Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36.532
Filtrar
1.
Acta Virol ; 63(3): 316-321, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31507198

RESUMO

The recent Zika virus (ZIKV) outbreaks and rapid spread in tropical Latin America since introduction to Brazil in 2014, and now appearing cases in the USA, are alarming. World Health Organization (WHO) has considered transmission of ZIKV, a serious public health problem because of the increasing number of outbreaks. There are currently no drugs approved for the treatment of ZIKV infection. Discovery of safe and effective drugs are hampered by the risk in treating pregnant woman and toxicity to the fetus. Sweet basil, known as Ocimum basilicum in the scientific community, is a very well-known medicinal herb. Numerous studies have documented its beneficial activity against a great variety of human pathogens ranging from bacteria and virus to fungus and protozoans. Although, basil extracts and oils have been tested successfully against other viruses, its application to tackle ZIKV infection has not been exploited at all. In this study, we report for the first time that highly diluted ethanol extracts prepared from basil leaves can effectively inhibit ZIKV replication in Vero E6 cells with a half maximal inhibitory concentration (IC50) value of 1:134. The diluted extract as well as the amount of ethanol that goes into its preparation have been found to be completely non-toxic to the above mentioned cell line. The extract seems to inhibit the virus at the step of attachment and entry into the host cell. The specific inhibition of ZIKV observed using the basil leaf extract suggests a new alternative mode of treatment against flavivirus. Keywords: Zika virus; basil extract; antiviral.


Assuntos
Ocimum basilicum , Extratos Vegetais , Internalização do Vírus , Infecção por Zika virus , Animais , Sobrevivência Celular/efeitos dos fármacos , Cercopithecus aethiops , Etanol/química , Ocimum basilicum/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Plantas Medicinais/química , Células Vero , Internalização do Vírus/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Zika virus/fisiologia
2.
Exp Parasitol ; 204: 107731, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31374185

RESUMO

Neospora caninum is an obligate intracellular parasite related to cases of abortion and fertility impairment in cattle. The control of the parasite still lacks an effective protective strategy and the understanding of key mechanisms for host infection might be crucial for identification of specific targets. There are many proteins related to important mechanisms in the host cell infection cycle such as adhesion, invasion, proliferation and immune evasion. The surface proteins, especially SRS (Surface Antigen Glycoprotein - Related Sequences), have been demonstrated to have a pivotal role in the adhesion and invasion processes, making them potential anti-parasite targets. However, several predicted surface proteins were not described concerning their function and importance in the parasite life cycle. As such, a novel SRS protein, NcSRS57, was described. NcSRS57 antiserum was used to detect SRS proteins by immunofluorescence in parasites treated or not with phosphatidylinositol-specific phospholipase C (PI-PLC). The treatment with PI-PLC also allowed the identification of NcSRS29B and NcSRS29C, which were the most abundant SRS proteins in the soluble fraction. Our data indicated that SRS proteins in N. caninum shared a high level of sequence similarity and were susceptible to PI-PLC. In addition, the description of the SRS members, regarding abundance, function and immunogenicity will be useful in guiding specific methods to control the mechanism of adhesion and invasion mediated by these surface proteins.


Assuntos
Antígenos de Protozoários/metabolismo , Antígenos de Superfície/metabolismo , Neospora/química , Fosfoinositídeo Fosfolipase C/farmacologia , Proteínas de Protozoários/metabolismo , Animais , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Antígenos de Superfície/genética , Antígenos de Superfície/imunologia , Cercopithecus aethiops , Clonagem Molecular , DNA de Protozoário/isolamento & purificação , Eletroforese em Gel Bidimensional , Eletroforese em Gel de Poliacrilamida , Soros Imunes/imunologia , Soros Imunes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Neospora/efeitos dos fármacos , Neospora/genética , Neospora/imunologia , Fosfoinositídeo Fosfolipase C/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Espectrometria de Massas em Tandem , Fosfolipases Tipo C/metabolismo , Fosfolipases Tipo C/farmacologia , Células Vero
3.
Mem Inst Oswaldo Cruz ; 114: e190150, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31432892

RESUMO

BACKGROUND: Zika virus (ZIKV) infections reported in recent epidemics have been linked to clinical complications that had never been associated with ZIKV before. Adaptive mutations could have contributed to the successful emergence of ZIKV as a global health threat to a nonimmune population. However, the causal relationships between the ZIKV genetic determinants, the pathogenesis and the rapid spread in Latin America and in the Caribbean remain widely unknown. OBJECTIVES: The aim of this study was to characterise three ZIKV isolates obtained from patient samples during the 2015/2016 Brazilian epidemics. METHODS: The ZIKV genomes of these strains were completely sequenced and in vitro infection kinetics experiments were carried out in cell lines and human primary cells. FINDINGS: Eight nonsynonymous substitutions throughout the viral genome of the three Brazilian isolates were identified. Infection kinetics experiments were carried out with mammalian cell lines A549, Huh7.5, Vero E6 and human monocyte-derived dendritic cells (mdDCs) and insect cells (Aag2, C6/36 and AP61) and suggest that some of these mutations might be associated with distinct viral fitness. The clinical isolates also presented differences in their infectivity rates when compared to the well-established ZIKV strains (MR766 and PE243), especially in their abilities to infect mammalian cells. MAIN CONCLUSIONS: Genomic analysis of three recent ZIKV isolates revealed some nonsynonymous substitutions, which could have an impact on the viral fitness in mammalian and insect cells.


Assuntos
Aedes/virologia , Replicação Viral , Infecção por Zika virus/virologia , Zika virus/genética , Animais , Brasil , Cercopithecus aethiops , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Filogenia , Células Vero , Carga Viral , Cultura de Vírus
4.
Arch Virol ; 164(11): 2659-2669, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31385116

RESUMO

Interferon gamma (IFN-γ) is best known for its ability to regulate host immune responses; however, its direct antiviral activity is less well studied. Transmissible gastroenteritis virus (TGEV) is an economically important swine enteric coronavirus and causes acute diarrhea in piglets. At present, little is known about the function of IFN-γ in the control of TGEV infection. In this study, we demonstrated that IFN-γ inhibited TGEV infection directly in ST cells and intestine epithelial IPEC-J2 cells and that the anti-TGEV activity of IFN-γ was independent of IFN-α/ß. Moreover, IFN-γ suppressed TGEV infection in ST cells more efficiently than did IFN-α, and the combination of IFN-γ and IFN-α displayed a synergistic effect against TGEV. Mechanistically, using overexpression and functional knockdown experiments, we demonstrated that porcine interferon regulatory factor 1 (poIRF1) elicited by IFN-γ primarily mediated IFN-γ signaling cascades and the inhibition of TGEV infection by IFN-γ. Importantly, we found that TGEV elevated the expression of poIRF1 and IFN-γ in infected small intestines and peripheral blood mononuclear cells. Thus, IFN-γ plays a crucial role in curtailing enteric coronavirus infection and may serve as an effective prophylactic and/or therapeutic agent against TGEV infection.


Assuntos
Gastroenterite Suína Transmissível/imunologia , Fator Regulador 1 de Interferon/metabolismo , Interferon gama/imunologia , Vírus da Gastroenterite Transmissível/imunologia , Animais , Linhagem Celular , Cercopithecus aethiops , Fator Regulador 1 de Interferon/genética , Interferon-alfa/imunologia , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais/imunologia , Suínos , Células Vero
5.
Adv Exp Med Biol ; 1155: 643-659, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31468437

RESUMO

Batillus cornutus (B. cornutus) is one of the gastropoda, which are distributed along the coast of China, Japan and South Korea and northeast area. In this study, we first identified the antioxidant effects of a B. cornutus meat (BM) enzymatic hydrolysate in H2O2-treated Vero cells. First of all, we prepared an Alcalase hydrolysate from BM (BMA) and revealed a high taurine content. Also, taurine rich BMA dose-dependently increased 2,2-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) radical scavenging activity, reducing power and the higher oxygen radical absorbance capacity (ORAC) value. In addition, BMA significantly increased the cell viability via the down-regulation of intracellular reactive oxygen species (ROS) production, as well as the decreased formation of apoptotic bodies and sub-G1 DNA population in H2O2-treated Vero cells. Furthermore, BMA increased the expression of the anti-apoptotic molecule, Bcl-2, and decreased the expressions of Bax, p53 and cleaved PARP, all of which are pro-apoptotic molecules, in H2O2-treated Vero cells. Based on these results, this study suggests that BMA may be used as a potential protector on damage caused by oxidative stress.


Assuntos
Antioxidantes/farmacologia , Gastrópodes/química , Estresse Oxidativo , Hidrolisados de Proteína/farmacologia , Animais , Cercopithecus aethiops , Peróxido de Hidrogênio , Carne , Espécies Reativas de Oxigênio/metabolismo , Subtilisinas , Células Vero
6.
Arch Virol ; 164(11): 2789-2792, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31414286

RESUMO

Replication of the dengue virus (DENV) genome occurs in a vesicle in the endoplasmic reticulum by a complex of host and viral proteins. Two host proteins, STT3A and STT3B, as members of the oligosaccharyl transferase complex, have been implicated in playing structural roles in the vesicle in mammalian cells, and the absence of these proteins has been shown to decrease DENV replication. Aedes aegypti is the main vector of the virus and has been used previously as a model organism to study mosquito-virus interactions. In this study, we found that genes of the oligosaccharyl transferase complex have no effect on replication of DENV in mosquito cells.


Assuntos
Aedes/virologia , Vírus da Dengue/crescimento & desenvolvimento , Vírus da Dengue/genética , Hexosiltransferases/genética , Proteínas de Membrana/genética , Replicação Viral/genética , Animais , Benzamidas/farmacologia , Linhagem Celular , Cercopithecus aethiops , Dengue/virologia , Retículo Endoplasmático/virologia , Genoma Viral/genética , Glicosilação , Hexosiltransferases/antagonistas & inibidores , Interações Hospedeiro-Patógeno , Proteínas de Membrana/antagonistas & inibidores , RNA Viral/genética , Sulfonamidas/farmacologia , Células Vero
7.
Mikrobiyol Bul ; 53(3): 274-284, 2019 Jul.
Artigo em Turco | MEDLINE | ID: mdl-31414629

RESUMO

Coxiella burnetii is the causative agent of Q fever, a zoonotic infection. The bacteria is a gram-negative, pleomorphic, coccobacilli and capable to survive and proliferate within the host cell's phagolysosome. There are two morphological cell types of C.burnetii including small and large cell variants. C.burnetii is divided into phase I and phase II serologically variants according to LPS structure in the cell wall. Phase I is the natural phase found in infected animals or humans and is highly infectious. Phase II is not very infectious and could be obtained only in laboratories after serial passages in cell cultures or embryonated egg cultures. Q fever can be asymptomatic (in 50% of the cases), acute or chronic. Major presentations of acute Q fever are flu-like illness, pneumonia, and hepatitis, whereas the chronic form presents mainly as infective endocarditis. The aim of this study was to obtain C.burnetii phase II variant from C.burnetii phase I variant by a phase change study. In this study, C.burnetii was isolated by cell culture method from the heart valve tissue of a Q fever endocarditis case. C.burnetii phase I antigen for the indirect fluorescent antibody test (IFAT) was prepared from the isolated strain. For the isolation and identification of C.burnetii, heart valve tissue of the patient was homogenized and DNA was extracted by tissue extraction kit. C.burnetii DNA in the valve tissue was determined by real-time PCR (Rt-PCR). This C.burnetii DNA positive specimen was inoculated into Vero cells by shell vial centrifugation method. The scraped Vero cells were fixed on the slides after one week of incubation and IFAT was performed using C.burnetii phase I IgG positive sera, bacteria that were grown in and surrounding the Vero cells stained apple green were determined microscopically. Infected cells were disrupted by freeze and thaw method to obtain bacterial suspension. The DNA obtained from the bacterial suspension was again found to be positive for C.burnetii by Rt-PCR. Isolation sample was found to be positive in PCR at an earlier cycle compared to heart tissue sample, thus the bacterial growth was also confirmed with PCR. 16S ribosomal RNA gene of our isolate was amplified by PCR using 27F and 1492 primers and then sequenced. The DNA sequences were compared with reference DNA sequences of GeneBank; and the nucleotide sequence of the 16S ribosomal RNA gene of our isolate was found to be 99% similar to C.burnetii strain ATCC VR-615 an accession number NR104916. Serial cell culture passages of the isolated strain were performed to obtain C.burnetii phase II variant from C.burnetii phase I variant. After each passage, presence of phase change was investigated by IFAT using C.burnetii phase I and phase II IgG positive sera. At the end of 17 cell culture passages, phase change could not be observed. C.burnetii phase I IFAT antigen was prepared from the obtained bacterial suspension. In this study, we presented the isolation and identification of C.burnetii by cell culture, molecular and serological methods from the heart valve of a patient with endocarditis for the first time in our country.


Assuntos
Coxiella burnetii , Endocardite , Valvas Cardíacas , Febre Q , Animais , Antígenos de Bactérias/isolamento & purificação , Antígenos de Bactérias/metabolismo , Cercopithecus aethiops , Coxiella burnetii/genética , Coxiella burnetii/isolamento & purificação , Endocardite/microbiologia , Valvas Cardíacas/microbiologia , Humanos , Febre Q/microbiologia , RNA Ribossômico 16S/genética , Turquia , Células Vero
8.
Exp Parasitol ; 205: 107736, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31442455

RESUMO

Goats are frequently described as an intermediate host for the protozoan Neospora caninum, manifesting the disease mainly by recurrent abortions with placentitis and encephalitis in fetuses. Several reports of natural and experimental infections in cattle and mice show differences in the immune response, and the outcome of the infection can be variable depending on the species affected and by the behavior of the infective strain. This study describes for the first time two Neospora caninum strains isolated from naturally infected goats from the state of Minas Gerais, Brazil. One placenta and one brain from different goats were processed for a first bioassay in gerbils (Meriones unguiculatus). Subsequently, a second bioassay was performed by inoculating the processed brain samples from gerbils into Interferon gamma (IFN-γ) knockout mice (KO mice). Tachyzoites collected from the peritoneal fluid of the KO mice were inoculated into VERO cell monolayers, where they presented a very slow growth rate. The tachyzoites were also inoculated into BALB/c mice with a dose of 106 tachyzoites per animal. After a 5-week follow up, the animals infected with both of the strains developed a strong polarized Th1 response with increased serum and spleen gene expression levels of pro-inflammatory cytokines (mainly IFN-γ and TNF-α) in the first week. Tissue lesions were mild in the animals infected with both strains. Despite the strong immune response preventing an infection in the visceral organs, the parasite was able to reach the brain, causing progressive brain lesions from the second to fifth week post infection. The NC-goat1-infected mice presented with severe meningoencephalitis, but the NC-goat2-infected animals had considerable histological brain lesions only at week 5. Immunohistochemical analysis of the mouse brains revealed a different pattern of inflammatory cells compared to the naturally infected goats. A severe inflammatory infiltrate of CD3+ T lymphocytes was found in the NC-goat1-infected mice. A more discrete infiltrate of CD3+ T cells was found in the NC-goat2-infected animals. Additionally, IBA1 IHC revealed an intense microglial reaction and monocyte perivascular cuffs in the NC-goat1-infected animals and lower microglia/monocyte infiltrates in the NC-goat2-infected mice. This work contributes knowledge on the pathogenicity of new Neospora caninum strains in mice, comparable with other well-established mouse models of the disease, and demonstrates the importance of studying goats as an intermediate host of this parasite.


Assuntos
Coccidiose/veterinária , Doenças das Cabras/parasitologia , Neospora/patogenicidade , Animais , Bioensaio/veterinária , Encéfalo/parasitologia , Encéfalo/patologia , Cercopithecus aethiops , Coccidiose/parasitologia , Coccidiose/patologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Gerbillinae , Doenças das Cabras/patologia , Cabras , Imuno-Histoquímica/veterinária , Interferon gama/genética , Interferon gama/metabolismo , Fígado/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neospora/isolamento & purificação , Pâncreas/patologia , Placenta/patologia , Gravidez , Baço/metabolismo , Baço/patologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Células Vero
9.
Anticancer Res ; 39(7): 3727-3737, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31262899

RESUMO

BACKGROUND/AIM: This study aims to investigate whether the combination of oncolytic viruses with chemoradiotherapy or other therapies is a promising strategy for cancer treatment. MATERIALS AND METHODS: The anticancer effects of measles virus (MeV) in combination with nimotuzumab in the treatment of laryngeal cancer were evaluated in vitro and in nude mice inoculated with Hep2 tumors. MTT assay and flow cytometry were used to examine cell death. RESULTS: Laryngeal cancer cells treated with MeV+nimotuzumab combination had a significantly lower survival rate compared to those treated with MeV or nimotuzumab alone (p<0.0001). In an animal model bearing human laryngeal tumor, the treated group had a higher survival rate (60%) compared to a untreated group (20%) (p<0.05), and the survival rate of the group treated with MeV+nimotuzumab combination was higher compared to the groups received single treatment. CONCLUSION: The MeV+nimotuzumab combination has greater anticancer activities in both laryngeal cancer cells and an animal model.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias Laríngeas/terapia , Vírus do Sarampo , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Linhagem Celular Tumoral , Cercopithecus aethiops , Terapia Combinada , Humanos , Vacina contra Sarampo , Camundongos Nus , Células Vero
10.
Pol J Microbiol ; 68(2): 165-171, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31257789

RESUMO

Hand, foot, and mouth disease (HFMD) is caused by various serotypes of Enterovirus genus. Coxsackievirus A16 (CV-A16) and enterovirus A71 (EV-A71) were known to be the only responsible agents for these epidemics; however, this opinion was challenged after the detection that coxsackievirus A6 (CV-A6) was the responsible species for the outbreak in Finland in 2008. HFMD is frequently seen in Turkey, and no detailed study on its clinical and microbiological epidemiology has previously been reported. The present study addresses this question. Twenty-seven patient samples collected between 2015 and 2017 were included in the study. Typing was conducted by RT-PCR and the sequencing applied directly to patient's samples and as well as to the viral cultures with pan-enterovirus and serotype-specific primers. The presence of Enterovirus in 12 of 27 HFMD samples was shown with RT-PCR. The causative agent for three of these 12 samples was CV-A16, one of the most frequent two serotypes around the world, and the remaining nine samples was CV-A6. The findings of the study are relevant since it pertains to the molecular epidemiology of HFMD in Turkey, a gateway country where different serotypes might be circulating and transmitted. The findings also support the notion that CV-A6 cases are rising in number, which has caused more severe clinical features and widespread rashes in recent outbreaks.Hand, foot, and mouth disease (HFMD) is caused by various serotypes of Enterovirus genus. Coxsackievirus A16 (CV-A16) and enterovirus A71 (EV-A71) were known to be the only responsible agents for these epidemics; however, this opinion was challenged after the detection that coxsackievirus A6 (CV-A6) was the responsible species for the outbreak in Finland in 2008. HFMD is frequently seen in Turkey, and no detailed study on its clinical and microbiological epidemiology has previously been reported. The present study addresses this question. Twenty-seven patient samples collected between 2015 and 2017 were included in the study. Typing was conducted by RT-PCR and the sequencing applied directly to patient's samples and as well as to the viral cultures with pan-enterovirus and serotype-specific primers. The presence of Enterovirus in 12 of 27 HFMD samples was shown with RT-PCR. The causative agent for three of these 12 samples was CV-A16, one of the most frequent two serotypes around the world, and the remaining nine samples was CV-A6. The findings of the study are relevant since it pertains to the molecular epidemiology of HFMD in Turkey, a gateway country where different serotypes might be circulating and transmitted. The findings also support the notion that CV-A6 cases are rising in number, which has caused more severe clinical features and widespread rashes in recent outbreaks.


Assuntos
Enterovirus Humano B/isolamento & purificação , Doença de Mão, Pé e Boca/epidemiologia , Doença de Mão, Pé e Boca/virologia , Epidemiologia Molecular/métodos , Animais , Linhagem Celular , Cercopithecus aethiops , Criança , Pré-Escolar , Enterovirus Humano B/classificação , Enterovirus Humano B/genética , Feminino , Humanos , Lactente , Masculino , Tipagem Molecular , Turquia/epidemiologia , Células Vero
11.
Pol J Microbiol ; 68(2): 185-191, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31257791

RESUMO

We observed the death of insect caterpillars of Spodoptera exigua in the laboratory culture line and identified Serratia marcescens as the bacterial causative agent of the insect death. We confirmed that S. marcescens had insecticidal activity against S. exigua and caused high mortality of larvae. The LC50 values of S. marcescens CFU per 1 cm2 of insect diet surface were similar for all isolates. Our research reports novel strains with high pesticidal activity as candidates for future research on a new bioinsecticide. As bioinsecticides cannot be harmful to non-target organisms, we determined the pathogenic properties of S. marcescens to humans. We proved the ability of S. marcescens to damage mammalian epithelial cells. All strains had cytopathic effects to Vero cells with a cytotoxic index ranging from 51.2% ± 3.8% to 79.2% ± 4.1%. We found that all of the strains excreted catecholate siderophore - enterobactin. All isolates were resistant to sulfamethoxazole, tobramycin, gentamicin, cefepime, and aztreonam. We did not observe the ESBL phenotype and the integrons' integrase genes. Resistance to sulfamethoxazole was due to the presence of the sul1 or sul2 gene. The use of resistant S. marcescens strains that are pathogenic to humans in plant protection may cause infections difficult to cure and lead to the spread of resistance genes. The results of our study emphasize the necessity of determination of the safety to vertebrates of the bacteria that are proposed to serve as biocontrol agents. The novelty of our study lies in the demonstration of the indispensability of the bacteria verification towards the lack of hazardous properties to humans.We observed the death of insect caterpillars of Spodoptera exigua in the laboratory culture line and identified Serratia marcescens as the bacterial causative agent of the insect death. We confirmed that S. marcescens had insecticidal activity against S. exigua and caused high mortality of larvae. The LC50 values of S. marcescens CFU per 1 cm2 of insect diet surface were similar for all isolates. Our research reports novel strains with high pesticidal activity as candidates for future research on a new bioinsecticide. As bioinsecticides cannot be harmful to non-target organisms, we determined the pathogenic properties of S. marcescens to humans. We proved the ability of S. marcescens to damage mammalian epithelial cells. All strains had cytopathic effects to Vero cells with a cytotoxic index ranging from 51.2% ± 3.8% to 79.2% ± 4.1%. We found that all of the strains excreted catecholate siderophore ­ enterobactin. All isolates were resistant to sulfamethoxazole, tobramycin, gentamicin, cefepime, and aztreonam. We did not observe the ESBL phenotype and the integrons' integrase genes. Resistance to sulfamethoxazole was due to the presence of the sul1 or sul2 gene. The use of resistant S. marcescens strains that are pathogenic to humans in plant protection may cause infections difficult to cure and lead to the spread of resistance genes. The results of our study emphasize the necessity of determination of the safety to vertebrates of the bacteria that are proposed to serve as biocontrol agents. The novelty of our study lies in the demonstration of the indispensability of the bacteria verification towards the lack of hazardous properties to humans.


Assuntos
Agentes de Controle Biológico/efeitos adversos , Inseticidas/efeitos adversos , Inseticidas/farmacologia , Serratia marcescens/patogenicidade , Spodoptera/microbiologia , Animais , Antibacterianos/farmacologia , Aztreonam/farmacologia , Cefepima/farmacologia , Cercopithecus aethiops , Enterobactina/metabolismo , Gentamicinas/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Serratia marcescens/efeitos dos fármacos , Serratia marcescens/isolamento & purificação , Sulfametoxazol/farmacologia , Tobramicina/farmacologia , Células Vero
12.
J Water Health ; 17(4): 597-608, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31313997

RESUMO

Water-borne diseases like diarrheagenic Escherichia coli (DEC)-induced gastroenteritis are major public health problems in developing countries. In this study, the microbiological quality of water from mines and shallow wells was analyzed for human consumption. Genotypic and phenotypic characterization of DEC strains was performed. A total of 210 water samples was analyzed, of which 153 (72.9%) contained total coliforms and 96 (45.7%) E. coli. Of the E. coli isolates, 27 (28.1%) contained DEC genes. The DEC isolates included 48.1% Shiga toxin-producing E. coli (STEC), 29.6% enteroaggregative E. coli (EAEC), 14.9% enteropathogenic E. coli (EPEC), 3.7% enterotoxigenic E. coli (ETEC), and 3.7% enteroinvasive E. coli (EIEC). All the STECs had cytotoxic effects on Vero cells and 14.8% of the DEC isolates were resistant to at least one of the antibiotics tested. All DEC formed biofilms and 92.6% adhered to HEp-2 cells with a prevalence of aggregative adhesion (74%). We identified 25 different serotypes. One EPEC isolate was serotype O44037:H7, reported for the first time in Brazil. Phylogenetically, 63% of the strains belonged to group B1. The analyzed waters were potential reservoirs for DEC and could act as a source for infection of humans. Preventive measures are needed to avoid such contamination.


Assuntos
Infecções por Escherichia coli , Água Subterrânea/microbiologia , Animais , Brasil , Cercopithecus aethiops , Diarreia , Humanos , Células Vero
13.
Vet Microbiol ; 235: 151-163, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31282373

RESUMO

This study demonstrates that the Muscovy duck reovirus (MDRV) p10.8 protein is one of many viral non-structural proteins that induces both cell cycle arrest and apoptosis. The p10.8 but not σC is a nuclear targeting protein that shuttles between the nucleus and the cytoplasm. Our results reveal that p10.8-induced apoptosis in cultured cells occurs by the nucleoporin Tpr/p53-dependent and Fas/caspase 8-mediated pathways. Furthermore, a compelling finding from this study is that the p10.8 and σC proteins of MDRV facilitate CDK2 and CDK4 degradation via the ubiquitin-proteasome pathway. We found that depletion of Cdc20 reversed the p10.8- and σC- mediated CDK4 degradation and p10.8-induced apoptosis, suggesting that Cdc20 plays a critical role in modulating p10.8-mediated cell cycle and apoptosis. Furthermore, we found that depletion of chaperonin-containing tailless complex polypeptide 1 (CCT) 2 and CCT5 reduced the level of Cdc20 and reversed the p10.8- and σC-mediated CDK4 degradation and p10.8-induced apoptosis, indicating that molecular chaperone CCT2 and CCT5 are required for stabilization of Ccd20 for mediating both cell cycle arrest and apoptosis. This study provides mechanistic insights into how p10.8 induces both cell cycle arrest and apoptosis.


Assuntos
Proteínas Cdc20/metabolismo , Chaperonina com TCP-1/metabolismo , Orthoreovirus/genética , Doenças das Aves Domésticas/virologia , Infecções por Reoviridae/veterinária , Proteínas não Estruturais Virais/metabolismo , Animais , Apoptose , Caspase 8/genética , Caspase 8/metabolismo , Proteínas Cdc20/genética , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Cercopithecus aethiops , Chaperonina com TCP-1/genética , Patos/virologia , Fibroblastos/virologia , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , RNA Interferente Pequeno , Células Vero , Proteínas não Estruturais Virais/genética
14.
Fitoterapia ; 137: 104257, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31278976

RESUMO

Two new meroditerpene pyrones, chevalone F (1) and 11-hydroxychevalone E (2), a new tryptoquivaline analog, tryptoquivaline V (3) and a new brasiliamide analog, brasiliamide G (4), together with thirteen known compounds, chevalones A-C (5-7), chevalone E (8), 11-hydroxychevalone C (9), pyripyropene A (10), isochaetominine C (11), pyrrolobenzoxazine terpenoids CJ-12662 (12) and CJ-12663 (13), fischerindoline (14), eurochevalierine (15), 1,4-diacetyl-2,5-dibenzylpiperazine-3,7''-oxide (16) and lecanorin (17) were isolated from the fungus Neosartorya pseudofischeri. Their structures were established on the basis of spectroscopic evidence. Compound 2 showed weak antibacterial activity against Escherichia coli and Salmonella enterica serovar Typhimurium, whereas compounds 7, 12, 13 and 15 showed antibacterial activity against Bacillus cereus and Staphylococcus aureus. In addition, compounds 13 and 14 showed cytotoxicity against KB and MCF-7 cancer cell lines, as well as the Vero cell line.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Indóis/farmacologia , Neosartorya/química , Pironas/farmacologia , Animais , Antibacterianos/isolamento & purificação , Antineoplásicos/isolamento & purificação , Cercopithecus aethiops , Florestas , Humanos , Indóis/isolamento & purificação , Células KB , Células MCF-7 , Estrutura Molecular , Pironas/isolamento & purificação , Microbiologia do Solo , Tailândia , Células Vero
15.
Chem Commun (Camb) ; 55(57): 8227-8230, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31268107

RESUMO

An original family of multivalent vectors encompassing gemini and facial amphiphilicity, namely cationic Siamese twin surfactants, has been prepared from the disaccharide trehalose; molecular engineering lets us modulate the self-assembling properties and the topology of the nanocomplexes with plasmid DNA for efficient gene delivery in vitro and in vivo.


Assuntos
Nanoestruturas/química , Plasmídeos/química , Tensoativos/química , Transfecção/métodos , Trealose/química , Animais , Linhagem Celular , Cercopithecus aethiops , Humanos , Camundongos , Plasmídeos/metabolismo
16.
Int J Nanomedicine ; 14: 4105-4121, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31239670

RESUMO

Purpose: Doxorubicin (DOX) encapsulated O-succinyl chitosan graft Pluronic® F127 (OCP) copolymer nanoparticles conjugated with an anti-HER2 monoclonal antibody were developed as targeted drug delivery vehicles for the treatment of HER2-overexpressing breast cancer. Methods: Five percent and 10% (w/w) of O-succinyl chitosan was grafted onto Pluronic® F127 using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) as mediated cross-linking agents. DOX was added to the copolymer solution to form DOX-nanoparticles before conjugation with anti-HER2 on the surface of the nanoparticles. Results: DOX was encapsulated within the NP matrices at an encapsulation efficiency of 73.69 ± 0.53% to 74.65 ± 0.44% (the initial DOX concentration was 5 µg/mL). Anti-HER2 was successfully conjugated onto the surface of the nanoparticles at a moderately high conjugation efficiency of approximately 57.23 ± 0.38% to 61.20 ± 4.42%. In the in vitro DOX dissolution study, the nanoparticle formulations exhibited a biphasic drug release with an initial burst release followed by a sustained release profile at both pH 5.0 and pH 7.4. The drug was rapidly and completely released from the nanoparticles at pH 5.0. In the in vitro cytotoxicity, the anti-HER2 conjugated OCP copolymer nanoparticles showed the lowest IC50, which indicated an increase in the therapeutic efficacy of DOX to treat human breast cancer cells with the HER2 overexpression. Conclusion: Our study shows that anti-HER2 conjugated OCP copolymer nanoparticles have the potential for the development of anticancer drug carriers.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Quitosana/análogos & derivados , Doxorrubicina/uso terapêutico , Nanopartículas/química , Receptor ErbB-2/metabolismo , Animais , Neoplasias da Mama/patologia , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cercopithecus aethiops , Quitosana/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Feminino , Humanos , Ligantes , Células MCF-7 , Micelas , Tamanho da Partícula , Células Vero
17.
BMC Complement Altern Med ; 19(1): 149, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31238921

RESUMO

BACKGROUND: The kidney is an essential organ required by the body to perform several important functions. Nephrotoxicity is one of the most prevailing kidney complications that result from exposure to an extrinsic or intrinsic toxicant, which increase the need for the acquisition of proper remedies. Recently, natural remedies are gaining great attention owed to the fact that they have fewer side effects than most conventional drugs. METHODS: The current study recorded a new therapeutic role of the well-known medicinal plants for kidney stones [Ammi visnaga (AVE), Petroselinum crispum (PCE), Hordeum vulgare (HVE), and Cymbopogon schoenanthus (CSE)]. Hence, the aqueous extracts of these plants examined against CCl4-induced toxicity in mammalian kidney (Vero) cells. RESULTS: These extracts showed the presence of varying amounts of phenolic and triterpenoid compounds, as well as vitamin C. Owing to the antioxidant potential of these constituents, the extracts suppressed the CCl4-induced oxidative stress significantly (p < 0.05) by scavenging the reactive oxygen species and enhancing the cellular antioxidant indices. In addition, these extracts significantly (p < 0.05) reduced the CCl4-induced inflammation by inhibiting the gene expression of NF-кB, iNOS, and in turn the level of nitric oxide. Consequently, the morphological appearance of Vero cells, cellular necrosis, and the gene expression of kidney injury molecule-1 (a marker of renal injury) after these treatments were improved. The AVE improved CCl4-induced oxidative and inflammatory stress in Vero cells and showed a more potent effect than the commonly used alpha-Ketoanalogue drug (ketosteril) in most of the studied assays. CONCLUSION: Thus, the studied plant extracts, especially AVE can be considered as promising extracts in the management of nephrotoxicity and other chronic diseases associated with oxidative stress and inflammation.


Assuntos
Ammi/química , Cymbopogon/química , Hordeum/química , Rim/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Petroselinum/química , Extratos Vegetais/farmacologia , Animais , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Cercopithecus aethiops , Rim/imunologia , NF-kappa B/genética , NF-kappa B/imunologia , Óxido Nítrico/imunologia , Fenóis/química , Fenóis/isolamento & purificação , Fenóis/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Sementes/química , Células Vero
18.
Ecotoxicol Environ Saf ; 181: 214-223, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31195230

RESUMO

In the aftermath of the Great East Japan Earthquake of March 11, 2011, marine fish in Kesennuma Bay, Japan, have been contaminated with heavy oil containing polycyclic aromatic hydrocarbons (PAHs). To estimate the risk of six PAHs (benzo[α]pyrene, dibenzothiophene, phenanthrene, 2,3,5-trimethylnaphthalene, acenaphthene, and 1-methylphenanthrene), which have been detected at high levels in the tissues of fish from Kesennuma Bay, we attempted to evaluate the effects of these PAHs on the fish aryl hydrocarbon receptor (AHR) signaling pathway. We initially measured PAH concentrations and cytochrome P4501A catalytic activities (EROD: ethoxyresorufin-O-deethylase and MROD: methoxyresorufin-O-demethylase) as markers of AHR activation in greenlings (Hexagrammos otakii) collected from Kesennuma Bay in 2014. The results showed that alkylated PAH concentrations and EROD/MROD activities were higher in sites close to the oil-spilled sites than in the control site, suggesting AHR activation by spilled alkylated PAHs. We then investigated AHR-mediated responses to these PAHs in the in vitro reporter gene assay system where red seabream (Pagrus major) AHR1 (rsAHR1) or rsAHR2 expression plasmids were transiently transfected into COS-7 cells. The in vitro assay showed rsAHR isoform-, PAH-, and dose-dependent transactivation potencies. The relative effective concentrations of benzo[α]pyrene, dibenzothiophene, phenanthrene, 2,3,5-trimethylnaphthalene, acenaphthene, and 1-methylphenanthrene that induce 20% of the maximum benzo[α]pyrene response (REC20-BaP) for rsAHR1 activation were 0.052, 38, 79, 88, 270 nM, and no response, respectively, and those for rsAHR2 activation were 0.0049, 32, 53, 88, 60 nM, and no response, respectively. The results showed that the REC20-BaP values of benzo[α]pyrene for both the rsAHR1 and rsAHR2 isoforms were lower than the concentrations (0.041-0.20 nM) detected in the muscle tissue of fish from Kesennuma Bay, while the REC20-BaP values of other PAHs were higher than their tissue concentrations. In silico rsAHR homology modeling and subsequent ligand docking simulation analyses indicated that the rsAHR activation potencies of PAHs could be predicted from a rsAHR2 model. This study shows that in vitro and in silico rsAHR analyses may be a useful tool for assessing the risks to fish contaminated with PAHs.


Assuntos
Peixes/metabolismo , Poluição por Petróleo , Hidrocarbonetos Policíclicos Aromáticos/análise , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Células COS , Cercopithecus aethiops , Simulação por Computador , Citocromo P-450 CYP1A1/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Genes Reporter , Japão , Perciformes/metabolismo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Receptores de Hidrocarboneto Arílico/química , Receptores de Hidrocarboneto Arílico/genética , Medição de Risco , Dourada/genética
19.
Biomed Environ Sci ; 32(5): 324-333, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31217049

RESUMO

OBJECTIVE: To investigate the mechanisms underlying ozone-induced inactivation of poliovirus type 1 (PV1). METHODS: We used cell culture, long-overlapping RT-PCR, and spot hybridization assays to verify and accurately locate the sites of action of ozone that cause PV1 inactivation. We also employed recombinant viral genome RNA infection models to confirm our observations. RESULTS: Our results indicated that ozone inactivated PV1 primarily by disrupting the 5'-non-coding region (5'-NCR) of the PV1 genome. Further study revealed that ozone specifically damaged the 80-124 nucleotide (nt) region in the 5'-NCR. Recombinant viral genome RNA infection models confirmed that PV1 lacking this region was non-infectious. CONCLUSION: In this study, we not only elucidated the mechanisms by which ozone induces PV1 inactivation but also determined that the 80-124 nt region in the 5'-NCR is targeted by ozone to achieve this inactivation.


Assuntos
Genoma Viral/efeitos dos fármacos , Oxidantes Fotoquímicos/farmacologia , Ozônio/farmacologia , Poliovirus/efeitos dos fármacos , Inativação de Vírus , Regiões 5' não Traduzidas , Animais , Cercopithecus aethiops , Células Vero
20.
J Med Microbiol ; 68(7): 1109-1117, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31199226

RESUMO

PURPOSE: Eugenol, the main component of clove bud essential oil (Eugenia caryophyllus), has been linked to antimicrobial, anti-inflammatory, insecticidal and immunomodulatory properties. The purpose of this study was to evaluate the antifungal and cytotoxic activity of eugenol, the essential oil of Eugenia caryophyllus, and some semisynthetic derivatives of eugenol against dermatophytes of the genus Trichophyton. METHODOLOGY: We evaluated the antifungal effect of the compounds, determining the minimum inhibitory concentrations (MICs) by the microdilution method and the minimum fungicidal concentrations by cultures from the inhibitions. Additionally, the inhibition of the radial growth of the mycelium of the dermatophyte fungi was tested by poisoned substrate. Cytotoxicity was measured by the colorimetric method on Vero cells. RESULTS: All of the eugenol compounds tested exhibited antifungal properties, showing MICs of 62.5-500 µg ml-1 , determined within three dermatophyte species: Trichophyton rubrum, Trichophyton mentagrophytes and Trichophyton tonsurans. Among these derivatives, methyl isoeugenol, at concentrations of 300 and 100 µg ml-1, was found to completely inhibit (100 %) radial growth of the mycelium of all three species after 20 days of treatment. Additionally, phenotypic variations related to the decrease in pigment production of T. rubrum were observed after treatment with O-ethyl and O-butyl isoeugenol derivatives. Meanwhile, all of the tested (iso)eugenol molecules exhibited moderate toxicity in Vero cells [50 % cytotoxic concentration (the concentration required for a 50 % reduction in cell viability; CC50): 54.06-265.18 µg ml-1 ). CONCLUSION: The results suggest that the semisynthetic eugenol derivatives (SEDs) show promising antifungal activity and selectivity against dermatophyte fungi.


Assuntos
Antifúngicos/farmacologia , Eugenol/análogos & derivados , Eugenol/farmacologia , Trichophyton/efeitos dos fármacos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cercopithecus aethiops , Eugenol/toxicidade , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA