanoparticles (AgNPs). The effect of the loaded materials on the physicochemical and mechanical characteristics of the cellulosic textile scaffolds was investigated by means of FTIR, contact angle, physical and mechanical properties of the cotton fabrics, in addition to assessing their antimicrobial activity. Moreover, the biomineralization was evaluated after soaking in Simulated Body Fluid (SBF) using ICP and SEM accessorized with EDX. Cells proliferation capacities of the developed cellulosic woven-scaffolds were assessed against MG63 cell line at different incubation times. The physicochemical and mechanical features of these fabrics demonstrated a positive influence for the existence of BG impregnation, especially those doped with AgNPs. The antimicrobial features were also affirmed for the cellulosic scaffolds. More pronounced influence was observed on the biomineralization of the scaffold impregnated with BG doped with 0.5% Ag. The percentages of proliferated cells were very close to negative control (100% ± 10). This approach offers a novel and affordable alternative cellulosic woven-scaffolds for bone regeneration.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Celulose/farmacologia , Fibra de Algodão , Nanopartículas Metálicas/química , Engenharia Tecidual , Anti-Infecciosos/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Biomineralização , Líquidos Corporais/química , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Celulose/química , Vidro/química , Humanos , Prata/química , Têxteis , Tecidos Suporte/química
14.
Int J Mol Sci ; 22(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799554

RESUMO

In the skin care field, bacterial nanocellulose (BNC), a versatile polysaccharide produced by non-pathogenic acetic acid bacteria, has received increased attention as a promising candidate to replace synthetic polymers (e.g., nylon, polyethylene, polyacrylamides) commonly used in cosmetics. The applicability of BNC in cosmetics has been mainly investigated as a carrier of active ingredients or as a structuring agent of cosmetic formulations. However, with the sustainability issues that are underway in the highly innovative cosmetic industry and with the growth prospects for the market of bio-based products, a much more prominent role is envisioned for BNC in this field. Thus, this review provides a comprehensive overview of the most recent (last 5 years) and relevant developments and challenges in the research of BNC applied to cosmetic, aiming at inspiring future research to go beyond in the applicability of this exceptional biotechnological material in such a promising area.


Assuntos
Bactérias/química , Celulose/farmacologia , Cosméticos/química , Química Verde , Polissacarídeos Bacterianos/farmacologia , Celulose/química , Celulose/isolamento & purificação , Cosméticos/farmacologia , Humanos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/isolamento & purificação , Pele/efeitos dos fármacos , Higiene da Pele/métodos
15.
Int J Mol Sci ; 22(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924416

RESUMO

Local administration of antiseptics is required to prevent and fight against biofilm-based infections of chronic wounds. One of the methods used for delivering antiseptics to infected wounds is the application of dressings chemisorbed with antimicrobials. Dressings made of bacterial cellulose (BC) display several features, making them suitable for such a purpose. This work aimed to compare the activity of commonly used antiseptic molecules: octenidine, polyhexanide, povidone-iodine, chlorhexidine, ethacridine lactate, and hypochlorous solutions and to evaluate their usefulness as active substances of BC dressings against 48 bacterial strains (8 species) and 6 yeast strains (1 species). A silver dressing was applied as a control material of proven antimicrobial activity. The methodology applied included the assessment of minimal inhibitory concentrations (MIC) and minimal biofilm eradication concentration (MBEC), the modified disc-diffusion method, and the modified antibiofilm dressing activity measurement (A.D.A.M.) method. While in 96-well plate-based methods (MIC and MBEC assessment), the highest antimicrobial activity was recorded for chlorhexidine, in the modified disc-diffusion method and in the modified A.D.A.M test, povidone-iodine performed the best. In an in vitro setting simulating chronic wound conditions, BC dressings chemisorbed with polyhexanide, octenidine, or povidone-iodine displayed a similar or even higher antibiofilm activity than the control dressing containing silver molecules. If translated into clinical conditions, the obtained results suggest high applicability of BC dressings chemisorbed with antiseptics to eradicate biofilm from chronic wounds.


Assuntos
Anti-Infecciosos Locais/farmacologia , Bactérias/isolamento & purificação , Bandagens/microbiologia , Biofilmes/crescimento & desenvolvimento , Celulose/farmacologia , Ferimentos e Lesões/microbiologia , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Biofilmes/efeitos dos fármacos , Doença Crônica , Farmacorresistência Bacteriana/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Prata/farmacologia , Leveduras/efeitos dos fármacos
16.
Molecules ; 26(6)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808780

RESUMO

Over the years, cyclodextrin uses have been widely reviewed and their proprieties provide a very attractive approach in different biomedical applications. Cyclodextrins, due to their characteristics, are used to transport drugs and have also been studied as molecular chaperones with potential application in protein misfolding diseases. In this study, we designed cyclodextrin polymers containing different contents of ß- or γ-cyclodextrin, and a different number of guanidinium positive charges. This allowed exploration of the influence of the charge in delivering a drug and the effect in the protein anti-aggregant ability. The polymers inhibit Amiloid ß peptide aggregation; such an ability is modulated by both the type of CyD cavity and the number of charges. We also explored the effect of the new polymers as drug carriers. We tested the Doxorubicin toxicity in different cell lines, A2780, A549, MDA-MB-231 in the presence of the polymers. Data show that the polymers based on γ-cyclodextrin modified the cytotoxicity of doxorubicin in the A2780 cell line.


Assuntos
Celulose , Ciclodextrinas , Doxorrubicina , Portadores de Fármacos , Neoplasias/tratamento farmacológico , Células A549 , Celulose/química , Celulose/farmacocinética , Celulose/farmacologia , Ciclodextrinas/química , Ciclodextrinas/farmacocinética , Ciclodextrinas/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacocinética , beta-Ciclodextrinas/farmacologia , gama-Ciclodextrinas/química , gama-Ciclodextrinas/farmacocinética , gama-Ciclodextrinas/farmacologia
17.
Int J Food Microbiol ; 347: 109198, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-33894462

RESUMO

The U.S. FDA Food Safety Modernization Act Preventive Controls for Human Food Rule underlines the importance of an effective environmental monitoring (EM) program. EM is used to determine harborage sites of microorganisms on processing equipment, assess effectiveness of sanitation programs, and prevent transmission of foodborne pathogens. This study characterizes commercially-available polyurethane foam (PUF) and cellulose (CELL) EM tools for their efficacy in the release of foodborne pathogens from their sponge matrices. Specifically, the objectives of this study were to 1) compare the ability of EM tools to release microorganisms into a recovery eluent, 2) characterize EM tool performance at decreasing inoculum concentrations, and 3) assess the impact of various operators during the processing of EM samples. Two bacteria (Listeria monocytogenes, Salmonella Typhimurium) and one human norovirus surrogate (Tulane virus [TV]) were compared at decreasing inoculum levels utilizing two elution techniques (mechanical stomacher, manually by operator), and across six operators. Data indicated that EM tool material composition impacted the release of microorganisms (p = 0.0001), where the PUF EM tool released TV more readily than the CELL EM tool. Conversely, the decreasing inoculum levels did not statistically differ in the release of microorganisms from the EM tool matrices. In addition, no significant difference was found between the machine stomacher and manual elution by human operator or between operators. Overall, the study provides a detailed characterization of two commercially-available EM tools, and the differences identified in this study can be used to improve the effectiveness of EM programs.


Assuntos
Celulose/farmacologia , Monitoramento Ambiental/métodos , Listeria monocytogenes/isolamento & purificação , Norovirus/isolamento & purificação , Poliuretanos/farmacologia , Salmonella typhimurium/isolamento & purificação , Carga Bacteriana/métodos , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Inocuidade dos Alimentos , Humanos , Listeria monocytogenes/genética , Norovirus/genética , Salmonella typhimurium/genética , Carga Viral/métodos
18.
Folia Med (Plovdiv) ; 63(1): 97-104, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33650402

RESUMO

INTRODUCTION: Bitter tasting of drugs leads to non-compliance especially in the case of pediatric patients due to their inability to swal-low medication. AIM: In this study, we aimed to mask the bitter taste of acetaminophen (APAP) particles through coating. MATERIALS AND METHODS: A pH independent water insoluble ethylcellulose polymer was used to coat the APAP. The coating of water insoluble ethylcellulose on APAP can have a significant impact on the dissolution profile. Various grades of APAP were used for coating; fine grade, Compap L90% having wide particle size distribution (PSD), and a special granular (SG) APAP 1680 having narrow PSD. Coating was performed using top spray (Vector) for Compap L90% and SG APAP 1680 grade of APAP. RESULTS: Bitter taste of SG APAP was masked after spraying dispersion equivalent to a weight gain of 10% compared to 35% used for Compap L90%. Using bottom spray (Wurster coater, GPCP 2.0), coating was performed on SG APAP 1680 grade of APAP by spraying aqueous dispersion of ethylcellulose (Surelease) equivalent to a weight gain of 10%. The scalability of the top spray process was also evaluated in GPCG 30 and bitter taste was masked by using Surelease dispersion equivalent to a weight gain of 6%. Coated APAP was examined for particle size (PS), particle size distribution (PSD), flowability, and drug release profile. Dissolution was performed using USP apparatus 2 and 4 in phosphate buffer and evaluated for mechanism of drug release. Particle size obtained for coated SG APAP 1680 via top and bottom spray process was 404 µm d(90) and 487 µm d(90) respectively. CONCLUSIONS: The results of the study demonstrated the potential of Surelease dispersion in taste masking. The use of SG APAP 1680 having narrow PSD allowed taste masking to achieve at low weight gain without greatly affecting the dissolution profile.


Assuntos
Acetaminofen/farmacologia , Celulose/análogos & derivados , Composição de Medicamentos/métodos , Paladar/efeitos dos fármacos , Analgésicos não Narcóticos/farmacologia , Celulose/farmacologia , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Solubilidade
19.
Sci Rep ; 11(1): 7008, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33772084

RESUMO

Dietary fiber functions as a prebiotic to determine the gut microbe composition. The gut microbiota influences the metabolic functions and immune responses in human health. The gut microbiota and metabolites produced by various dietary components not only modulate immunity but also impact various organs. Although recent findings have suggested that microbial dysbiosis is associated with several respiratory diseases, including asthma, cystic fibrosis, and allergy, the role of microbiota and metabolites produced by dietary nutrients with respect to pulmonary disease remains unclear. Therefore, we explored whether the gut microbiota and metabolites produced by dietary fiber components could influence a cigarette smoking (CS)-exposed emphysema model. In this study, it was demonstrated that a high-fiber diet including non-fermentable cellulose and fermentable pectin attenuated the pathological changes associated with emphysema progression and the inflammatory response in CS-exposed emphysema mice. Moreover, we observed that different types of dietary fiber could modulate the diversity of gut microbiota and differentially impacted anabolism including the generation of short-chain fatty acids, bile acids, and sphingolipids. Overall, the results of this study indicate that high-fiber diets play a beneficial role in the gut microbiota-metabolite modulation and substantially affect CS-exposed emphysema mice. Furthermore, this study suggests the therapeutic potential of gut microbiota and metabolites from a high-fiber diet in emphysema via local and systemic inflammation inhibition, which may be useful in the development of a new COPD treatment plan.


Assuntos
Fibras na Dieta/farmacologia , Enfisema/dietoterapia , Enfisema/prevenção & controle , Microbioma Gastrointestinal/fisiologia , Prebióticos/administração & dosagem , Animais , Ácidos e Sais Biliares/biossíntese , Celulose/farmacologia , Fumar Cigarros/efeitos adversos , Dieta , Disbiose/prevenção & controle , Ácidos Graxos Voláteis/biossíntese , Feminino , Inflamação/dietoterapia , Inflamação/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Pectinas/farmacologia , Esfingolipídeos/biossíntese
20.
Small ; 17(12): e2100139, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33656273

RESUMO

The novel coronavirus SARS-CoV-2 has prompted a worldwide pandemic and poses a great threat to public safety and global economies. Most present personal protective equipment (PPE) used to intercept pathogenic microorganisms is deficient in biocidal properties. Herein, we present green nanofibers with effective antibacterial and antiviral activities that can provide sustainable bioprotection by continuously producing reactive oxygen species (ROS). The superiority of the design is that the nanofibers can absorb and store visible light energy and maintain the activity under light or dark environment. Moreover, the nanofibers can uninterruptedly release ROS in the absence of an external hydrogen donor, acting as a biocide under all weather conditions. A facile spraying method is proposed to rapidly deploy the functional nanofibers to existing PPE, such as protective suits and masks. The modified PPE exhibit stable ROS production, excellent capacity for storing activity potential, long-term durability, and high bactericidal (>99.9%) and viricidal (>99.999%) efficacies.


Assuntos
Anti-Infecciosos/farmacologia , Hidrogênio/química , Luz , Nanofibras/química , Benzofenonas/química , Celulose/farmacologia , Nanofibras/ultraestrutura , Riboflavina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...