Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.613
Filtrar
1.
Ecotoxicol Environ Saf ; 207: 111233, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32916528

RESUMO

Growth of microcystin-producing cyanobacteria in Lake Okeechobee (Florida, USA) and surrounding waters has resulted in adverse health impacts for humans and endangered species, as well as significant economic losses. As these issues worsen, there is growing pressure for efficacious solutions to rapidly mitigate harmful algal blooms (HABs) and protect critical freshwater resources. Applications of USEPA-registered algaecides as management tactics meet many decision-making criteria often required by water resource managers (e.g., effective, scalable, selective), but have not yet been evaluated on a large scale within the Lake Okeechobee waterway. This study was conducted to bolster the peer-reviewed database for available management tactics against microcystin-producing cyanobacteria in waters of this region. Laboratory-scale experiments can be conducted first to minimize uncertainty at larger scales and improve confidence in decision-making. In this study, samples containing microcystin-producing cyanobacteria collected from Lake Okeechobee were exposed to several USEPA-registered algaecides in laboratory toxicity experiments. Responses of target cyanobacteria were measured 3 days after treatment (DAT) in terms of cell density, chlorophyll-a concentrations, and phycocyanin concentrations. Based on responses of the cyanobacteria, minimum effective exposure concentrations were identified for each algaecide. Microcystin release (i.e. proportion of total microcystins in the aqueous phase) was measured and compared 1 DAT among effective exposures. Total microcystin concentrations were measured in effective treatments at 1, 4, and 9 DAT to discern potential for microcystin persistence following exposures to the effective formulations and exposure concentrations. Overall, several formulations including GreenClean Liquid® 5.0, GreenClean Liquid® 5.0 combined with Hydrothol® 191, and the copper-based algaecides evaluated (Algimycin® PWF, Argos, Captain® XTR, Cutrine® Ultra, and SeClear®) achieved significant and similar effects on target cyanobacteria. The chelated copper-based formulations (Algimycin® PWF, Argos, Captain® XTR, and Cutrine® Ultra) resulted in relatively less microcystin release 1 DAT and lesser total microcystin concentrations 4 DAT. At 9 DAT, total microcystin concentrations were significantly lower than in untreated controls in all treatments evaluated. These results provide the necessary comparative performance data for preliminary decision-making and designing additional studies at larger scales. Importantly, the comparative toxicity data and approach provided in this study demonstrate the initial steps for development of site-specific management strategies for Lake Okeechobee and other areas impacted by harmful algal blooms with large spatial and temporal scales.


Assuntos
Cianobactérias/fisiologia , Herbicidas/toxicidade , Microcistinas/metabolismo , Clorofila/análogos & derivados , Clorofila A , Cobre/toxicidade , Sulfato de Cobre/toxicidade , Cianobactérias/efeitos dos fármacos , Florida , Proliferação Nociva de Algas , Lagos/microbiologia , Microcystis , Água
2.
Rev Saude Publica ; 54: 83, 2020.
Artigo em Inglês, Português | MEDLINE | ID: mdl-33111925

RESUMO

Almost half of the Brazilian population has no access to sewage collection and treatment. Untreated effluents discharged in waters of reservoirs for human supply favor the flowering of cyanobacteria - and these microorganisms produce toxins, such as saxitoxin, which is a very potent neurotoxin present in reservoirs in the Northeast region. A recent study confirmed that chronic ingestion of neurotoxin-infected water associated with Zika virus infection could lead to a microcephaly-like outcome in pregnant mice. Cyanobacteria benefit from hot weather and organic matter in water, a condition that has been intensified by climate change, according to our previous studies. Considering the new findings, we emphasize that zika arbovirus is widespread and worsened when associated with climate change, especially in middle- or low-income countries with low levels of sanitation coverage.


Assuntos
Mudança Climática , Infecção por Zika virus/epidemiologia , Brasil/epidemiologia , Proliferação de Células , Cianobactérias/fisiologia , Política Ambiental , Humanos , Risco
3.
PLoS One ; 15(8): e0237211, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760132

RESUMO

Understanding the dynamics of microphytobenthos biomass and photosynthetic performances in intertidal ecosystems will help advance our understanding of how trophic networks function in order to optimize ecological management and restoration projects. The main objective of this study was to investigate microphytobenthic biomass and photosynthetic performances as a function of the sedimentary and environmental variabilities in the range of intertidal habitats in the downstream Seine estuary (Normandy, France). Our results highlight higher biomass associated with more stratified biofilms and better photosynthetic performances in areas characterized by a sand/mud mixture (40-60% of mud) compared to pure sand or pure mud environments. This type of sediment probably offers an efficient trade-off between the favorable characteristics of the two types of sediments (sand and mud) with respect to light penetration and nutrient accessibility. Moreover, the large quantities of exopolysaccharides produced in sand/mud mixtures emphasizes the functional role played by microphytobenthos in promoting sediment stability against erosion. This allows us to show that despite the strong increase in sand content of the downstream Seine estuary, intertidal flats are still productive since microphytobenthic biomass, photosynthetic performances and exopolysaccharides secretion are highest in sand-mud mixtures. This study also underlines the impact of ecosystem modifications due to human disturbance and climate change on the dynamics of key primary producers in estuaries.


Assuntos
Biomassa , Cianobactérias/fisiologia , Estuários , Microalgas/fisiologia , Biofilmes , Sedimentos Geológicos/microbiologia , Fotossíntese
4.
Proc Natl Acad Sci U S A ; 117(30): 17599-17606, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32647063

RESUMO

Fossilized carotenoid hydrocarbons provide a window into the physiology and biochemistry of ancient microbial phototrophic communities for which only a sparse and incomplete fossil record exists. However, accurate interpretation of carotenoid-derived biomarkers requires detailed knowledge of the carotenoid inventories of contemporary phototrophs and their physiologies. Here we report two distinct patterns of fossilized C40 diaromatic carotenoids. Phanerozoic marine settings show distributions of diaromatic hydrocarbons dominated by isorenieratane, a biomarker derived from low-light-adapted phototrophic green sulfur bacteria. In contrast, isorenieratane is only a minor constituent within Neoproterozoic marine sediments and Phanerozoic lacustrine paleoenvironments, for which the major compounds detected are renierapurpurane and renieratane, together with some novel C39 and C38 carotenoid degradation products. This latter pattern can be traced to cyanobacteria as shown by analyses of cultured taxa and laboratory simulations of sedimentary diagenesis. The cyanobacterial carotenoid synechoxanthin, and its immediate biosynthetic precursors, contain thermally labile, aromatic carboxylic-acid functional groups, which upon hydrogenation and mild heating yield mixtures of products that closely resemble those found in the Proterozoic fossil record. The Neoproterozoic-Phanerozoic transition in fossil carotenoid patterns likely reflects a step change in the surface sulfur inventory that afforded opportunities for the expansion of phototropic sulfur bacteria in marine ecosystems. Furthermore, this expansion might have also coincided with a major change in physiology. One possibility is that the green sulfur bacteria developed the capacity to oxidize sulfide fully to sulfate, an innovation which would have significantly increased their capacity for photosynthetic carbon fixation.


Assuntos
Cianobactérias/fisiologia , Fotossíntese , Enxofre/metabolismo , Carotenoides/química , Carotenoides/metabolismo , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas , Fotossíntese/genética , Pigmentos Biológicos/química , Pigmentos Biológicos/metabolismo
5.
PLoS One ; 15(7): e0236188, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32701995

RESUMO

Microalgae and cyanobacteria are considered as important model organisms to investigate the biology of photosynthesis; moreover, they are valuable sources of biomolecules for several biotechnological applications. Understanding the species-specific traits of photosynthetic electron transport is extremely important, because it contributes to the regulation of ATP/NADPH ratio, which has direct/indirect links to carbon fixation and other metabolic pathways and thus overall growth and biomass production. In the present work, a cuvette-based setup is developed, in which a combination of measurements of dissolved oxygen, pH, chlorophyll fluorescence and NADPH kinetics can be performed without disturbing the physiological status of the sample. The suitability of the system is demonstrated using a model cyanobacterium Synechocystis sp. PCC6803, as well as biofuel-candidate microalgae species, such as Chlorella sorokiniana, Dunaliella salina and Nannochloropsis limnetica undergoing inorganic carbon (Ci) limitation. Inorganic carbon limitation, induced by photosynthetic Ci uptake under continuous illumination, caused a decrease in the effective quantum yield of PSII (Y(II)) and loss of oxygen-evolving capacity in all species investigated here; these effects were largely recovered by the addition of NaHCO3. Detailed analysis of the dark-light and light-dark transitions of NADPH production/uptake and changes in chlorophyll fluorescence kinetics revealed species- and condition-specific responses. These responses indicate that the impact of decreased Calvin-Benson cycle activity on photosynthetic electron transport pathways involving several sections of the electron transport chain (such as electron transfer via the QA-QB-plastoquinone pool, the redox state of the plastoquinone pool) can be analyzed with high sensitivity in a comparative manner. Therefore, the integrated system presented here can be applied for screening for specific traits in several significant species at different stages of inorganic carbon limitation, a condition that strongly impacts primary productivity.


Assuntos
Carbono/farmacologia , Cianobactérias/fisiologia , Compostos Inorgânicos/farmacologia , Microalgas/fisiologia , Fotossíntese , Chlorella/efeitos dos fármacos , Chlorella/fisiologia , Clorofila/metabolismo , Cianobactérias/efeitos dos fármacos , Transporte de Elétrons/efeitos dos fármacos , Fluorescência , Cinética , Microalgas/efeitos dos fármacos , NADP/metabolismo , Oxigênio/metabolismo , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Teoria Quântica , Synechocystis/efeitos dos fármacos , Synechocystis/fisiologia
6.
PLoS Comput Biol ; 16(4): e1007807, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32352961

RESUMO

Cells in microbial colonies integrate information across multiple spatial and temporal scales while sensing environmental cues. A number of photosynthetic cyanobacteria respond in a directional manner to incident light, resulting in the phototaxis of individual cells. Colonies of such bacteria exhibit large-scale changes in morphology, arising from cell-cell interactions, during phototaxis. These interactions occur through type IV pili-mediated physical contacts between cells, as well as through the secretion of complex polysaccharides ('slime') that facilitates cell motion. Here, we describe a computational model for such collective behaviour in colonies of the cyanobacterium Synechocystis. The model is designed to replicate observations from recent experiments on the emergent response of the colonies to varied light regimes. It predicts the complex colony morphologies that arise as a result. We ask if changes in colony morphology during phototaxis can be used to infer if cells integrate information from multiple light sources simultaneously, or respond to these light sources separately at each instant of time. We find that these two scenarios cannot be distinguished from the shapes of colonies alone. However, we show that tracking the trajectories of individual cyanobacteria provides a way of determining their mode of response. Our model allows us to address the emergent nature of this class of collective bacterial motion, linking individual cell response to the dynamics of colony shape.


Assuntos
Cianobactérias/fisiologia , Interações Microbianas/fisiologia , Fototaxia/fisiologia , Movimento Celular , Biologia Computacional , Simulação por Computador
7.
Proc Natl Acad Sci U S A ; 117(20): 10681-10687, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32366642

RESUMO

Microorganisms, in the most hyperarid deserts around the world, inhabit the inside of rocks as a survival strategy. Water is essential for life, and the ability of a rock substrate to retain water is essential for its habitability. Here we report the mechanism by which gypsum rocks from the Atacama Desert, Chile, provide water for its colonizing microorganisms. We show that the microorganisms can extract water of crystallization (i.e., structurally ordered) from the rock, inducing a phase transformation from gypsum (CaSO4·2H2O) to anhydrite (CaSO4). To investigate and validate the water extraction and phase transformation mechanisms found in the natural geological environment, we cultivated a cyanobacterium isolate on gypsum rock samples under controlled conditions. We found that the cyanobacteria attached onto high surface energy crystal planes ({011}) of gypsum samples generate a thin biofilm that induced mineral dissolution accompanied by water extraction. This process led to a phase transformation to an anhydrous calcium sulfate, anhydrite, which was formed via reprecipitation and subsequent attachment and alignment of nanocrystals. Results in this work not only shed light on how microorganisms can obtain water under severe xeric conditions but also provide insights into potential life in even more extreme environments, such as Mars, as well as offering strategies for advanced water storage methods.


Assuntos
Adaptação Fisiológica , Anidridos/metabolismo , Sulfato de Cálcio/metabolismo , Cianobactérias/metabolismo , Biofilmes , Cianobactérias/fisiologia , Ambientes Extremos , Água/metabolismo
8.
Appl Environ Microbiol ; 86(13)2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32358005

RESUMO

Biological soil crusts (biocrusts) are globally important microbial communities inhabiting the top layer of soils. They provide multiple services to dryland ecosystems but are particularly vulnerable to anthropogenic disturbance from which they naturally recover only slowly. Assisted inoculation with cyanobacteria is held as a promising approach to promote biocrust regeneration. Two different methodologies have been developed for this purpose: mass cultivation of biocrust pioneer species (such as the cyanobacteria Microcoleus spp.) on cellulose supports, and polymicrobial cultivation of biocrusts in soils within greenhouse settings. Here, we aimed to test a novel method to grow cyanobacterial biocrust inoculum based on fog irrigation of soil substrates (FISS) that can be used with either culture-based or mixed-community approaches. We found that the FISS system presents clear advantages over previous inoculum production methodologies; overall, FISS eliminates the need for specialized facilities and decreases user effort. Specifically, there were increased microbial yields and simplification of design compared to those of the culture-based and mixed-community approaches, respectively. Its testing also allows us to make recommendations on underexplored aspects of biocrust restoration: (i) field inoculation levels should be equal to or greater than the biomass found in the substrate and (ii) practices regarding evaluation of cyanobacterial biomass should, under certain circumstances, include proxies additional to chlorophyll a IMPORTANCE Biocrust inoculum production for use in dryland rehabilitation is a powerful tool in combating the degradation of dryland ecosystems. However, the facilities and effort required to produce high-quality inoculum are often a barrier to effective large-scale implementation by land managers. By unifying and optimizing the two foremost methods for cyanobacterial biocrust inoculum production, our work improves on the ease and cost with which biocrust restoration technology can be translated to practical widespread implementation.


Assuntos
Irrigação Agrícola/métodos , Cianobactérias/fisiologia , Microbiologia do Solo , Tempo (Meteorologia) , Biomassa , Microbiota
9.
Chemosphere ; 252: 126509, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32224357

RESUMO

Microcystis aeruginosa and Pseudanabaena are two common cyanobacterial species/genus and they can occur coincidently in many eutrophic lakes globally. These two cyanobacteria could produce Taste & Odor (T&O) compounds, and their production of T&O compounds might be changed when they are present coincidently. The amounts of T&O compounds and their producers may influence the effectiveness of water treatment processes. Therefore, the mutual interactions between Microcystis aeruginosa (FACHB-905, M) and Pseudanabaena sp. (FACHB-1277, P) on T&O compounds in co-cultures were evaluated in this study. Different initial cell concentrations of M and P, with ratios of M:P = 1:1, M:P = 1:2 and M:P = 2:1 were applied in the co-cultures. The growth of M was enhanced under all of the cyanobacterial cell ratios. The growth of P was enhanced under the ratio of M:P = 1:1, while it was inhibited under the ratios of M:P = 1:2 and M: P = 2:1. In addition, the growth of the two cyanobacteria and their production of ß-cyclocitral and 2-methylisoborneol (2-MIB) in the filtrate of P were higher than those in the filtrate of M, which may be attributed to their associated secondary metabolites. The cell integrity and photosynthetic capacity of the two studied cyanobacteria are greatly affected by exposure to ß-cyclocitral and 2-MIB. The results showed that ß-cyclocitral and 2-MIB had the allelopathic effects on the two cyanobacteria species which might influence the composition of co-existing cyanobacteria and their production of T&O compounds.


Assuntos
Cianobactérias/fisiologia , Odorantes , Paladar , Aldeídos , Canfanos , Diterpenos , Ecologia , Lagos , Microcystis/fisiologia , Fotossíntese
10.
Arch Microbiol ; 202(6): 1317-1325, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32140734

RESUMO

In this study, relationship between translucent property of yeast cell wall and occurrence of cyanobacteria inside the yeast vacuole was examined. Microscopic observations on fruit yeast Candida tropicalis showed occurrence of bacterium-like bodies inside the yeast vacuole. Appearance of vacuoles as distinct cavities indicated the perfect harvesting of light by the yeast's cell wall. Transmission electron microscopy observation showed electron-dense outer and electron-lucent inner layers in yeast cell wall. Cyanobacteria-specific 16S rRNA gene was amplified from total DNA of yeast. Cultivation of yeast in distilled water led to excision of intracellular bacteria which grew on cyanobacteria-specific medium. Examination of wet mount and Gram-stained preparations of excised bacteria showed typical bead-like trichomes. Amplification of cyanobacteria-specific genes, 16S rRNA, cnfR and dxcf, confirmed bacterial identity as Leptolyngbya boryana. These results showed that translucent cell wall of yeast has been engineered through evolution for receiving light for vital activities of cyanobacteria.


Assuntos
Candida tropicalis/genética , Candida tropicalis/ultraestrutura , Parede Celular/genética , Parede Celular/ultraestrutura , Cianobactérias/fisiologia , Simbiose , Vacúolos/microbiologia , Genes Bacterianos/genética , Microscopia Eletrônica de Transmissão , RNA Ribossômico 16S/genética , Vacúolos/ultraestrutura
11.
Appl Environ Microbiol ; 86(10)2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32198176

RESUMO

Microbial mat communities are associated with extensive (∼700 km2) and morphologically variable carbonate structures, termed microbialites, in the hypersaline Great Salt Lake (GSL), Utah. However, whether the composition of GSL mat communities covaries with microbialite morphology and lake environment is unknown. Moreover, the potential adaptations that allow the establishment of these extensive mat communities at high salinity (14% to 17% total salts) are poorly understood. To address these questions, microbial mats were sampled from seven locations in the south arm of GSL representing different lake environments and microbialite morphologies. Despite the morphological differences, microbialite-associated mats were taxonomically similar and were dominated by the cyanobacterium Euhalothece and several heterotrophic bacteria. Metagenomic sequencing of a representative mat revealed Euhalothece and subdominant Thiohalocapsa populations that harbor the Calvin cycle and nitrogenase, suggesting they supply fixed carbon and nitrogen to heterotrophic bacteria. Fifteen of the next sixteen most abundant taxa are inferred to be aerobic heterotrophs and, surprisingly, harbor reaction center, rhodopsin, and/or bacteriochlorophyll biosynthesis proteins, suggesting aerobic photoheterotrophic (APH) capabilities. Importantly, proteins involved in APH are enriched in the GSL community relative to that in microbialite mat communities from lower salinity environments. These findings indicate that the ability to integrate light into energy metabolism is a key adaptation allowing for robust mat development in the hypersaline GSL.IMPORTANCE The earliest evidence of life on Earth is from organosedimentary structures, termed microbialites, preserved in 3.481-billion-year-old (Ga) rocks. Phototrophic microbial mats form in association with an ∼700-km2 expanse of morphologically diverse microbialites in the hypersaline Great Salt Lake (GSL), Utah. Here, we show taxonomically similar microbial mat communities are associated with morphologically diverse microbialites across the lake. Metagenomic sequencing reveals an abundance and diversity of autotrophic and heterotrophic taxa capable of harvesting light energy to drive metabolism. The unexpected abundance of and diversity in the mechanisms of harvesting light energy observed in GSL mat populations likely function to minimize niche overlap among coinhabiting taxa, provide a mechanism(s) to increase energy yield and osmotic balance during salt stress, and enhance fitness. Together, these physiological benefits promote the formation of robust mats that, in turn, influence the formation of morphologically diverse microbialite structures that can be imprinted in the rock record.


Assuntos
Bactérias/classificação , Fenômenos Fisiológicos Bacterianos , Lagos/microbiologia , Microbiota , Cianobactérias/classificação , Cianobactérias/fisiologia , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Salinidade , Utah
12.
Nat Microbiol ; 5(5): 757-767, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32203409

RESUMO

Photosynthetic organisms regulate their responses to many diverse stimuli in an effort to balance light harvesting with utilizable light energy for carbon fixation and growth (source-sink regulation). This balance is critical to prevent the formation of reactive oxygen species that can lead to cell death. However, investigating the molecular mechanisms that underlie the regulation of photosynthesis in cyanobacteria using ensemble-based measurements remains a challenge due to population heterogeneity. Here, to address this problem, we used long-term quantitative time-lapse fluorescence microscopy, transmission electron microscopy, mathematical modelling and genetic manipulation to visualize and analyse the growth and subcellular dynamics of individual wild-type and mutant cyanobacterial cells over multiple generations. We reveal that mechanical confinement of actively growing Synechococcus sp. PCC 7002 cells leads to the physical disassociation of phycobilisomes and energetic decoupling from the photosynthetic reaction centres. We suggest that the mechanical regulation of photosynthesis is a critical failsafe that prevents cell expansion when light and nutrients are plentiful, but when space is limiting. These results imply that cyanobacteria must convert a fraction of the available light energy into mechanical energy to overcome frictional forces in the environment, providing insight into the regulation of photosynthesis and how microorganisms navigate their physical environment.


Assuntos
Cianobactérias/fisiologia , Fotossíntese/fisiologia , Cianobactérias/citologia , Cianobactérias/crescimento & desenvolvimento , Fluorescência , Luz , Modelos Teóricos , Ficobilissomas/fisiologia , Synechococcus/crescimento & desenvolvimento , Synechococcus/fisiologia
13.
FEMS Microbiol Lett ; 367(5)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32166328

RESUMO

Soil inhabiting true branching heterocytous cyanobacterium strain SNS 3 with T-type branching was collected from the campus of Banaras Hindu University, India and characterized using the polyphasic approach. Morphological observations showed the presence of akinetes (in chain), hormogonia and monocytes. Physiological characterization of strain SNS 3 showed high content of carotenoid in comparison to chlorophyll a content along with also exhibiting a higher C/N ratio in the nitrogen deficient BG110 medium. 16S rRNA gene sequencing and subsequent phylogeny indicated strong clustering of the strain SNS 3 within the Westiellopsis clade. Folded secondary structures of the ITS region showed visible differences in the D1-D1' and BoxB helix of the strain SNS 3. The polyphasic approach indicated the strain SNS 3 as a new member of the genus Westiellopsis with the name proposed being Westiellopsis akinetica sp. nov. on the basis of the International Code of Nomenclature for Algae, Fungi and Plants. Intense phylogenetic evaluation of the entire true-branched heterocytous clade indicated the need for more revisionary attempts for demarcating the sensu stricto clades along with highlighting the scope for further taxonomic revisions in the future.


Assuntos
Cianobactérias/classificação , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Cianobactérias/fisiologia , DNA Bacteriano/genética , Índia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
14.
Sci Adv ; 6(8): eaax2926, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32128392

RESUMO

Although phenotypic plasticity is a widespread phenomenon, its implications for species responses to climate change are not well understood. For example, toxic cyanobacteria can form dense surface blooms threatening water quality in many eutrophic lakes, yet a theoretical framework to predict how phenotypic plasticity affects bloom development at elevated pCO2 is still lacking. We measured phenotypic plasticity of the carbon fixation rates of the common bloom-forming cyanobacterium Microcystis. Our results revealed a 1.8- to 5-fold increase in the maximum CO2 uptake rate of Microcystis at elevated pCO2, which exceeds CO2 responses reported for other phytoplankton species. The observed plasticity was incorporated into a mathematical model to predict dynamic changes in cyanobacterial abundance. The model was successfully validated by laboratory experiments and predicts that acclimation to high pCO2 will intensify Microcystis blooms in eutrophic lakes. These results indicate that this harmful cyanobacterium is likely to benefit strongly from rising atmospheric pCO2.


Assuntos
Adaptação Fisiológica , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Cianobactérias/fisiologia , Eutrofização , Algoritmos , Cinética , Lagos , Modelos Biológicos , Reprodutibilidade dos Testes
15.
FEMS Microbiol Lett ; 367(5)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32037451

RESUMO

Stable, long-term interactions between fungi and algae or cyanobacteria, collectively known as lichens, have repeatedly evolved complex architectures with little resemblance to their component parts. Lacking any central scaffold, the shapes they assume are casts of secreted polymers that cement cells into place, determine the angle of phototropic exposure and regulate water relations. A growing body of evidence suggests that many lichen extracellular polymer matrices harbor unicellular, non-photosynthesizing organisms (UNPOs) not traditionally recognized as lichen symbionts. Understanding organismal input and uptake in this layer is key to interpreting the role UNPOs play in lichen biology. Here, we review both polysaccharide composition determined from whole, pulverized lichens and UNPOs reported from lichens to date. Most reported polysaccharides are thought to be structural cell wall components. The composition of the extracellular matrix is not definitively known. Several lines of evidence suggest some acidic polysaccharides have evaded detection in routine analysis of neutral sugars and may be involved in the extracellular matrix. UNPOs reported from lichens include diverse bacteria and yeasts for which secreted polysaccharides play important biological roles. We conclude by proposing testable hypotheses on the role that symbiont give-and-take in this layer could play in determining or modifying lichen symbiotic outcomes.


Assuntos
Biofilmes/crescimento & desenvolvimento , Líquens/fisiologia , Polissacarídeos/química , Simbiose , Cianobactérias/química , Cianobactérias/fisiologia , Fungos/química , Fungos/fisiologia , Filogenia , Ácidos Urônicos
16.
Curr Biol ; 30(2): 344-350.e4, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31928871

RESUMO

Cellular innovation is central to biological diversification, yet its underlying mechanisms remain poorly understood [1]. One potential source of new cellular traits is environmentally induced phenotypic variation, or phenotypic plasticity. The plasticity-first hypothesis [2-4] proposes that natural selection can improve upon an ancestrally plastic phenotype to produce a locally adaptive trait, but the role of plasticity for adaptive evolution is still unclear [5-10]. Here, we show that a structurally novel form of the heterocyst, the specialized nitrogen-fixing cell of the multicellular cyanobacterium Fischerella thermalis, has evolved multiple times from ancestrally plastic developmental variation during adaptation to high temperature. Heterocyst glycolipids (HGs) provide an extracellular gas diffusion barrier that protects oxygen-sensitive nitrogenase [11, 12], and cyanobacteria typically exhibit temperature-induced plasticity in HG composition that modulates heterocyst permeability [13, 14]. By contrast, high-temperature specialists of F. thermalis constitutively overproduce glycolipid isomers associated with high temperature to levels unattained by plastic strains. This results in a less-permeable heterocyst, which is advantageous at high temperature but deleterious at low temperature for both nitrogen fixation activity and fitness. Our study illustrates how the origin of a novel cellular phenotype by the genetic assimilation and adaptive refinement of a plastic trait can be a source of biological diversity and contribute to ecological specialization.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Cianobactérias/fisiologia , Fixação de Nitrogênio/fisiologia , Seleção Genética , Cianobactérias/genética , Temperatura Alta
17.
Biochem Biophys Res Commun ; 524(1): 123-128, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-31980172

RESUMO

Circadian rhythms are the endogenous oscillation of biological reactions and behaviors in most organisms on Earth. Circadian clocks are the pacemakers regulating circadian rhythms, and the transcription-translation dependent feedback loop (TTFL) model was supposed to be the sole model of circadian clocks. However, recent years have witnessed rapid progresses in the study of non-TTFL circadian clocks. The cyanobacterial circadian clock consists of three proteins (KaiA, KaiB, and KaiC), and is extensively studied as a non-TTFL circadian clock model. Although containing only three proteins, the molecular mechanism of the KaiABC circadian clock remains elusive. We recently noticed that KaiA has an auto-inhibition conformation during the oscillation, but how this auto-inhibition is regulated is unclear. Here, we started from the design of light modulated KaiAs to investigate this mechanism. We designed different KaiA constructs fused with the light modulable LOV2 protein, and used light-modulated KaiAs to regulate the phosphorylation and dephosphorylation of KaiC. Our data indicated that the N-terminal domain of KaiA is important for KaiA's reversible off/on switching during the unidirectional oscillation of the KaiABC system. This work provides an updated model to explain the molecular mechanism of the KaiABC circadian clock.


Assuntos
Proteínas de Bactérias/metabolismo , Relógios Circadianos/fisiologia , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Cianobactérias/fisiologia , Ativadores de Enzimas/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Ritmo Circadiano/fisiologia , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Fosforilação , Ligação Proteica , Conformação Proteica , Multimerização Proteica , RNA Bacteriano
18.
Nat Commun ; 11(1): 238, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31932639

RESUMO

Chlorophylls (Chl) play pivotal roles in energy capture, transfer and charge separation in photosynthesis. Among Chls functioning in oxygenic photosynthesis, Chl f is the most red-shifted type first found in a cyanobacterium Halomicronema hongdechloris. The location and function of Chl f in photosystems are not clear. Here we analyzed the high-resolution structures of photosystem I (PSI) core from H. hongdechloris grown under white or far-red light by cryo-electron microscopy. The structure showed that, far-red PSI binds 83 Chl a and 7 Chl f, and Chl f are associated at the periphery of PSI but not in the electron transfer chain. The appearance of Chl f is well correlated with the expression of PSI genes induced under far-red light. These results indicate that Chl f functions to harvest the far-red light and enhance uphill energy transfer, and changes in the gene sequences are essential for the binding of Chl f.


Assuntos
Clorofila/análogos & derivados , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/metabolismo , Sítios de Ligação , Clorofila/metabolismo , Clorofila/efeitos da radiação , Clorofila A/metabolismo , Clorofila A/efeitos da radiação , Microscopia Crioeletrônica , Cianobactérias/química , Cianobactérias/fisiologia , Transferência de Energia , Luz , Modelos Moleculares , Complexo de Proteína do Fotossistema I/efeitos da radiação , Conformação Proteica
19.
Sci Adv ; 6(3): eaax5343, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31998836

RESUMO

Evidence is accumulating to challenge the paradigm that biogenic methanogenesis, considered a strictly anaerobic process, is exclusive to archaea. We demonstrate that cyanobacteria living in marine, freshwater, and terrestrial environments produce methane at substantial rates under light, dark, oxic, and anoxic conditions, linking methane production with light-driven primary productivity in a globally relevant and ancient group of photoautotrophs. Methane production, attributed to cyanobacteria using stable isotope labeling techniques, was enhanced during oxygenic photosynthesis. We suggest that the formation of methane by cyanobacteria contributes to methane accumulation in oxygen-saturated marine and limnic surface waters. In these environments, frequent cyanobacterial blooms are predicted to further increase because of global warming potentially having a direct positive feedback on climate change. We conclude that this newly identified source contributes to the current natural methane budget and most likely has been producing methane since cyanobacteria first evolved on Earth.


Assuntos
Cianobactérias/fisiologia , Metano/biossíntese , Microbiologia do Solo , Microbiologia da Água , Fotoperíodo
20.
Environ Pollut ; 260: 113847, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32000020

RESUMO

Though the main toxic mechanisms of graphene oxide (GO) to algae have been accepted as the shading effect, oxidative stress and mechanical damage, the effect of algal characteristics on these three mechanisms of GO toxicity have seldom been taken into consideration. In this study, we investigated GO toxicity to green algae (Chlorella vulgaris, Scenedesmus obliquus, Chlamydomonas reinhardtii), cyanobacteria (Microcystis aeruginosa) and diatoms (Cyclotella sp.). The aim was to assess how the physiological characteristics of algae affect the toxicity of GO. Results showed that 10 mg/L of GO significantly inhibited the growth of all tested algal types, while S. obliquus and C. reinhardtii were found to be the most susceptible and tolerant species, respectively. Then, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to observe the physiological characteristics of the assessed algae. The presence of locomotive organelles, along with smaller and more spherical cells, was more likely to alleviate the shading effect. Variations in cell wall composition led to different extents of mechanical damage as shown by Cyclotella sp. silica frustules and S. obliquus autosporine division being prone to damage. Meanwhile, growth inhibition and cell division were significantly correlated with the oxidative stress and membrane permeability, suggesting the latter two indicators can effectively signal GO toxicity to algae. The findings of this study provide novel insights into the toxicity of graphene materials in aquatic environments.


Assuntos
Clorófitas , Cianobactérias , Diatomáceas , Grafite , Clorófitas/efeitos dos fármacos , Clorófitas/fisiologia , Cianobactérias/efeitos dos fármacos , Cianobactérias/fisiologia , Diatomáceas/efeitos dos fármacos , Diatomáceas/fisiologia , Grafite/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...