Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42.000
Filtrar
1.
PLoS One ; 17(9): e0273313, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36129874

RESUMO

HIV-associated nephropathy (HIVAN) impairs functions of both glomeruli and tubules. Attention has been previously focused on the HIVAN glomerulopathy. Tubular injury has drawn increased attention because sodium wasting is common in hospitalized HIV/AIDS patients. We used viral protein R (Vpr)-transgenic mice to investigate the mechanisms whereby Vpr contributes to urinary sodium wasting. In phosphoenolpyruvate carboxykinase promoter-driven Vpr-transgenic mice, in situ hybridization showed that Vpr mRNA was expressed in all nephron segments, including the distal convoluted tubule. Vpr-transgenic mice, compared with wild-type littermates, markedly increased urinary sodium excretion, despite similar plasma renin activity and aldosterone levels. Kidneys from Vpr-transgenic mice also markedly reduced protein abundance of the Na+-Cl- cotransporter (NCC), while mineralocorticoid receptor (MR) protein expression level was unchanged. In African green monkey kidney cells, Vpr abrogated the aldosterone-mediated stimulation of MR transcriptional activity. Gene expression of Slc12a3 (NCC) in Vpr-transgenic mice was significantly lower compared with wild-type mice, assessed by both qRT-PCR and RNAScope in situ hybridization analysis. Chromatin immunoprecipitation assays identified multiple MR response elements (MRE), located from 5 kb upstream of the transcription start site and extending to the third exon of the SLC12A3 gene. Mutation of MRE and SP1 sites in the SLC12A3 promoter region abrogated the transcriptional responses to aldosterone and Vpr, indicating that functional MRE and SP1 are required for the SLC12A3 gene suppression in response to Vpr. Thus, Vpr attenuates MR transcriptional activity and inhibits Slc12a3 transcription in the distal convoluted tubule and contributes to salt wasting in Vpr-transgenic mice.


Assuntos
Produtos do Gene vpr , HIV-1 , Aldosterona/metabolismo , Aldosterona/farmacologia , Animais , Chlorocebus aethiops , Produtos do Gene vpr/metabolismo , HIV-1/genética , Túbulos Renais Distais/metabolismo , Camundongos , Camundongos Transgênicos , Fosfoenolpiruvato , RNA Mensageiro/metabolismo , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Renina/metabolismo , Sódio/metabolismo , Cloreto de Sódio/metabolismo , Simportadores de Cloreto de Sódio/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Tiazidas
2.
J Ethnopharmacol ; 299: 115685, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36067840

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Mayaro fever is a neglected tropical disease. The region of the most significant circulation of the Mayaro virus (MAYV) is the Amazon rainforest, situated in remote areas that are difficult to access and where medicine is scarce. Thus, the regional population uses plants as an alternative for the treatment of various diseases. Fridericia chica is an endemic plant of tropical regions used in traditional medicine to treat fever, malaise, inflammation, and infectious diseases such as hepatitis B. However, its antiviral activity is poorly understood. AIM OF THE STUDY: This study aimed to investigate the anti-MAYV activity of the hydroethanolic extract of the leaves of Fridericia chica (HEFc) in mammalian cells and its possible mechanism of action. MATERIALS AND METHODS: The antiviral activity of HEFc was studied using Vero cell lines against MAYV. The cytotoxicity and antiviral activity of the extract were evaluated by the 3-(4, 5- dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay. The overall antiviral activity was confirmed by the plaque forming units (PFU) method. Then, the effects of HEFc on MAYV multiplication kinetics, virus adsorption, penetration, and post-penetration, and its virucidal activity were determined in Vero cells using standard experimental procedures. RESULTS: HEFc exerted a effect against viral infection in Vero cells at a non-cytotoxic concentration, and no virion was detected in the supernatant in a dose-dependent and selective manner. HEFc inhibited MAYV in the early and late stages of the viral multiplication cycle. The extract showed significant virucidal activity at low concentrations and did not affect adsorption or viral internalization stages. In addition, HEFc reduced virions at all post-infection times investigated. CONCLUSIONS: HEFc has good antiviral activity against MAYV, acting directly on the viral particles. This plant extract possesses an excellent and promising potential for developing effective herbal antiviral drugs.


Assuntos
Alphavirus , Bignoniaceae , Animais , Antivirais/farmacologia , Brometos/farmacologia , Chlorocebus aethiops , Mamíferos , Extratos Vegetais/farmacologia , Células Vero
3.
Arch Microbiol ; 204(10): 625, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36112247

RESUMO

The present study described the cytopathic effect of PPR virus presently being used in serial passages at the level of 60th in Vero cells and infected tissue culture fluid was used in this study as viral inoculum. Vero cells were grown on cover slip & were infected with tissue culture fluid at a fixed multiplicity of infection (MOI) 0.01. The infected cover slip along with control were stained with H&E stain at periodic intervals and cytopathic effect was studied with microscope. The cytopathic effect (CPE) was visible at first from 24 hpi and the Vero cells showed initial cell rounding, aggregation, and syncytial development. Development of inclusion bodies and cell degradation was noticed by 72 hpi. Complete detachment of the cell monolayer was observed by 84 hpi. It is concluded that, development of numerous inclusion bodies are the indication of well adaptation & extensive multiplication of PPRV in Vero cells.


Assuntos
Peste dos Pequenos Ruminantes , Vírus da Peste dos Pequenos Ruminantes , Animais , Técnicas de Cultura de Células , Chlorocebus aethiops , Células Vero
4.
PLoS One ; 17(9): e0274266, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36112605

RESUMO

Rift Valley fever virus (RVFV) is a veterinary and human pathogen and is an agent of bioterrorism concern. Currently, RVFV treatment is limited to supportive care, so new drugs to control RVFV infection are urgently needed. RVFV is a member of the order Bunyavirales, whose replication depends on the enzymatic activity of the viral L protein. Screening for RVFV inhibitors among compounds with divalent cation-coordinating motifs similar to known viral nuclease inhibitors identified 47 novel RVFV inhibitors with selective indexes from 1.1-103 and 50% effective concentrations of 1.2-56 µM in Vero cells, primarily α-Hydroxytropolones and N-Hydroxypyridinediones. Inhibitor activity and selective index was validated in the human cell line A549. To evaluate specificity, select compounds were tested against a second Bunyavirus, La Crosse Virus (LACV), and the flavivirus Zika (ZIKV). These data indicate that the α-Hydroxytropolone and N-Hydroxypyridinedione chemotypes should be investigated in the future to determine their mechanism(s) of action allowing further development as therapeutics for RVFV and LACV, and these chemotypes should be evaluated for activity against related pathogens, including Hantaan virus, severe fever with thrombocytopenia syndrome virus, Crimean-Congo hemorrhagic fever virus.


Assuntos
Vírus La Crosse , Vírus da Febre do Vale do Rift , Infecção por Zika virus , Zika virus , Animais , Cátions Bivalentes , Chlorocebus aethiops , Humanos , Células Vero
5.
Front Cell Infect Microbiol ; 12: 906578, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051243

RESUMO

The epitranscriptomics of the SARS-CoV-2 infected cell reveals its response to viral replication. Among various types of RNA nucleotide modifications, the m6A is the most common and is involved in several crucial processes of RNA intracellular location, maturation, half-life and translatability. This epitranscriptome contains a mixture of viral RNAs and cellular transcripts. In a previous study we presented the analysis of the SARS-CoV-2 RNA m6A methylation based on direct RNA sequencing and characterized DRACH motif mutations in different viral lineages. Here we present the analysis of the m6A transcript methylation of Vero cells (derived from African Green Monkeys) and Calu-3 cells (human) upon infection by SARS-CoV-2 using direct RNA sequencing data. Analysis of these data by nonparametric statistics and two computational methods (m6anet and EpiNano) show that m6A levels are higher in RNAs of infected cells. Functional enrichment analysis reveals increased m6A methylation of transcripts involved in translation, peptide and amine metabolism. This analysis allowed the identification of differentially methylated transcripts and m6A unique sites in the infected cell transcripts. Results here presented indicate that the cell response to viral infection not only changes the levels of mRNAs, as previously shown, but also its epitranscriptional pattern. Also, transcriptome-wide analysis shows strong nucleotide biases in DRACH motifs of cellular transcripts, both in Vero and Calu-3 cells, which use the signature GGACU whereas in viral RNAs the signature is GAACU. We hypothesize that the differences of DRACH motif biases, might force the convergent evolution of the viral genome resulting in better adaptation to target sequence preferences of writer, reader and eraser enzymes. To our knowledge, this is the first report on m6A epitranscriptome of the SARS-CoV-2 infected Vero cells by direct RNA sequencing, which is the sensu stricto RNA-seq.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Viés , Chlorocebus aethiops , Humanos , Nucleotídeos , RNA Viral/genética , SARS-CoV-2/genética , Análise de Sequência de RNA , Células Vero
6.
Proc Biol Sci ; 289(1982): 20221254, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36100027

RESUMO

In the last 300 thousand years, the genus Chlorocebus expanded from equatorial Africa into the southernmost latitudes of the continent, where colder climate was a probable driver of natural selection. We investigated population-level genetic variation in the mitochondrial uncoupling protein 1 (UCP1) gene region-implicated in non-shivering thermogenesis (NST)-in 73 wild savannah monkeys from three taxa representing this southern expansion (Chlorocebus pygerythrus hilgerti, Chlorocebus cynosuros and Chlorocebus pygerythrus pygerythrus) ranging from Kenya to South Africa. We found 17 single nucleotide polymorphisms with extended haplotype homozygosity consistent with positive selective sweeps, 10 of which show no significant linkage disequilibrium with each other. Phylogenetic generalized least-squares modelling with ecological covariates suggest that most derived allele frequencies are significantly associated with solar irradiance and winter precipitation, rather than overall low temperatures. This selection and association with irradiance is demonstrated by a relatively isolated population in the southern coastal belt of South Africa. We suggest that sunbathing behaviours common to savannah monkeys, in combination with the strength of solar irradiance, may mediate adaptations to thermal stress via NST among savannah monkeys. The variants we discovered all lie in non-coding regions, some with previously documented regulatory functions, calling for further validation and research.


Assuntos
Aclimatação , Termogênese , Animais , Chlorocebus aethiops , Filogenia , África do Sul , Proteína Desacopladora 1
7.
Zhongguo Zhong Yao Za Zhi ; 47(16): 4428-4435, 2022 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-36046872

RESUMO

The study investigated the inhibitory effect and mechanism of tectorigenin derivative(SGY) against herpes simplex virus type Ⅰ(HSV-1) by in vitro experiments. The cytotoxicity of SGY and positive drug acyclovir(ACV) on African green monkey kidney(Vero) cells and mouse microglia(BV-2) cells was detected by cell counting kit-8(CCK-8) method, and the maximum non-toxic concentration and median toxic concentration(TC_(50)) of the drugs were calculated. After Vero cells were infected with HSV-1, the virulence was determined by cytopathologic effects(CPE) to calculate viral titers. The inhibitory effect of the tested drugs on HSV-1-induced cytopathy in Vero cells was measured, and their modes of action were initially explored by virus adsorption, replication and inactivation. The effects of the drugs on viral load of BV-2 cells 24 h after HSV-1 infection and the Toll-like receptor(TLR) mRNA expression were detected by real-time fluorescence quantitative PCR(RT-qPCR). The maximum non-toxic concentrations of SGY against Vero and BV-2 cells were 382.804 µg·mL~(-1) and 251.78 µg·mL~(-1), respectively, and TC_(50) was 1 749.98 µg·mL~(-1) and 2 977.50 µg·mL~(-1), respectively. In Vero cell model, the half maximal inhibitory concentration(IC_(50)) of SGY against HSV-1 was 54.49 µg·mL~(-1), and the selection index(SI) was 32.12, with the mode of action of significantly inhibiting replication and directly inactivating HSV-1. RT-qPCR results showed that SGY markedly reduced the viral load in cells. The virus model group had significantly increased relative expression of TLR2, TLR3 and tumor necrosis factor receptor-associated factor 3(TRAF3) and reduced relative expression of TLR9 as compared with normal group, and after SGY intervention, the expression of TLR2, TLR3 and TRAF3 was decreased to different degrees and that of TLR9 was enhanced. The expression of inflammatory factors inducible nitric oxide synthase(iNOS), tumor necrosis factor-α(TNF-α), and interleukin-1ß(IL-1ß) was remarkably increased in virus model group as compared with that in normal group, and the levels of these inflammatory factors dropped after SGY intervention. In conclusion, SGY significantly inhibited and directly inactivated HSV-1 in vitro. In addition, it modulated the expression of TLR2, TLR3 and TLR9 related pathways, and suppressed the increase of inflammatory factor levels.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Chlorocebus aethiops , Herpes Simples/tratamento farmacológico , Herpes Simples/patologia , Herpesvirus Humano 1/metabolismo , Isoflavonas , Camundongos , Fator 3 Associado a Receptor de TNF/metabolismo , Fator 3 Associado a Receptor de TNF/farmacologia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 3 Toll-Like/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Receptores Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Células Vero , Replicação Viral
8.
Vet Microbiol ; 273: 109544, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36049346

RESUMO

Autophagy-related 4B (ATG4B) is found to exert a vital function in viral replication, although the mechanism through which ATG4B activates type-I IFN signaling to hinder viral replication remains to be explained, so far. The current work revealed that ATG4B was downregulated in porcine epidemic diarrhea virus (PEDV)-infected LLC-PK1 cells. In addition, ATG4B overexpression inhibited PEDV replication in both Vero cells and LLC-PK1 cells. On the contrary, ATG4B knockdown facilitated PEDV replication. Moreover, ATG4B was observed to hinder PEDV replication by activating type-I IFN signaling. Further detailed analysis revealed that the ATG4B protein targeted and upregulated the TRAF3 protein to induce IFN expression via the TRAF3-pTBK1-pIRF3 pathway. The above data revealed a novel mechanism underlying the ATG4B-mediated viral restriction, thereby providing novel possibilities for preventing and controlling PEDV.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Chlorocebus aethiops , Infecções por Coronavirus/veterinária , Vírus da Diarreia Epidêmica Suína/genética , Transdução de Sinais , Suínos , Fator 3 Associado a Receptor de TNF/genética , Células Vero , Replicação Viral
9.
Biomed Pharmacother ; 153: 113410, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36076536

RESUMO

Biodegradable polymeric nanocapsules (NC) present incredible characteristics as drug nanocarriers that optimize drug targeting. However, However, a more detailed isolated effect of polymer-based nanoparticles as drug carriers is required. This work aimed to evaluate the per se effect of blank-NC (NC-B) with different surface characteristics both in vitro and in vivo toxicity. NC1-B (Polysorbate 80 coated poly(ɛ-caprolactone) NC), NC2-B (polyethylene glycol 6000 coated poly(ɛ-caprolactone) NC), NC3-B (chitosan-coated poly(ɛ-caprolactone) NC) and NC4-B (Eudragit® RS100 NC) were prepared by nanoprecipitation method. Formulations were characterized by particle size, zeta potential, and pH. The in vitro cytotoxicity tests against tumor cell lines were performed (HepG2 and MCF-7). Antiviral activity was evaluated by MTT in Vero cells infected with HSV-1 (KOS strain). In vivo evaluation was performed in apomorphine-induced stereotypy in Wistar rats and locomotor activity distance, head movements, and rearing behavior were measured. NC1-B, NC2-B, NC3-B, and NC4-B had a diameter under 350 nm. The pH and zeta potential of formulations varied according to their coating. For in vitro evaluation of antitumor activity and antiviral activity, one-way ANOVA showed no significant differences in cell viability. In vivo tests showed low neurological effects. In conclusion, different surface characteristics of NC-B did not demonstrate toxicity against the evaluated cell lines HepG2 and MCF-7, antiviral effect against HSV-1, and the neurological effects in a stereotyping model were low and may be attributed to the per se effect of NC-B.


Assuntos
Nanocápsulas , Nanopartículas , Animais , Antivirais , Chlorocebus aethiops , Nanocápsulas/química , Tamanho da Partícula , Poliésteres , Polímeros/química , Ácidos Polimetacrílicos , Ratos , Ratos Wistar , Células Vero
10.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36077060

RESUMO

Type III and type I interferon have similar mechanisms of action, and their different receptors lead to different distributions in tissue. On mucosal surfaces, type III interferon exhibits strong antiviral activity. Porcine epidemic diarrhea virus (PEDV) is an economically important enteropathogenic coronavirus, which can cause a high incidence rate and mortality in piglets. Here, we demonstrate that porcine interferon lambda 1 (pIFNL1) and porcine interferon lambda 3 (pIFNL3) can inhibit the proliferation of vesicular stomatitis virus with an enhanced green fluorescent protein (VSV-EGFP) in different cells, and also show strong antiviral activity when PEDV infects Vero cells. Both forms of pIFNLs were shown to be better than porcine interferon alpha (pIFNα), the antiviral activity of pIFNL1 is lower than that of pIFNL3. Therefore, our results provide experimental evidence for the inhibition of PEDV infection by pIFNLs, which may provide a promising treatment for the prevention and treatment of Porcine epidemic diarrhea (PED) in piglets.


Assuntos
Interferon Tipo I , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Antivirais/metabolismo , Antivirais/farmacologia , Chlorocebus aethiops , Interferon Tipo I/metabolismo , Vírus da Diarreia Epidêmica Suína/fisiologia , Suínos , Células Vero
11.
Cells ; 11(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36078159

RESUMO

Among the deficits in visual processing that accompany healthy aging, the earliest originate in the retina. Moreover, sex-related differences in retinal function have been increasingly recognized. To better understand the dynamics of the retinal aging trajectory, we used the light-adapted flicker electroretinogram (ERG) to functionally assess the state of the neuroretina in a large cohort of age- and sex-matched vervet monkeys (N = 35), aged 9 to 28 years old, with no signs of obvious ocular pathology. We primarily isolated the cone-bipolar axis by stimulating the retina with a standard intensity light flash (2.57 cd/s/m2) at eight different frequencies, ranging from 5 to 40 Hz. Sex-specific changes in the voltage and temporal characteristics of the flicker waveform were found in older individuals (21-28 years-old, N = 16), when compared to younger monkeys (9-20 years-old, N = 19), across all stimulus frequencies tested. Specifically, significantly prolonged implicit times were observed in older monkeys (p < 0.05), but a significant reduction of the amplitude of the response was only found in old male monkeys (p < 0.05). These changes might reflect ongoing degenerative processes targeting the retinal circuitry and the cone subsystem in particular. Altogether, our findings corroborate the existing literature in humans and other species, where aging detrimentally affects photopic retinal responses, and draw attention to the potential contribution of different hormonal environments.


Assuntos
Eletrorretinografia , Retina , Adolescente , Adulto , Idoso , Animais , Criança , Chlorocebus aethiops , Feminino , Humanos , Masculino , Estimulação Luminosa , Retina/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Adulto Jovem
12.
Front Endocrinol (Lausanne) ; 13: 982246, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051397

RESUMO

Results of previous studies provided evidence for the existence of a functional gonadotropin-inhibitory hormone (GnIH) system in the European sea bass, Dicentrarchus labrax, which exerted an inhibitory action on the brain-pituitary-gonadal axis of this species. Herein, we further elucidated the intracellular signaling pathways mediating in sea bass GnIH actions and the potential interactions with sea bass kisspeptin (Kiss) signaling. Although GnIH1 and GnIH2 had no effect on basal CRE-luc activity, they significantly decreased forskolin-elicited CRE-luc activity in COS-7 cells transfected with their cognate receptor GnIHR. Moreover, an evident increase in SRE-luc activity was noticed when COS-7 cells expressing GnIHR were challenged with both GnIH peptides, and this stimulatory action was significantly reduced by two inhibitors of the PKC pathway. Notably, GnIH2 antagonized Kiss2-evoked CRE-luc activity in COS-7 cells expressing GnIHR and Kiss2 receptor (Kiss2R). However, GnIH peptides did not alter NFAT-RE-luc activity and ERK phosphorylation levels. These data indicate that sea bass GnIHR signals can be transduced through the PKA and PKC pathways, and GnIH can interfere with kisspeptin actions by reducing its signaling. Our results provide additional evidence for the understanding of signaling pathways activated by GnIH peptides in teleosts, and represent a starting point for the study of interactions with multiple neuroendocrine factors on cell signaling.


Assuntos
Bass , Animais , Bass/fisiologia , Células COS , Chlorocebus aethiops , Gonadotropina Coriônica , Kisspeptinas/metabolismo , Transdução de Sinais
13.
Antiviral Res ; 206: 105389, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35985407

RESUMO

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) helicase NSP13 plays a conserved role in the replication of coronaviruses and has been identified as an ideal target for the development of antiviral drugs against SARS-CoV-2. Here, we identify a novel NSP13 helicase inhibitor punicalagin (PUG) through high-throughput screening. Surface plasmon resonance (SPR)-based analysis and molecular docking calculation reveal that PUG directly binds NSP13 on the interface of domains 1A and 2A, with a KD value of 21.6 nM. Further biochemical and structural analyses suggest that PUG inhibits NSP13 on ATP hydrolysis and prevents it binding to DNA substrates. Finally, the antiviral studies show that PUG effectively suppresses the SARS-CoV-2 replication in A549-ACE2 and Vero cells, with EC50 values of 347 nM and 196 nM, respectively. Our work demonstrates the potential application of PUG in the treatment of coronavirus disease 2019 (COVID-19) and identifies an allosteric inhibition mechanism for future drug design targeting the viral helicases.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Antivirais/química , Antivirais/farmacologia , COVID-19/tratamento farmacológico , Chlorocebus aethiops , DNA Helicases/metabolismo , Humanos , Taninos Hidrolisáveis , Simulação de Acoplamento Molecular , RNA Helicases/química , Células Vero
14.
J Virol ; 96(17): e0055522, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35950859

RESUMO

Apolipoprotein B mRNA-editing catalytic polypeptide-like 3 family members (APOBEC3s) are host restriction factors that inhibit viral replication. Viral infectivity factor (Vif), a human immunodeficiency virus type 1 (HIV-1) accessory protein, mediates the degradation of APOBEC3s by forming the Vif-E3 complex, in which core-binding factor beta (CBFß) is an essential molecular chaperone. Here, we screened nonfunctional Vif mutants with high affinity for CBFß to inhibit HIV-1 in a dominant negative manner. We applied the yeast surface display technology to express Vif random mutant libraries, and mutants showing high CBFß affinity were screened using flow cytometry. Most of the screened Vif mutants containing random mutations of different frequencies were able to rescue APOBEC3G (A3G). In the subsequent screening, three of the mutants restricted HIV-1, recovered G-to-A hypermutation, and rescued APOBEC3s. Among them, Vif-6M showed a cross-protection effect toward APOBEC3C, APOBEC3F, and African green monkey A3G. Stable expression of Vif-6M in T lymphocytes inhibited the viral replication in newly HIV-1-infected cells and the chronically infected cell line H9/HXB2. Furthermore, the expression of Vif-6M provided a survival advantage to T lymphocytes infected with HIV-1. These results suggest that dominant negative Vif mutants acting on the Vif-CBFß target potently restrict HIV-1. IMPORTANCE Antiviral therapy cannot eliminate HIV and exhibits disadvantages such as drug resistance and toxicity. Therefore, novel strategies for inhibiting viral replication in patients with HIV are urgently needed. APOBEC3s in host cells are able to inhibit viral replication but are antagonized by HIV-1 Vif-mediated degradation. Therefore, we screened nonfunctional Vif mutants with high affinity for CBFß to compete with the wild-type Vif (wtVif) as a potential strategy to assist with HIV-1 treatment. Most screened mutants rescued the expression of A3G in the presence of wtVif, especially Vif-6M, which could protect various APOBEC3s and improve the incorporation of A3G into HIV-1 particles. Transduction of Vif-6M into T lymphocytes inhibited the replication of the newly infected virus and the chronically infected virus. These data suggest that Vif mutants targeting the Vif-CBFß interaction may be promising in the development of a new AIDS therapeutic strategy.


Assuntos
Subunidade beta de Fator de Ligação ao Core , Infecções por HIV , HIV-1 , Produtos do Gene vif do Vírus da Imunodeficiência Humana , Desaminases APOBEC/genética , Desaminases APOBEC/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Subunidade beta de Fator de Ligação ao Core/genética , HIV-1/genética , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Linfócitos T/virologia , Replicação Viral , Produtos do Gene vif do Vírus da Imunodeficiência Humana/genética
16.
Vet Microbiol ; 273: 109525, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35963027

RESUMO

Porcine epidemic diarrhea virus (PEDV) is a swine enterovirus that causes huge economic losses to the swine industry. It is of great interest to understand the gene expression patterns of host responses to PEDV infection and the mechanistic insights. Here, we report the differences of gene expression profiles by RNA-seq in the porcine small intestinal 2-D enteroids cells infected with low-passage (16 passages, P16) and high-passage (120 passages, P120) PEDV strains for 12, 24 and 36 h. Of the 57 genes differentially expressed in P16 PEDV infected enteroids, 49 were upregulated and 7 downregulated at all time points. There were 247 genes with different patterns of expression in the enteroids infected with P120 PEDV: upregulation seen with 105 genes and downregulation with the remaining majority at all time points. Infection of both P16 and P120 PEDV strains led to significant upregulation of ISGs, such as ISG15, MX1 and RSAD2. In particular, P120 PEDV infection inhibited transcription of genes related to lipid metabolism, including those involved in lipid decomposition, absorption, bile secretion and cholesterol metabolism. Treatment of the infected enteroids with palmitic acid resulted in marked reduction of replication of both P16 and P120 PEDV strains. These results indicate that PEDV might manipulate lipid metabolism of the host to benefit its replication. Further research is warranted to study the mechanisms how palmitic acid inhibits PEDV replication.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Chlorocebus aethiops , Infecções por Coronavirus/genética , Infecções por Coronavirus/veterinária , Perfilação da Expressão Gênica/veterinária , Metabolismo dos Lipídeos/genética , Ácido Palmítico , Vírus da Diarreia Epidêmica Suína/genética , Suínos , Doenças dos Suínos/genética , Células Vero
17.
Transl Vis Sci Technol ; 11(8): 17, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35980670

RESUMO

Purpose: To evaluate the inflammatory effects and no-observed adverse effect level (NOAEL) of intravitreal endotoxin in an African green monkey model of uveitis. Methods: Fifteen green monkeys were administered intravitreal endotoxin ranging from 0.005 to 0.08 endotoxin unit (EU)/eye. Inflammation was evaluated by slit-lamp biomicroscopy, indirect fundoscopy, tonometry, color fundus photography, ocular coherence tomography, laser flare photometry, and histopathology, with analysis of cytokine levels in aqueous and vitreous humor. The inter-rater reliability of a refined nonhuman primate ophthalmic scoring system was evaluated. Results: A dose-dependent inflammatory response was observed beginning at 0.02 EU/eye; no inflammatory response exceeding the vehicle was observed at 0.005 EU/eye. Retinal pathology was minimal, and posterior visualization degraded with increasing inflammation. Inflammation was observed by histopathology at 0.04 EU/eye. Inter-rater reliability of the scoring system was high, with 99.2% of individual scores differing by 1 scale unit or less and 87.2% of summary scores differing by 2 scale units or less. Conclusions: The NOAEL for intravitreal endotoxin in the green monkey is 0.005 EU/eye, with inflammation increasing with increasing dose beginning at 0.02 EU/eye. This updated nonhuman primate ophthalmic scoring system allows for high inter-rater reliability for the quantification of mild to severe inflammation in the green monkey eye. Translational Relevance: Validation of the ophthalmic inflammation scoring system enables application of the green monkey as a valuable translational model. Candidate therapeutics should be confirmed to have endotoxin levels below this threshold before safety testing in this species to enable interpretation of inflammation and minimize impact on animal welfare.


Assuntos
Endotoxinas , Uveíte , Animais , Chlorocebus aethiops , Inflamação/induzido quimicamente , Inflamação/patologia , Reprodutibilidade dos Testes , Uveíte/induzido quimicamente , Uveíte/patologia , Corpo Vítreo/patologia
18.
Am J Primatol ; 84(9): e23426, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35942562

RESUMO

Dispersal between social groups reduces the risk of inbreeding and can improve individuals' reproductive opportunities. However, this movement has costs, such as increased risk of predation and starvation, loss of allies and kin support, and increased aggression associated with entering the new group. Dispersal strategies, such as the timing of movement and decisions on whether to transfer alone or in parallel with a peer, involve different costs and benefits. We used demographic, behavioral, hormonal, and ecological data to examine the causes and consequences of 36 dispersal events from 29 male vervet monkeys (Chlorocebus pygerythrus) at Lake Nabugabo, Uganda. Adult males' secondary dispersal coincided with the conception season in females, and males improved their potential access to females by moving to groups with higher female-to-male sex ratios and/or by increasing their dominance rank. Males that dispersed with a peer had lower fecal glucocorticoid and androgen metabolite levels than lone dispersers. Subadult males were not more likely to engage in parallel dispersals compared to adult males. Dispersal was also used as a mechanism to avoid inbreeding, but changes in hormone levels did not seem to be a trigger of dispersal in our population. Our findings illustrate the complex individual strategies used during dispersal, how many factors can influence movement decisions, as well as the value of dominance and hormone analyses for understanding these strategies.


Assuntos
Endogamia , Reprodução , Agressão , Animais , Chlorocebus aethiops , Feminino , Hormônios , Masculino , Razão de Masculinidade
19.
Virology ; 575: 1-9, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35987078

RESUMO

Coronavirus infection of cells differentially regulates the expression of host genes and their related pathways. In this study, we present the transcriptomic profile of cells infected with gammacoronavirus infectious bronchitis virus (IBV). In IBV-infected human non-small cell lung carcinoma cells (H1299 cells), a total of 1162 differentially expressed genes (DEGs), including 984 upregulated and 178 downregulated genes, was identified. These DEGs were mainly enriched in MAPK and Wnt signaling pathways, and 5 out of the 10 top upregulated genes in all transcripts were immediate-early response genes (IEGs). In addition, the induction of 11 transcripts was validated in IBV-infected H1299 and Vero cells by RT-qPCR. The accuracy, reliability and genericity of the transcriptomic data were demonstrated by functional characterization of these IEGs in cells infected with different coronaviruses in our previous publications. This study provides a reliable transcriptomic profile of host genes and pathways regulated by coronavirus infection.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Animais , Galinhas/genética , Chlorocebus aethiops , Infecções por Coronavirus/patologia , Humanos , Vírus da Bronquite Infecciosa/fisiologia , Reprodutibilidade dos Testes , Transdução de Sinais , Transcriptoma , Células Vero
20.
PLoS One ; 17(8): e0272941, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35980910

RESUMO

When coronavirus disease 2019 (COVID-19) became a pandemic, one of most important questions was whether people who smoke are at more risk of COVID-19 infection. A number of clinical data have been reported in the literature so far, but controversy exists in the collection and interpretation of the data. Particularly, there is a controversial hypothesis that nicotine might be able to prevent SARS-CoV-2 infection. In the present study, motivated by the reported controversial clinical data and the controversial hypothesis, we carried out cytotoxicity assays in Vero E6 cells to examine the potential cytoprotective activity of nicotine against SARS-CoV-2 infection and demonstrated for the first time that nicotine had no significant cytoprotective activity against SARS-CoV-2 infection in these cells.


Assuntos
COVID-19 , Animais , Chlorocebus aethiops , Humanos , Nicotina/farmacologia , Pandemias , SARS-CoV-2 , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...