RESUMO
Microalgae are susceptible to most pollutants in aquatic ecosystems and can be potentially damaged by silver nanoparticles (AgNPs). This study aims to clarify the potential consequences of Chlorella vulgaris internalizing AgNPs. The exposure of C. vulgaris to AgNPs stabilized with citrate led to the accumulation of NPs in the cell wall, increasing permeability, which allowed the entry of AgNPs and Ag + ions resulting from the dissolution of AgNPs. Ag + accumulated inside the cell could be converted into AgNPs (endogenous) due to the reducing potential of the cytoplasm. Both exogenous and endogenous AgNPs caused damage to all biological structures of the algae, as demonstrated by TEM images. This damage included the disorganization of chloroplasts, deposition of AgNPs on starch granules, and increased amounts of lipids, starch granules, exopolysaccharides, plastoglobuli, and cell diameters. These changes caused cell death by altering cell viability and interfering with organelle functions, possibly due to reactive oxygen species generated by nanoparticles, as shown in a lipid bilayer model. These findings highlight the importance of considering the exposure risks of AgNPs in a worldwide distributed chlorophyte.
Assuntos
Chlorella vulgaris , Nanopartículas Metálicas , Microalgas , Espécies Reativas de Oxigênio , Prata , Prata/metabolismo , Prata/farmacologia , Chlorella vulgaris/efeitos dos fármacos , Chlorella vulgaris/metabolismo , Chlorella vulgaris/crescimento & desenvolvimento , Nanopartículas Metálicas/química , Microalgas/metabolismo , Microalgas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Microscopia Eletrônica de Transmissão , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Cloroplastos/metabolismo , Cloroplastos/efeitos dos fármacosRESUMO
Cildáñez stream (in Matanza-Riachuelo basin, Buenos Aires) is one of the most polluted watercourses of Argentina, containing a mixed contamination from agricultural and industrial wastes. The application of water bioremediation processes for this kind of effluent will require microorganisms with a high tolerance to contamination. In this sense, obtaining higher contaminant-resistant microalgae lines is widely desired. In this study, adaptive laboratory evolution (ALE) and random mutagenesis were used to obtain Chlorella vulgaris LMPA-40 strains adapted to grow in polluted water from the Cildáñez stream. The ALE process was performed by 22 successive subcultures under selective pressure (Cildáñez wastewater alone or with the addition of phenol or H2O2) while random mutagenesis was performed with UV-C radiation at 275nm. Not all the cell lines obtained after ALE could adapt enough to overcome the stress caused by the Cildáñez wastewater, indicating that the process is quite random and depends on the stressor used. The best results were obtained for the Cildáñez wastewater adapted cells (Cild 3 strain) that were more resistant than the original strain. The concentration of protein, Chlorophyll A, Chlorophyll B, and carotenoids in the Cild 3 ALE evolved strain was higher than that of the control strain. However, this strain exhibited half of the lipid content compared to the same control strain. Interestingly, these alterations and the acquired tolerance may be reversed over time during storage. These findings suggest that the acquisition of novel cell lines could not be permanent, a fact that must be considered for future trials.
Assuntos
Chlorella vulgaris , Chlorella vulgaris/genética , Águas Residuárias/microbiologia , Argentina , Biodegradação Ambiental , Evolução Molecular Direcionada , Mutagênese , Clorofila A , Clorofila/análise , Peróxido de Hidrogênio/farmacologiaRESUMO
The intricate composition of microalgal pigments plays a crucial role in various biological processes, from photosynthesis to biomarker identification. Traditional pigment analysis methods involve complex extraction techniques, posing challenges in maintaining analyte integrity. In this study, we employ Electron Transfer Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (ET-MALDI-MS) to compare the pigmentary profiles of Chlorella vulgaris intact cells, chloroplasts, and solvent extracts. We aim to obtain comprehensive extracts rich in polar and non-polar compounds using ultrasound-assisted and supercritical fluid extraction methods. Additionally, intact chloroplasts are isolated using a lysis buffer and sucrose density gradient centrifugation. Our ET-MALDI-MS analysis reveals distinct compositional differences, highlighting the impact of extraction protocols on microalgal pigment identification. We observe prominent signals corresponding to radical cations of key pigments, including chlorophylls and carotenoids, which are crucial for C. vulgaris identification. Furthermore, ET-MALDI-MS facilitates the identification of specific lipids within chloroplast membranes and other organelles. This study underscores the rapid and precise nature of ET-MALDI-MS in microalgal biomarker analysis, providing valuable insights into phytoplankton dynamics, trophic levels, and environmental processes. C. vulgaris emerges as a promising model for studying pigment composition and membrane lipid diversity, enhancing our understanding of microalgal ecosystems.
Assuntos
Chlorella vulgaris , Cloroplastos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Chlorella vulgaris/química , Chlorella vulgaris/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Cloroplastos/química , Cloroplastos/metabolismo , Carotenoides/análise , Carotenoides/química , Clorofila/análise , Clorofila/química , Pigmentos Biológicos/análise , Pigmentos Biológicos/químicaRESUMO
The present investigation has evaluated the use of effluents from a secondary municipal wastewater treatment plant for biomass production and potential of the biomass for biodiesel production. Cultivations of Chlorella vulgaris using wastewater, wastewater with supplementation, and WC medium were carried out. Effect of wastewater collected in different months on biomass productivity (BP) and lipid composition was studied. Methods based on NMR and GC-MS techniques were applied for determining the composition of the lipids and their fatty acid profile including poly unsaturated fatty acids (PUFAs). Lipids extracted are comprised of both neutral (tri acyl glycerides, TAG; free fatty acids, FFA) and polar (glyco glycero/phospho) lipids. The TAG content of the extracted lipids was determined in the range of 22.5-41.3% w/w. The NMR and GC-MS compositional results of microalgal lipids of biomasses cultivated in wastewater without nutrient supplementation, collected in different months, showed potential for biodiesel production. The fatty acid profiles of neutral and polar lipids, which are mainly comprised of saturated and unsaturated long alkyl chain (C16-C22) fatty acids, are potential sources for the biodiesel and food industry. The concentration of nitrates (45-78 mg L-1) in wastewater without supplementation, collected in different months, was found to be optimum to enable cultivation of biomasses with reasonably good BP of 21.5-28.1 mg L-1 day-1. Similar results have been obtained in the present work as well as reported in the literature in the case of WC medium (nitrate, 69 mg L-1) with BP of 25.5-28.2 mg L-1 day-1, thus highlighted the significance of the presented work.
Assuntos
Biocombustíveis , Chlorella vulgaris , Águas Residuárias , Chlorella vulgaris/crescimento & desenvolvimento , Águas Residuárias/química , Biomassa , Eliminação de Resíduos Líquidos/métodos , Ácidos GraxosRESUMO
The present study evaluated the hematological, antiparasitic and growth responses in tambaqui (Colossoma macropomum) fed with diets supplemented with the microalgae Arthrospira platensis and Chlorella vulgaris (0%; 10% A. platensis; 10% C. vulgaris; and 5% A. platensis+5% C. vulgaris). Tambaqui (n=60, 62.57 ± 8.76 g) were fed for 20 days with experimental diets. Blood samples collection was done to determine hematological parameters, and gills were removed to identify and count monogenetic parasites. Supplementation with A. platensis 10% reduced red blood cells count, in consequence mean corpuscular volume and mean hemoglobin concentration increased. Total leukocyte, monocyte, eosinophil, and basophil counts reduced with the use of A. platensis. Higher monocytes, eosinophil, and basophil numbers in tambaqui fed with diet supplemented with 10% C. vulgaris were observed and may have been due to the presence of immunostimulants in this microalga composition. Reduction on total cholesterol in tambaqui that received both microalgae (A. platensis 5%+C. vulgaris 5%) may indicate that combined supplementation presented greater benefits to the health for C. macropomum than separately. Both microalgae were efficient against monogenetic parasites of tambaqui. Thus, the dietary use of the microalgae A. platensis and C. vulgaris provided immunostimulant and antiparasitic efficacy in C. macropomum.
Assuntos
Chlorella vulgaris , Spirulina , Chlorella vulgaris/química , Animais , Suplementos Nutricionais , Caraciformes , Microalgas/químicaRESUMO
The food and beverage industries in Mexico generate substantial effluents, including nejayote, cheese-whey, and tequila vinasses, which pose significant environmental challenges due to their extreme physicochemical characteristics and excessive organic load. This study aimed to assess the potential of Chlorella vulgaris in bioremediating these complex wastewaters while also producing added-value compounds. A UV mutagenesis treatment (40 min) enhanced C. vulgaris adaptability to grow in the effluent conditions. Robust growth was observed in all three effluents, with nejayote identified as the optimal medium. Physicochemical measurements conducted pre- and post-cultivation revealed notable reductions of pollutants in nejayote, including complete removal of nitrogen and phosphates, and an 85 % reduction in COD. Tequila vinasses exhibited promise with a 66 % reduction in nitrogen and a 70 % reduction in COD, while cheese-whey showed a 17 % reduction in phosphates. Regarding valuable compounds, nejayote yielded the highest pigment (1.62 mg·g-1) and phenolic compound (3.67 mg·g-1) content, while tequila vinasses had the highest protein content (16.83 %). The main highlight of this study is that C. vulgaris successfully grew in 100 % of the three effluents (without additional water or nutrients), demonstrating its potential for sustainable bioremediation and added-value compound production. When grown in 100 % of the effluents, they become a sustainable option since they don't require an input of fresh water and therefore do not contribute to water scarcity. These findings offer a practical solution for addressing environmental challenges in the food and beverage industries within a circular economy framework.
Assuntos
Biodegradação Ambiental , Chlorella vulgaris , Eliminação de Resíduos Líquidos , Águas Residuárias , Chlorella vulgaris/metabolismo , Águas Residuárias/química , México , Eliminação de Resíduos Líquidos/métodos , Bebidas , Indústria Alimentícia , Poluentes Químicos da Água/análise , Resíduos Industriais/análiseRESUMO
As global effects of water scarcity raise concerns and environmental regulations evolve, contemporary wastewater treatment plants (WWTPs) face the challenge of effectively removing a diverse range of contaminants of emerging concern (CECs) from municipal effluents. This study focuses on the assessment of advanced oxidation processes (AOPs), specifically UV-C/H2O2 and UV-C/Chlorine, for the removal of 14 target CECs in municipal secondary effluent (MSE, spiked with 10 µg L-1 of each CEC) or in the subsequent MSE nanofiltration retentate (NFR, no spiking). Phototreatments were carried out in continuous mode operation, with a hydraulic retention time of 3.4 min, using a tube-in-tube membrane photoreactor. For both wastewater matrices, UV-C photolysis (3.3 kJ L-1) exhibited high efficacy in removing CECs susceptible to photolysis, although lower treatment performance was observed for NFR. In MSE, adding 10 mg L-1 of H2O2 or Cl2 enhanced treatment efficiency, with UV-C/H2O2 outperforming UV-C/Chlorine. Both UV-C/AOPs eliminated the chronic toxicity of MSE toward Chlorella vulgaris. In the NFR, not only was the degradation of target CECs diminished, but chronic toxicity to C. vulgaris persisted after both UV-C/AOPs, with UV-C/Chlorine increasing toxicity due to potential toxic by-products. Nanofiltration permeate (NFP) exhibited low CECs and microbial content. A single chlorine addition effectively controlled Escherichia coli regrowth for 3 days, proving NFP potential for safe reuse in crop irrigation (<1 CFU/100 mL for E. coli; <1 mg L-1 for free chlorine). These findings provide valuable insights into the applications and limitations of UV-C/H2O2 and UV-C/Chlorine for distinct wastewater treatment scenarios.
Assuntos
Cloro , Filtração , Peróxido de Hidrogênio , Fotólise , Raios Ultravioleta , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Peróxido de Hidrogênio/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Eliminação de Resíduos Líquidos/métodos , Cloro/química , Filtração/métodos , Purificação da Água/métodos , Chlorella vulgaris/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , OxirreduçãoRESUMO
Deep skin burn represents a global morbidity and mortality problem, and the limitation of topical treatment agents has motivated research to development new formulations capable of preventing infections and accelerating healing. The aim of this work was to develop and characterize an emulgel based on collagen (COL) and gelatin (GEL) extracted from fish skin associated with Chlorella vulgaris extract (CE) and silver nitrate (AgNO3). COL and GEL were characterized by physicochemical and thermal analyses; and CE by electrophoresis and its antioxidant capacity. Three emulgels formulations were developed: COL (0.5%) + GEL (2.5%) (E1), COL+GEL+CE (1%) (E2), and COL+GEL+CE + AgNO3 (0.1%) (E3). All formulations were characterized by physicochemical, rheology assays, and preclinical analyses: cytotoxicity (in vitro) and healing potential using a burn model in rats. COL and GEL showed typical physicochemical characteristics, and CE presented 1.3 mg/mL of proteins and antioxidant activity of 76%. Emulgels presented a coherent physicochemical profile and pseudoplastic behavior. Preclinical analysis showed concentration-dependent cytotoxicity against fibroblast and keratinocytes. In addition, all emulgels induced similar percentages of wound contraction and complete wound closure in 28 days. The histopathological analysis showed higher scores for polymorphonuclear cells to E1 and greater neovascularization and re-epithelialization to E3. Then, E3 formulation has potential to improve burn healing, although its use in a clinical setting requires further studies.
Assuntos
Queimaduras , Chlorella vulgaris , Microalgas , Animais , Ratos , Antioxidantes , Queimaduras/terapia , Colágeno/uso terapêutico , Reepitelização , Pele/metabolismoRESUMO
Biomass can be used as an energy source to thermochemical conversion processes to biocrude production. However, the supply and dependence on only one biomass for biocrude production can be an obstacle due to its seasonality, availability, and logistics costs. In this way, biomass waste and agroindustrial residues can be mixture and used as feedstock to the hydrothermal co-liquefaction (co-HTL) process as an alternative to obtaining biocrude. In this sense, the present paper analyzed the biocrude yield influence of the co-HTL from a quaternary unprecedented blend of different biomasses, such as sugarcane bagasse, brewer's spent grain (BSG), sludge from a paper recycling mill (PRM), and microalgae (Chlorella vulgaris). In this way, a simplex lattice design was employed and co-HTL experiments were carried out in a 2000 mL high-pressure stirred autoclave reactor under 275 °C for 60 min, considering 15% of feedstock/water ratio. Significant effects in each feedstock and their blends were analyzed aiming to increase biocrude and biochar yield. It was found that the addition of microalgae is only significant when considered more than 50% into the blend with BSG and PRM sludge to increase biocrude yield.
Assuntos
Carvão Vegetal , Chlorella vulgaris , Microalgas , Saccharum , Esgotos , Celulose , Temperatura , Microalgas/química , Biomassa , Água/química , Biocombustíveis/análiseRESUMO
Characteristics of an acid soil cultivated with Urochloa brizantha cv. Marandu were evaluated in relation to two types of fertilization: a conventional one, chemical based on nitrogen and potassium, and a biofertilizer, based on microalgae biomass. The results were compared among three treatments, control, conventional, and biological fertilization, with seven replications each. The study evaluated microalgae community, total carbon and nitrogen contents, mineral nitrogen, and enzymatic activity. Chlorella vulgaris showed the highest organism density, which can be explained by its rapid growth and high resistance. The highest species diversity was detected in the control 1,380,938 org cm-3 and biological 1,841,250 org cm-3 treatments, with the latter showing a higher density of cyanobacteria, especially Pseudanabaena limnetica with 394,554 org cm-3. The soil treated with chemical fertilization showed higher nitrate (9.14 mg NKg-1 NO3--N) and potassium (52.32 mg dm-3) contents. The highest levels of sulfur (21.73 mg dm-3) and iron (96.46 mgdm-3) were detected in the biological treatment. The chemical treatment showed higher activity of the enzymes acid phosphatase, acetylglucosaminidase, and sulfatase, while α-glucosidase and leucine aminopeptidase stood out in the biological treatment. Soil properties were not significantly affected by the treatments. The use of microalgae biomass derived from wastewater treatment from milking parlors was evaluated and presented as a promising biofertilizer for agriculture, following the line of recovering nutrient-rich wastes. In this sense, although many challenges need to be overcome, the results suggest that microalgal-based fertilizers could lead to low-impact agriculture.
Assuntos
Chlorella vulgaris , Microalgas , Solo , Biomassa , Monitoramento Ambiental , Fertilidade , Nitrogênio , PotássioRESUMO
Due to the limitations of Chagas disease therapy, microalgae can be promising in the search of new trypanocidal compounds, since these organisms produce bioactive compounds with large pharmaceutical applications, including antiparasitic effects. In this work, trypanocidal activity of aqueous extract of Tetradesmus obliquus and, for the first time, aqueous extract of Chlorella vulgaris, were evaluated against trypomastigote forms of Trypanosoma cruzi. In addition, cytotoxic activity in Vero cells was evaluated. Our results showed that C. vulgaris and T. obliquus present trypanocidal activity (IC50 = 32.9 µg ml-1 and 36.4 µg ml-1, respectively), however, C. vulgaris did not present cytotoxic effects in Vero cells (CC50 > 600 µg ml-1) and displayed a higher selectivity against trypomastigotes forms of T. cruzi (SI > 18). Thus, microalgae extracts, such as aqueous extract of C. vulgaris, are promising potential candidates for the development of natural antichagasic drugs.
Assuntos
Chlorella vulgaris , Microalgas , Tripanossomicidas , Trypanosoma cruzi , Células Vero , Animais , Microalgas/química , Chlorocebus aethiops , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Trypanosoma cruzi/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/químicaRESUMO
The therapeutic regimen for the treatment of American Tegumentary Leishmaniasis (ATL) is targeted at the death of the parasite; therefore, it is essential to develop a treatment that can act on the parasite, combined with the modulation of the inflammatory profile. Thus, the aim of this study was to make an in vitro evaluation of the therapeutic potential of Chlorella vulgaris extract (CV) and Imiquimod for ATL. Selectivity indices (SI) were determined by inhibitory concentration assays (IC50) in L. braziliensis cells and cytotoxic concentrations (CC50) were measured in human cells using the MTT method, based on the CV microalgae extract (IC50 concentrations of 15.63 to 500 µg/mL; CC50 concentrations of 62.5-1000 µg/mL) in comparison with the reference drugs and Imiquimod. The immune response was evaluated in healthy human cells by gene expression (RT-qPCR) and cytokine production (Flow Cytometry). The CV extract (SI = 6.89) indicated promising results by showing higher SI than meglumine antimoniate (SI = 3.44) (reference drug). In all analyses, CV presented a protective profile by stimulating the production of Th1 profile cytokines to a larger extent than the reference drugs. Imiquimod showed a high expression for Tbx21, GATA3, RORc and Foxp3 genes, with increased production only of the TNF cytokine. Therefore, the data highlight the natural extract and Imiquimod as strong therapeutic or adjuvant candidates against ATL, owing to modulation of immune response profiles, low toxicity in human cells and toxic action on the parasite.
Assuntos
Antiprotozoários , Chlorella vulgaris , Leishmania braziliensis , Leishmaniose Cutânea , Humanos , Imiquimode/uso terapêutico , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , CitocinasRESUMO
This review aims to perform an updated bibliographical survey on the cultivation of microalgae in domestic wastewater with a focus on biotechnological aspects. It was verified that the largest number of researches developed was about cultures in microalgae-bacteria consortium and mixed cultures of microalgae, followed by researches referring to the species Chlorella vulgaris and to the family Scenedesmaceae. According to published studies, these microorganisms are efficient in the biological treatment of domestic wastewater, as well as in the production of high value-added biomass, as they are capable of biosorbing the organic and inorganic compounds present in the culture medium, thus generating cells with high levels of lipids, proteins, and carbohydrates. These compounds are of great importance for different industry sectors, such as pharmaceuticals, food, and also for agriculture and aquaculture. In addition, biomolecules produced by microalgae can be extracted for several biotechnological applications; however, most studies focus on the production of biofuels, with biodiesel being the main one. There are also other emerging applications that still require more in-depth research, such as the use of biomass as a biofertilizer and biostimulant in the production of bioplastic. Therefore, it is concluded that the cultivation of microalgae in domestic wastewater is a sustainable way to promote effluent bioremediation and produce valuable biomass for the biobased industry, contributing to the development of technology for the green economy.
Assuntos
Chlorella vulgaris , Microalgas , Águas Residuárias , Biomassa , Biodegradação Ambiental , Monitoramento Ambiental , BiocombustíveisRESUMO
In scientific and economic experience, the effect of zeolite-chlorella top dressing (CCP) from 28-29% zeolite, 1.5-2% Chlorella vulgaris powder and 75-76% cake on the productive effect of feed and digestion metabolism of dairy cows has been studied. Tetra-edric frame-hollow zeolite crystals have selectively adsorbing and ion-filtering properties, and chlorella enriches with amino acids and vitamins. The introduction of CCP into the diet of cows of the experimental group increased the mineral-vitamin balance and positively affected the metabolism of cicatricial digestion. The pH shift from 6.14 to 6.17 activated the ecosystem of the rumen microflora, increased the synthesis of LVH 0.79 mmol/100ml, due to an increase in the volume of acetates from 54.1±3.0 to 57.2±2.2 mmol/100ml, increased the number of infusoria by 41.1 thousand/ml more than the control group. An increase in the amylolytic activity of the rumen chyme by 2.8 mg/starch, and cellulolytic activity by 2.8% increased scar digestion. This increased the consumption of the dry matter of the diet by cows of the experimental group by 0.48 ± 0.06 kg/head. /day. and daily milk yields by 1.06 ± 0.03 kg against the control. An increase in protein and fat in milk with a decrease in somatic cells, and in the blood of erythrocytes and hemoglobin increased biosynthesis, which increased the conversion rate of feed from 0.68 to 0.72, and protein from 17.0% to 18.9%.
Assuntos
Chlorella vulgaris , Zeolitas , Feminino , Bovinos , Animais , Cicatriz , Zeolitas/farmacologia , Ecossistema , Bandagens , VitaminasRESUMO
The production of biomolecules by microalgae has a wide range of applications in the development of various materials and products, such as biodiesel, food supplements, and cosmetics. Microalgae biomass can be produced using waste and in a smaller space than other types of crops (e.g., soja, corn), which shows microalgae's great potential as a source of biomass. Among the produced biomolecules of greatest interest are carbohydrates, proteins, lipids, and fatty acids. In this study, the production of these biomolecules was determined in two strains of microalgae (Chlamydomonas reinhardtii and Chlorella vulgaris) when exposed to different concentrations of nitrogen, phosphorus, and sulfur. Results show a significant microalgal growth (3.69 g L-1) and carbohydrates (163 mg g-1) increase in C. reinhardtii under low nitrogen concentration. Also, higher lipids content was produced under low sulfur concentration (246 mg g-1). It was observed that sulfur variation could affect in a negative way proteins production in C. reinhardtii culture. In the case of C. vulgaris, a higher biomass production was obtained in the standard culture medium (1.37 g L-1), and under a low-phosphorus condition, C. vulgaris produced a higher lipids concentration (248 mg g-1). It was observed that a low concentration of nitrogen had a better effect on the accumulation of fatty acid methyl esters (FAMEs) (C16-C18) in both microalgae. These results lead us to visualize the effects that the variation in macronutrients can have on the growth of microalgae and their possible utility for the production of microalgae-based subproducts.
Assuntos
Chlamydomonas reinhardtii , Chlorella vulgaris , Microalgas , Biomassa , Ácidos Graxos , Nitrogênio , Fósforo , ÉsteresRESUMO
Water contamination by pharmaceuticals is a global concern due to their potential negative effects on aquatic ecosystems and human health. This study examined the presence of three repositioned drugs used for COVID-19 treatment: azithromycin (AZI), ivermectin (IVE) and hydroxychloroquine (HCQ) in water samples collected from three urban rivers in Curitiba, Brazil, during August and September 2020. We conducted a risk assessment and evaluated the individual (0, 2, 4, 20, 100 and 200 µg.L-1) and combined (mix of the drugs at 2 µg.L-1) effects of the antimicrobials on the cyanobacterium Synechococcus elongatus and microalga Chlorella vulgaris. The liquid chromatography coupled to mass spectrometry results showed that AZI and IVE were present in all collected samples, while HCQ occurred in 78 % of them. In all the studied sites, the concentrations found of AZI (up to 2.85 µg.L-1) and HCQ (up to 2.97 µg.L-1) represent environmental risks for the studied species, while IVE (up to 3.2 µg.L-1) was a risk only for Chlorella vulgaris. The hazard quotients (HQ) indices demonstrated that the microalga was less sensitive to the drugs than the cyanobacteria. HCQ and IVE had the highest values of HQ for the cyanobacteria and microalga, respectively, being the most toxic drugs for each species. Interactive effects of drugs were observed on growth, photosynthesis and antioxidant activity. The treatment with AZI + IVE resulted in cyanobacteria death, while exposure to the mixture of all three drugs led to decreased growth and photosynthesis in the cells. On the other hand, no effect on growth was observed for C. vulgaris, although photosynthesis has been negatively affected by all treatments. The use of AZI, IVE and HCQ for COVID-19 treatment may have generated surface water contamination, which could increased their potential ecotoxicological effects. This raises the need to further investigation into their effects on aquatic ecosystems.
Assuntos
COVID-19 , Chlorella vulgaris , Microalgas , Poluentes Químicos da Água , Humanos , Ecossistema , Tratamento Farmacológico da COVID-19 , Hidroxicloroquina/análise , Hidroxicloroquina/farmacologia , Azitromicina/toxicidade , Preparações Farmacêuticas , Água , Poluentes Químicos da Água/análiseRESUMO
Chlorella spp., Spirulina spp., and fucoidan dry powders, are commercialized as food supplements and are considered safe for human consumption. Their broad-spectrum antiviral properties have been studied, however, their effect against SARS-CoV-2 remains unknown. We investigated the potential antiviral activity of three algae powders: Chlorella vulgaris, Arthrospira maxima (Spirulina) and fucoidan purified from marine brown algae Sargassum spp. against SARS-CoV-2 infection in vitro. Vero cells were incubated with 70 µg/ml of each algae powder and either 50 or 100 TCID50/ml of SARS-CoV-2, in two types of experiments (pretreatment and simultaneous) and comparing two kinds of solvents (DMEM and DMSO). Chlorella vulgaris powder, inhibited SARS-CoV-2 infection in all assays; viral RNA was significantly reduced in supernatants at 24, 48, 72, and 96 h post-infection, the highest difference in viral load (8000-fold) was observed after 96 h. Arthrospira maxima powder inhibited SARS-CoV-2 infection using 50 TCID50/ml for both experimental schemes, but protection percent was lower when viral inoculum was increase to 100 TCID50/ml; viral RNA decreased 48 h after infection, reaching a 250-fold difference at 72 h. Fucoidan powder partially inhibited SARS-CoV-2 infection since no CPE was observed in 62.5% of trated cultures in DMEM, but the antiviral activity was increased to 100% of protection when DMSO was used as solvent. All the algae samples showed high antiviral activity against SARS-CoV-2 with a SI above of 18. These results suggest that all three algae samples are potential therapeutic candidates for the treatment of COVID-19.
Assuntos
Tratamento Farmacológico da COVID-19 , Chlorella vulgaris , Animais , Antivirais/farmacologia , Chlorocebus aethiops , Dimetil Sulfóxido , Humanos , Pós , RNA Viral , SARS-CoV-2 , Solventes , Células VeroRESUMO
C. vulgaris is a unicellular microalgae, whose growth depends on the conditions in which it is found, synthesizing primary and secondary metabolites in different proportions. Therefore, we analyzed and established conditions in which it was possible to increase the yields of metabolites obtained at the flask level, which could then be scaled to the photobioreactor level. As a methodology, a screening design was applied, which evaluated three factors: type of substrate (sodium acetate or glycerol); substrate concentration; and exposure-time to red light (photoperiod: 16:8 and 8:16 light/darkness). The response variables were: cell division; biomass; substrate consumption; and antioxidant activity in intracellular metabolites (ABTSâ¢+ and DPPHâ¢). As a result, the sodium acetate condition of 0.001 g/L, in a photoperiod of 16 h of light, presented a doubling time (Td = 4.84 h) and a higher rate of division (σ = 0.20 h-1), having a final biomass concentration of 2.075 g/L. In addition, a higher concentration of metabolites with antioxidant activity was found in the sodium acetate (0.629 Trolox equivalents mg/L ABTSâ¢+ and 0.630 Trolox equivalents mg/L DPPHâ¢). For the glycerol, after the same photoperiod (16 h of light and 8 h of darkness), the doubling time (Td) was 4.63 h, with a maximum division rate of σ = 0.18 h-1 and with a biomass concentration at the end of the kinetics of 1.4 g/L. Sodium acetate under long photoperiods, therefore, is ideal for the growth of C. vulgaris, which can then be scaled to the photobioreactor level.
Assuntos
Chlorella vulgaris , Microalgas , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Benzotiazóis , Biomassa , Glicerol/metabolismo , Cinética , Microalgas/metabolismo , Acetato de Sódio/metabolismo , Ácidos SulfônicosRESUMO
Biogenic silver nanoparticles (AgNPs) are considered a promising alternative to their synthetic versions. However, the environmental impact of such nanomaterials is still scarcely understood. Thus, the present study aims at assessing the antimicrobial action and ecotoxicity of AgNPs biosynthesized by the fungus Aspergillus niger IBCLP20 towards three freshwater organisms: Chlorella vulgaris, Daphnia similis, and Danio rerio (zebrafish). AgNPs IBCLP20 showed antibacterial action against Klebsiella pneumoniae between 5 and 100 µg mL-1, and antifungal action against Trichophyton mentagrophytes in concentrations ranging from 20 to 100 µg mL-1. The cell density of the microalgae Chlorella vulgaris decreased 40% after 96 h of exposure to AgNPs IBCLP20, at the highest concentration analysed (100 µg L-1). The 48 h median lethal concentration for Daphnia similis was estimated as 4.06 µg L-1 (2.29-6.42 µg L-1). AgNPs IBCLP20 and silver nitrate (AgNO3) caused no acute toxicity on adult zebrafish, although they did induce several physiological changes. Mycosynthetized AgNPs caused a significant increase (p < 0.05) in oxygen consumption at the highest concentration studied (75 µg L-1) and an increase in the excretion of ammonia at the lower concentrations, followed by a reduction at the higher concentrations. Such findings are comparable with AgNO3, which increased the oxygen consumption on low exposure concentrations, followed by a decrease at the high tested concentrations, while impairing the excretion of ammonia in all tested concentrations. The present results show that AgNPs IBCLP20 have biocidal properties. Mycogenic AgNPs induce adverse effects on organisms of different trophic levels and understanding their impact is detrimental to developing countermeasures aimed at preventing any negative environmental effects of such novel materials.
Assuntos
Chlorella vulgaris , Nanopartículas Metálicas , Amônia , Animais , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Daphnia , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Nitrato de Prata/toxicidade , Peixe-ZebraRESUMO
This study aimed to assess Spirulina platensis, Chlorella vulgaris, Scenedesmus quadricauda, and Lagerheimia longiseta microalgae potential as protective agents for probiotic cultures [(Lactobacillus acidophilus (La-05) and Lacticaseibacillus casei (Lc-01)] during freeze-drying, refrigeration storage (4 °C, 120 days), and in vitro simulated gastrointestinal conditions (SGIC). The occurrence of membrane damage and ultrastructural aspects of the cells were also verified. Fructooligosaccharides (FOS) were used as a positive control and saline solution as a negative control. The effects of the cryoprotectants on probiotic survival depended on the tested probiotic culture and microalgae biomass. For La-05, all tested cryoprotectants caused a lower reduction in probiotic counts during the freeze-drying and up to 90 days of storage. S. platensis kept higher probiotic counts during storage, while C. vulgaris protected the probiotic against the SGIC. L. longiseta decreased the probiotic membrane damage, mainly due to the production of exopolysaccharides, which was observed in the scanning electron microscopy (SEM). For Lc-01, all tested cryoprotectants promoted a lower reduction in probiotic counts up to 120 days of storage. FOS and S. quadricauda protected the probiotics during freeze-drying and refrigeration storage, while C. vulgaris protected the probiotic against the SGIC and caused lower membrane damage, mainly due to physical protection observed in SEM. In conclusion, microalgae biomasses exerted similar or better cryoprotectant effects on probiotics than FOS, a recognized cryoprotective agent.