Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.103
Filtrar
1.
Sci Total Environ ; 773: 145110, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33940716

RESUMO

Although some studies have investigated the impact caused by chemicals used on water treatment (coagulants and oxidants) on cyanobacteria integrity, the isolated effect of shear stress during coagulation is still not fully understood. This study evaluated the impact of different velocity gradients, mixing times, and the addition of powdered activated carbon (PAC) on the integrity of Microcystis aeruginosa, Raphidiopsis raciborskii, and Dolichospermum circinale, known producers of toxin and taste and odor (T&O) compounds. No association was found between R. raciborskii cell lysis and velocity gradient, with or without PAC, demonstrating the high resilience of this taxon to shear stress. In contrast, an association was found for M. aeruginosa at the highest velocity gradient evaluated (1000 s-1) and for D. circinale above the lowest velocity gradient studied (600 s-1). After PAC addition, there was a reduction in the chances of finding M. aeruginosa intact cells above velocity gradient 800 s-1 at 45 s, while D. circinale show cell lysis in all the scenarios expect at 600 s-1 and 10 s of agitation. The additional impact of PAC on cell lysis may lead to more release of metabolites and shows the need to adjust the hydraulic conditions in the rapid mixing stage, especially when more "fragile" cyanobacteria are present. Neither cyanobacterial cell size nor morphology was shown to be relevant to shear stress sensitivity, indicating that cell wall composition might have been an important factor in controlling cell lysis.


Assuntos
Cianobactérias , Purificação da Água , Carvão Vegetal , Cylindrospermopsis , Pós
2.
Sci Total Environ ; 773: 145681, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33940759

RESUMO

Allelopathy is widespread in marine, brackish, and freshwater habitats. Literature data indicate that allelopathy could offer a competitive advantage for some phytoplankton species by reducing the growth of competitors. It is also believed that allelopathy may affect species succession. Thus, allelopathy may play a role in the development of blooms. Over the past few decades, the world's coastal waters have experienced increases in the numbers of cyanobacterial and microalgal blooming events. Understanding how allelopathy is implicated with other biological and environmental factors as a bloom-development mechanism is an important topic for future research. This review focuses on a taxonomic overview of allelopathic cyanobacteria and microalgae, the biological and environmental factors that affect allelochemical production, their role in ecological dynamics, and their physiological modes of action, as well as potential industrial applications of allelopathic compounds.


Assuntos
Cianobactérias , Fitoplâncton , Alelopatia , Ecossistema , Feromônios/toxicidade
3.
Huan Jing Ke Xue ; 42(5): 2303-2312, 2021 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-33884800

RESUMO

Based on the data of zooplankton, phytoplankton, and water environmental factors in different seasons in a typical tributary reservoir in the Three Gorges Reservoir Region (Changshou Lake), this study explored the relationships between the structures of the zooplankton and phytoplankton communities and environmental factors using Pearson correlation analysis. The results showed that there were a total of 107 species of 8 phyla of phytoplankton, and cyanobacteria was the most critical constituent with a relative abundance of 61%. The dominant populations included Phormidium tenue, Merismopedia punctata, and Anabaena oscillarioides. A total of 82 species of 4 phyla of zooplankton were identified, and rotifers was the most abundant with a relative abundance of 88%. The dominant populations included six species, such as Keratella cochlearis, Asplanchna priodonta, and Asplanchna girodi. The spatial differences in the abundances, biomass, and biodiversity indexes of zooplankton and phytoplankton were not significant, whereas the seasonal differences in all the other indexes were significant, except for the zooplankton biodiversity indexes. The abundance of phytoplankton was the highest in summer, followed by spring, and it was the lowest in winter. The maximum abundance of zooplankton occurred in spring, and the biomass of zooplankton and phytoplankton in spring was significantly higher than that in winter. The number of phytoplankton species and the Shannon-Wiener index, Pielou's uniformity index, and Margalef richness index in summer were significantly lower than those in winter and spring. The water quality evaluation showed that Changshou Lake was in a clean to oligo-pollution state in winter and spring and a moderate-pollution state in summer, thereby suggesting that Changshou Lake was in an overall eutrophic state. The environmental factors, including Chla, DOC, nutrients (TP, NO2--N, NO3--N, and NH4+-N), DO, Eh, and T, influenced the structures of the zooplankton and phytoplankton communities in Changshou Lake, and there were seasonal differences in the environmental factors.


Assuntos
Cianobactérias , Zooplâncton , Anabaena , Animais , Biomassa , Monitoramento Ambiental , Fitoplâncton , Estações do Ano
4.
Water Res ; 197: 117111, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33857892

RESUMO

The increasing frequency and intensity of blooms of toxin- and taste & odour-producing filamentous cyanobacteria in water sources is a growing global issue. Compared to the common spherical Microcystis genus, the removal of filamentous cyanobacteria is more difficult in drinking water treatment plants; hence, abatement and control of the occurrence and proliferation of harmful filamentous cyanobacteria within drinking water sources is important for water supply. In this study, the solid sodium percarbonate (SPC), Na2CO3·1.5H2O2, was used as an algaecide to eliminate the cyanobacteria distributed throughout the water column in the surface and bottom layer of a reservoir serving as a drinking water source. Results showed that although the oxidation capacity of SPC was higher in the surface water due to the higher light intensity than in the bottom water, 3.0 mg/L SPC can still suppress the harmful cyanobacteria in the bottom water after 36 h because the carbonate ion generated by SPC decomposition can act as an activator of H2O2 to generate many reactive oxygen species - including superoxide radicals, carbonate radical anions, and hydroxyl radicals - even in the light-limited environment. The obtained inactivation rates for the main cyanobacteria in this reservoir followed the order: Pseudanabaena limnetica > Raphidiopsis curvata > Cylindrospermopsis raciborskii. 3.0 mg/L SPC has a slight impact on microeukaryotic communities according to the 18S rRNA gene sequencing, while 6.0 mg/L SPC changed the composition of eukaryotic phytoplankton and zooplankton clearly. Eukaryotic co-occurrence networks showed that although the network of eukaryotic plankton in treated surface water was more compact and clustered, stability of microeukaryotes in the treated surface water was lower than for the treated bottom water, owing to the higher oxidation capacity of SPC in the surface water. The results above not only have important implications for full-scale control of harmful cyanobacteria in drinking water sources, especially filamentous cyanobacteria with vertical distributions, but also help to ensure the health and stability of the whole aquatic ecosystem.


Assuntos
Cianobactérias , Água Potável , Animais , Carbonatos , Cylindrospermopsis , Ecossistema , Peróxido de Hidrogênio
5.
Nat Commun ; 12(1): 2420, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893297

RESUMO

Bacteriophages have long been known to use modified bases in their DNA to prevent cleavage by the host's restriction endonucleases. Among them, cyanophage S-2L is unique because its genome has all its adenines (A) systematically replaced by 2-aminoadenines (Z). Here, we identify a member of the PrimPol family as the sole possible polymerase of S-2L and we find it can incorporate both A and Z in front of a T. Its crystal structure at 1.5 Å resolution confirms that there is no structural element in the active site that could lead to the rejection of A in front of T. To resolve this contradiction, we show that a nearby gene is a triphosphohydolase specific of dATP (DatZ), that leaves intact all other dNTPs, including dZTP. This explains the absence of A in S-2L genome. Crystal structures of DatZ with various ligands, including one at sub-angstrom resolution, allow to describe its mechanism as a typical two-metal-ion mechanism and to set the stage for its engineering.


Assuntos
2-Aminopurina/análogos & derivados , Adenina/química , Bacteriófagos/genética , Cianobactérias/virologia , DNA Viral/química , Synechococcus/virologia , 2-Aminopurina/química , 2-Aminopurina/metabolismo , Adenina/metabolismo , Bacteriófagos/metabolismo , Sítios de Ligação/genética , Biocatálise , DNA Primase/química , DNA Primase/genética , DNA Primase/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Domínios Proteicos , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
6.
Nat Commun ; 12(1): 2406, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893318

RESUMO

Understanding Earth's response to climate forcing in the geological past is essential to reliably predict future climate change. The reconstruction of continental climates, however, is hampered by the scarcity of universally applicable temperature proxies. Here, we show that heterocyte glycolipids (HGs) of diazotrophic heterocytous cyanobacteria occur ubiquitously in equatorial East African lakes as well as polar to tropical freshwater environments. The relative abundance of HG26 diols and keto-ols, quantified by the heterocyte diol index (HDI26), is significantly correlated with surface water temperature (SWT). The first application of the HDI26 to a ~37,000 year-long sediment record from Lake Tanganyika provides evidence for a ~4.1 °C warming in tropical East Africa from the last glacial to the beginning of the industrial period. Given the worldwide distribution of HGs in lake sediments, the HDI26 may allow reconstructing SWT variations in polar to tropical freshwater environments and thereby quantifying past continental climate change.


Assuntos
Mudança Climática , Cianobactérias/metabolismo , Água Doce/microbiologia , Glicolipídeos/metabolismo , Lagos/microbiologia , Calibragem , Cianobactérias/citologia , Geografia , Sedimentos Geológicos/microbiologia , Tanzânia , Temperatura
7.
Biomolecules ; 11(3)2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33810129

RESUMO

Global processes, such as climate change, frequent and distant travelling and population growth, increase the risk of viral infection spread. Unfortunately, the number of effective and accessible medicines for the prevention and treatment of these infections is limited. Therefore, in recent years, efforts have been intensified to develop new antiviral medicines or vaccines. In this review article, the structure and activity of the most promising antiviral cyanobacterial products are presented. The antiviral cyanometabolites are mainly active against the human immunodeficiency virus (HIV) and other enveloped viruses such as herpes simplex virus (HSV), Ebola or the influenza viruses. The majority of the metabolites are classified as lectins, monomeric or dimeric proteins with unique amino acid sequences. They all show activity at the nanomolar range but differ in carbohydrate specificity and recognize a different epitope on high mannose oligosaccharides. The cyanobacterial lectins include cyanovirin-N (CV-N), scytovirin (SVN), microvirin (MVN), Microcystisviridis lectin (MVL), and Oscillatoria agardhii agglutinin (OAA). Cyanobacterial polysaccharides, peptides, and other metabolites also have potential to be used as antiviral drugs. The sulfated polysaccharide, calcium spirulan (CA-SP), inhibited infection by enveloped viruses, stimulated the immune system's response, and showed antitumor activity. Microginins, the linear peptides, inhibit angiotensin-converting enzyme (ACE), therefore, their use in the treatment of COVID-19 patients with injury of the ACE2 expressing organs is considered. In addition, many cyanobacterial extracts were revealed to have antiviral activities, but the active agents have not been identified. This fact provides a good basis for further studies on the therapeutic potential of these microorganisms.


Assuntos
Antivirais/química , Cianobactérias/química , HIV/efeitos dos fármacos , Lectinas/farmacologia , Polissacarídeos/farmacologia , Simplexvirus/efeitos dos fármacos , Fármacos Anti-HIV/farmacologia , Antineoplásicos/farmacologia , Antivirais/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/farmacologia , Carboidratos/química , Carboidratos/farmacologia , Cianobactérias/metabolismo , Infecções por HIV/tratamento farmacológico , Humanos , Lectinas/química , Lectinas/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo
8.
Nat Commun ; 12(1): 2333, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879791

RESUMO

Acaryochloris marina is one of the cyanobacterial species that can use far-red light to drive photochemical reactions for oxygenic photosynthesis. Here, we report the structure of A. marina photosystem I (PSI) reaction center, determined by cryo-electron microscopy at 2.58 Å resolution. The structure reveals an arrangement of electron carriers and light-harvesting pigments distinct from other type I reaction centers. The paired chlorophyll, or special pair (also referred to as P740 in this case), is a dimer of chlorophyll d and its epimer chlorophyll d'. The primary electron acceptor is pheophytin a, a metal-less chlorin. We show the architecture of this PSI reaction center is composed of 11 subunits and we identify key components that help explain how the low energy yield from far-red light is efficiently utilized for driving oxygenic photosynthesis.


Assuntos
Proteínas de Bactérias/química , Cianobactérias/química , Complexo de Proteína do Fotossistema I/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clorofila/química , Clorofila/metabolismo , Microscopia Crioeletrônica , Cianobactérias/genética , Cianobactérias/metabolismo , Transporte de Elétrons , Luz , Modelos Moleculares , Oxigênio/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Estrutura Quaternária de Proteína , Subunidades Proteicas , Eletricidade Estática
9.
Sheng Wu Gong Cheng Xue Bao ; 37(2): 604-614, 2021 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-33645158

RESUMO

Proton-pumping rhodopsin (PPR) is a simple photosystem widely distributed in nature. By binding to retinal, PPR can transfer protons from the cytoplasmic to the extracellular side of the membrane under illumination, creating a proton motive force (PMF) to synthesize ATP. The conversion of light into chemical energy by introducing rhodopsin into nonphotosynthetic engineered strains could contribute to promoting growth, increasing production and improving cell tolerance of microbial hosts. Gloeorhodopsin (GR) is a PPR from Gloeobacter violaceus PCC 7421. We expressed GR heterologously in Escherichia coli and verified its functional activity. GR could properly function as a light-driven proton pump and its absorption maximum was at 539 nm. We observed that GR was mainly located on the cell membrane and no inclusion body could be found. After increasing expression level by ribosome binding site optimization, intracellular ATP increased, suggesting that GR could supply additional energy to heterologous hosts under given conditions.


Assuntos
Cianobactérias , Rodopsina , Cianobactérias/genética , Cianobactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Bombas de Próton , Rodopsina/genética , Rodopsina/metabolismo , Rodopsinas Microbianas/genética , Rodopsinas Microbianas/metabolismo
10.
FEMS Microbiol Ecol ; 97(5)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33784393

RESUMO

Although laboratory assays provide valuable information about the antifouling effectiveness of marine surfaces and the dynamics of biofilm formation, they may be laborious and time-consuming. This study aimed to determine the potential of short-time adhesion assays to estimate how biofilm development may proceed. The initial adhesion and cyanobacterial biofilm formation were evaluated using glass and polymer epoxy resin surfaces under different hydrodynamic conditions and were compared using linear regression models. For initial adhesion, the polymer epoxy resin surface was significantly associated with a lower number of adhered cells compared with glass (-1.27 × 105 cells.cm-2). Likewise, the number of adhered cells was significantly lower (-1.16 × 105 cells.cm-2) at 185 than at 40 rpm. This tendency was maintained during biofilm development and was supported by the biofilm wet weight, thickness, chlorophyll a content and structure. Results indicated a significant correlation between the number of adhered and biofilm cells (r = 0.800, p < 0.001). Moreover, the number of biofilm cells on day 42 was dependent on the number of adhered cells at the end of the initial adhesion and hydrodynamic conditions (R2 = 0.795, p < 0.001). These findings demonstrate the high potential of initial adhesion assays to estimate marine biofilm development.


Assuntos
Biofilmes , Cianobactérias , Aderência Bacteriana , Clorofila A , Polímeros
11.
Water Res ; 197: 117073, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33784609

RESUMO

Many drinking water utilities drawing from waters susceptible to harmful algal blooms (HABs) are implementing monitoring tools that can alert them to the onset of blooms. Some have invested in fluorescence-based online monitoring probes to measure phycocyanin, a pigment found in cyanobacteria, but it is not clear how to best use the data generated. Previous studies have focused on correlating phycocyanin fluorescence and cyanobacteria cell counts. However, not all utilities collect cell count data, making this method impossible to apply in some cases. Instead, this paper proposes a novel approach to determine when a utility needs to respond to a HAB based on machine learning by identifying anomalies in phycocyanin fluorescence data without the need for corresponding cell counts or biovolume. Four widespread and open source algorithms are evaluated on data collected at four buoys in Lake Erie from 2014 to 2019: local outlier factor (LOF), One-Class Support Vector Machine (SVM), elliptic envelope, and Isolation Forest (iForest). When trained on standardized historical data from 2014 to 2018 and tested on labelled 2019 data collected at each buoy, the One-Class SVM and elliptic envelope models both achieve a maximum average F1 score of 0.86 among the four datasets. Therefore, One-Class SVM and elliptic envelope are promising algorithms for detecting potential HABs using fluorescence data only.


Assuntos
Cianobactérias , Monitoramento Ambiental , Fluorescência , Proliferação Nociva de Algas , Lagos , Aprendizado de Máquina
12.
Nat Commun ; 12(1): 1945, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33782425

RESUMO

Exploring the capability of organisms to cope with human-caused environmental change is crucial for assessing the risk of extinction and biodiversity loss. We study the consequences of changing nutrient pollution for the freshwater keystone grazer, Daphnia, in a large lake with a well-documented history of eutrophication and oligotrophication. Experiments using decades-old genotypes resurrected from the sediment egg bank revealed that nutrient enrichment in the middle of the 20th century, resulting in the proliferation of harmful cyanobacteria, led to the rapid evolution of grazer resistance to cyanobacteria. We show here that the subsequent reduction in nutrient input, accompanied by a decrease in cyanobacteria, resulted in the re-emergence of highly susceptible Daphnia genotypes. Expression and subsequent loss of grazer resistance occurred at high evolutionary rates, suggesting opposing selection and that maintaining resistance was costly. We provide a rare example of reversed evolution of a fitness-relevant trait in response to relaxed selection.


Assuntos
Coevolução Biológica , Cianobactérias/patogenicidade , Daphnia/genética , Aptidão Genética , Poluição da Água/análise , Animais , Cianobactérias/fisiologia , Daphnia/crescimento & desenvolvimento , Daphnia/metabolismo , Europa (Continente) , Eutrofização , Genótipo , Humanos , Lagos/química , Fenótipo , Característica Quantitativa Herdável , Seleção Genética
13.
Ecotoxicol Environ Saf ; 215: 112126, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33721663

RESUMO

Freshwater harmful algal blooms (HABs) are a major environmental health problem worldwide. HABs are caused by a predominance of cyanobacteria, some of which produce potent toxins. The most ubiquitous cyanotoxin is microcystin (MC) and the congener MC-LR is the most studied due to its toxicity. Short-term exposure to toxins can cause gut microbiome disturbances, but this has not been well described with MC-LR exposure. This study investigated the gut microbial communities of mice from a prior study, which identified significant liver toxicity from ingestion of MC-LR daily for 8 days. CD-1 mice were divided into three dosage groups: control, low exposure (sub-lethal MC-LR concentration), and high exposure (near-lethal MC-LR concentration). Fecal samples were analyzed using 16S rRNA sequencing. Results revealed that at population level, there were no significant shifts in bacterial diversity or the microbial community structure over the exposure period. However, there were significant differences between male and female mice. Predictive functional gene analysis indicated that several metabolic pathways were significantly different in the high dose group before exposure and following 7 doses of MC-LR, as well as between the control and high dose groups on Day 8. Significant differentially abundant taxa were also identified contributing to these pathways. Several pathways, including superpathway of N-acetylneuraminate degradation, were related to liver and gut inflammation. The outcome of this study suggests a need for in-depth investigation of metabolic activity and other functions in the gut in future studies, as well as potential consideration of the role of sex in MC-LR toxicity.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Toxinas Marinhas/toxicidade , Microcistinas/toxicidade , Animais , Cianobactérias/metabolismo , Fezes/microbiologia , Feminino , Proliferação Nociva de Algas , Inflamação/metabolismo , Fígado/efeitos dos fármacos , Masculino , Redes e Vias Metabólicas , Camundongos , Microbiota , RNA Ribossômico 16S/genética
14.
Water Res ; 196: 117014, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33751971

RESUMO

Freshwater lakes are threatened by harmful cyanobacterial blooms, whose basic unit is Cyanobacterial Aggregate (CA). CA-attached bacteria play a significant role through different blooming stages with substantial variation of their taxonomic structure. However, little is known about their functional variations and functional links with cyanobacteria due to the lack of reference genomes. In this longitudinal study, we collected 16 CA samples from Lake Taihu, one of China's largest freshwater lakes, from April 2015 to February 2016, and sequenced their V4 region of 16S rRNA genes, full metagenomes (MG), and metatranscriptomes (MT). The analysis of these data revealed the dynamics of microbial taxonomic and functional structure in CAs, influenced by both external environmental factors and internal metabolism. 55 OTUs, 456 genes, and 37 transcripts showed significantly differential abundance across the early, middle, and late blooming stages (ANOVA test, P < 0.05). Total nitrogen and total phosphorus were proved to be the most important environmental drivers of microbial taxonomic and functional variations in CAs (Mantel's r > 0.25, P < 0.05). We constructed 161 high-quality metagenome-assembled genomes (MAGs), out of which 22 were cyanobacterial strains with diverse energy pathways, transporters and prokaryotic defense systems. Based on these MAGs, we constructed a cyanobacteria-bacteria co-nitrogen-pathway and a cyanobacteria-bacteria co-phosphorus-pathway, by which we demonstrated how nitrogen and phosphorus influence the dynamics of the microbial structure to a certain extent by affecting these co-pathways. Overall, these results characterized the taxonomic, functional, and transcriptional variations of microbes in CAs through different blooming stages. Genome assembly and metabolic analysis of cyanobacteria and their attached bacteria suggested that the material exchange and signal transduction do, indeed, exist among them. Our understanding of the underlying molecular pathways for cyanobacterial blooms could lead to the control of blooms by interventional strategies to disrupt critical microbes' expression.


Assuntos
Cianobactérias , Microbiota , China , Cianobactérias/genética , Eutrofização , Proliferação Nociva de Algas , Lagos , Estudos Longitudinais , RNA Ribossômico 16S/genética
15.
Water Res ; 196: 117017, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33765498

RESUMO

Harmful cyanobacterial blooms, which frequently contain toxic secondary metabolites, are reported in aquatic environments around the world. More than two thousand cyanobacterial secondary metabolites have been reported from diverse sources over the past fifty years. A comprehensive, publically-accessible database detailing these secondary metabolites would facilitate research into their occurrence, functions and toxicological risks. To address this need we created CyanoMetDB, a highly curated, flat-file, openly-accessible database of cyanobacterial secondary metabolites collated from 850 peer-reviewed articles published between 1967 and 2020. CyanoMetDB contains 2010 cyanobacterial metabolites and 99 structurally related compounds. This has nearly doubled the number of entries with complete literature metadata and structural composition information compared to previously available open access databases. The dataset includes microcytsins, cyanopeptolins, other depsipeptides, anabaenopeptins, microginins, aeruginosins, cyclamides, cryptophycins, saxitoxins, spumigins, microviridins, and anatoxins among other metabolite classes. A comprehensive database dedicated to cyanobacterial secondary metabolites facilitates: (1) the detection and dereplication of known cyanobacterial toxins and secondary metabolites; (2) the identification of novel natural products from cyanobacteria; (3) research on biosynthesis of cyanobacterial secondary metabolites, including substructure searches; and (4) the investigation of their abundance, persistence, and toxicity in natural environments.


Assuntos
Cianobactérias , Depsipeptídeos
16.
Water Res ; 196: 117048, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33773451

RESUMO

Toxic cyanobacteria bloom is a ubiquitous phenomenon worldwide in eutrophic lakes or reservoirs. Microcystis, is a cosmopolitan genus in cyanobacteria and exists in many different forms. Microcystis aeruginosa (M. aeruginosa) can produce microcystins (MCs) with strong liver toxicity during its growth and decomposition. Phosphorus (P) is a typical growth limiting factor of M. aeruginosa. Though different forms and concentrations of P are common in natural water, the molecular responses in the growth and MCs formation of M. aeruginosa remain unclear. In this study, laboratory experiments were conducted to determine the uptake of P, cell activity, MCs release, and related gene expression under different concentrations of dissolved inorganic phosphorus (DIP) and dissolved organic phosphorus (DOP). We found that the growth of M. aeruginosa was promoted by increasing DIP concentration but coerced under high concentration (0.6 and 1.0 mg P/L) of DOP after P starvation. The growth stress was not related to the alkaline phosphatase activity (APA). Although alkaline phosphatase (AP) could convert DOP into algae absorbable DIP, the growth status of M. aeruginosa mainly depended on the response mechanism of phosphate transporter expression to the extracellular P concentration. High-concentration DIP promoted MCs production in M. aeruginosa, while high-concentration DOP triggered the release of intracellular MCs rather than affecting MCs production. Our study revealed the molecular responses of algal growth and toxin formation under different P sources, and provided a theoretical basis and novel idea for risk management of eutrophic lakes and reservoirs.


Assuntos
Cianobactérias , Microcystis , Fosfatase Alcalina , Lagos , Microcistinas , Fósforo
17.
Sci Total Environ ; 769: 145053, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33736231

RESUMO

A temporally and spatially detailed historical (1985-2018) analysis of cyanobacteria blooms was performed in the Curonian Lagoon (Lithuania, Russia), the largest coastal lagoon in the Baltic Sea. Satellite data allowed the mapping of cyanobacteria surface accumulations, so-called "scums", and of chlorophyll-a concentration. The 34-year time series shows a tendency towards later occurrence (October-November) of the cyanobacteria scum presence, whereas the period of its onset (June-July) remains relatively constant. The periods when scums are present, "hot moments", have been consistently increasing in duration since 2008. The differences in the starting, ending and annual duration of cyanobacteria blooms have been significantly altered by hydro-meteorological conditions (river discharge, water temperature, and wind conditions) and their year-round patterns. The most important environmental factors that determined the temporal changes of the scum presence and area were the standing stock of cyanobacteria and the ambient wind conditions. The "hotspots", the areas where the blooms most likely occur, were distributed in the south-southwestern and central parts of the lagoon. The least affected areas were the northern part, which is connected to the coastal waters of the Baltic Sea, and the Nemunas River delta region. The longstanding, well-established spatial patterns of cyanobacteria blooms were linked to hydrodynamic features, namely water renewal time and current patterns, and to potential nutrient sources that included muddy sediments and the locations of colonies of piscivorous birds. Our findings confirmed that the annual and seasonal variations of cyanobacteria blooms and their regulation are a complex issue due to interactions between multiple factors over spatially and temporally broad scales. Despite great progress in the prevention and control of eutrophication and cyanobacteria blooms, the lagoon is still considered to be in a poor ecological status. This work provides a new and missing understanding on the spatial and temporal extent of cyanobacteria blooms and the factors that govern them. Such an understanding can help in planning management strategies, forecasting the magnitude and severity of blooms under changing nutrient loads and potential climate scenarios.


Assuntos
Cianobactérias , Tecnologia de Sensoriamento Remoto , Países Bálticos , Monitoramento Ambiental , Eutrofização , Lituânia , Estudos Retrospectivos , Federação Russa
18.
Huan Jing Ke Xue ; 42(4): 1870-1878, 2021 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-33742822

RESUMO

A large amount of intracellular dissolved organic matter (I-DOM) is released during the senescent phase of phytoplankton cultures. This research investigated the bio-incubation of I-DOM of cyanobacteria in Lake Taihu under various temperatures (20, 25, and 30℃) and I-DOM initial concentrations (5, 10, and 20 mg·L-1) with the aid of ultraviolet-visible spectroscopy (UV-Vis) and three-dimensional fluorescence matrix-parallel factor (EEM-PARAFAC). I-DOM was effectively degraded during the incubation. After 14 days, the DOC removal ratio was 50% ~74%. A tryptophan-like component (C1), a ubiquitous humic-like component (C2), and two microbially-derived humic-like components (C3 and C4) contributed 80.0%, 16.0%, 3.7%, and 0.3% to the initial I-DOM, respectively. During the bio-degradation, these components are not only consumed but also produced. C1 decreased during the incubation, while C3 and C4 increased at the beginning of biodegradation and then decreased. The change trend of C2 was complicated, i.e., it decreased firstly and then increased, but decreased again after 7 days. The changes in the optical indices of Sr, E2:E3 and HIX revealed that the molecular weight of DOM increased, and the aromaticity was enhanced during degradation. The reaction temperature and the initial concentration of I-DOM did not change the trend of the PARAFAC components. The temperature of 25℃ was the most suitable for I-DOM bio-degradation. Additionally, the degradation of I-DOM was enhanced with the increase in the initial concentration of I-DOM. Combined with our study on the photodegradation of I-DOM, the possible fate of I-DOM in Lake Taihu was proposed. The tryptophan-like compound could be effectively degraded, while the humic-like components could not be degraded completely. These humic-like components would potentially settle through adsorption or coprecipitation with metal substances. These results are helpful to understand the fate of I-DOM released by a cyanobacteria bloom in Lake Taihu.


Assuntos
Cianobactérias , Lagos , 2,5-Dimetoxi-4-Metilanfetamina , Biodegradação Ambiental , Análise Fatorial , Substâncias Húmicas/análise , Espectrometria de Fluorescência
19.
Huan Jing Ke Xue ; 42(2): 808-818, 2021 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-33742875

RESUMO

In the fields of phytoplankton ecology, water optics, and water color remote sensing, phytoplankton absorption properties represent the light absorption capacity of phytoplankton, which affects photosynthesis efficiency and carbon fixation. Here, the biomass, community composition, and the absorption properties of phytoplankton were measured alongside other bio-optical parameters in Lake Tianmu are examined using data collected between January and November 2013 (except February). Based on the relationships between phytoplankton biomass, community composition, and absorption, the effects of abundance, biomass, and equivalent sphere diameter on phytoplankton absorption and specific absorption were revealed. The highest biomass and abundance of phytoplankton were recorded in the autumn and the lowest in the winter. Cryptomonas, Synedra, and Cyclotella were the dominant genera throughout the year. The dominant genera structure type was Bacillariophyta-Cryptophyta in the winter and spring, Bacillariophyta-Chlorophyta-Pyrroptata in the summer, and Cryptophyta-Bacillariophyta-Chlorophyta in the autumn. Phytoplankton diameter was ranked in the order summer>autumn>winter>spring, with mean values of 64.83 µm in summer and 29.54 µm in spring. Phytoplankton absorption coefficients of were ranked in the order autumn > spring > winter > summer, with mean values at 440 nm and 675 nm of (0.66±0.18) m-1 and (0.33±0.10) m-1 in autumn and (0.17±0.02) m-1 and (0.08±0.01) m-1 in summer, respectively. The specific absorption coefficients of the phytoplankton were ranked in the order spring > winter > autumn > summer, with mean values at 440 nm and 675 nm of (0.07±0.02) m2·mg-1 and (0.04±0.01) m2·mg-1 in spring and (0.03±0.004) m2·mg-1 and (0.01±0.002) m2·mg-1 in summer, respectively. Significant linear correlations were found between phytoplankton biomass, abundance, and absorption coefficients. Variations of Bacillariophyta and Cyanophyta biomass caused by temperature explained the seasonal variation in absorption coefficients. The specific absorption coefficient decreased with an increase in equivalent sphere diameter, and variations in phytoplankton community composition explained seasonal changes in the specific absorption coefficient.


Assuntos
Clorófitas , Cianobactérias , Diatomáceas , China , Lagos , Fitoplâncton , Estações do Ano
20.
Environ Monit Assess ; 193(4): 201, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33742298

RESUMO

The influence of microphytobenthic community on the composition of sedimentary organic matter was evaluated in two Bahía Blanca estuary microhabitats contrasting in vegetation and hydrodynamic conditions; namely, S1 located in a Sarcocornia perennis saltmarsh with macroscopic microbial mats and S2 in a mudflat without macroscopic microbial mats or vegetation. Moisture, organic matter, chlorophyll a, phaeopigments, carbohydrates (CH), proteins (PRT), and abundance and structure of microphytobenthic community were evaluated in surface sediments. Higher moisture was observed at S2 and was related to the proximity of this site to the subtidal zone and the effect of the environmental variables temperature and rain. No significant differences were found in organic matter content between sites; however, at S1, a higher concentration was registered during winter and early spring associated to the period of higher microphytobenthic biomass. Chlorophyll a and phaeopigments were higher at S1, attributed to the higher microphytobenthos abundance at this site. Differences in microphytobenthos were observed not only in quantity but also in community structure since at S1 filamentous cyanobacteria dominated the community, whereas at S2, higher abundance of centric diatoms and the absence of cyanobacteria were observed during most of the study. S1 showed higher concentration of proteins and carbohydrates which could be attributed to the higher production of fresh organic matter by microphytobenthos. The total protein and carbohydrate concentrations allowed us to classify both microhabitats into the meso-oligotrophic category, contrasting with the classification made by other authors using water column proxies.


Assuntos
Cianobactérias , Diatomáceas , Clorofila A , Monitoramento Ambiental , Estuários , Sedimentos Geológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...