RESUMO
The unsuitable deformation stimulus, harsh urine environment, and lack of a regenerative microenvironment (RME) prevent scaffold-based urethral repair and ultimately lead to irreversible urethral scarring. The researchers clarify the optimal elastic modulus of the urethral scaffolds for urethral repair and design a multilayered PVA hydrogel scaffold for urethral scar-free healing. The inner layer of the scaffold has self-healing properties, which ensures that the wound effectively resists harsh urine erosion, even when subjected to sutures. In addition, the scaffold's outer layer has an extracellular matrix-like structure that synergizes with adipose-derived stem cells to create a favorable RME. In vivo experiments confirm successful urethral scar-free healing using the PVA multilayered hydrogel scaffold. Further mechanistic study shows that the PVA multilayer hydrogel effectively resists the urine-induced inflammatory response and accelerates the transition of urethral wound healing to the proliferative phase by regulating macrophage polarization, thus providing favorable conditions for urethral scar-free healing. This study provides mechanical criteria for the fabrication of urethral tissue-engineered scaffolds, as well as important insights into their design.
Assuntos
Módulo de Elasticidade , Hidrogéis , Alicerces Teciduais , Uretra , Cicatrização , Alicerces Teciduais/química , Animais , Hidrogéis/química , Engenharia Tecidual/métodos , Camundongos , Regeneração , Cicatriz/patologia , Masculino , Microambiente Celular , Ratos Sprague-Dawley , Células-Tronco/citologiaRESUMO
Traumatic brain injury (TBI) is an acquired insult to the brain caused by an external mechanical force, potentially resulting in temporary or permanent impairment. Microglia, the resident immune cells of the central nervous system, are activated in response to TBI, participating in tissue repair process. However, the underlying epigenetic mechanisms in microglia during TBI remain poorly understood. ARID1A (AT-Rich Interaction Domain 1 A), a pivotal subunit of the multi-protein SWI/SNF chromatin remodeling complex, has received little attention in microglia, especially in the context of brain injury. In this study, we generated a Arid1a cKO mouse line to investigate the potential roles of ARID1A in microglia in response to TBI. We found that glial scar formation was exacerbated due to increased microglial migration and a heightened inflammatory response in Arid1a cKO mice following TBI. Mechanistically, loss of ARID1A led to an up-regulation of the chemokine CCL5 in microglia upon the injury, while the CCL5-neutralizing antibody reduced migration and inflammatory response of LPS-stimulated Arid1a cKO microglia. Importantly, administration of auraptene (AUR), an inhibitor of CCL5, repressed the microglial migration and inflammatory response, as well as the glial scar formation after TBI. These findings suggest that ARID1A is critical for microglial response to injury and that AUR has a therapeutic potential for the treatment of TBI.
Assuntos
Lesões Encefálicas Traumáticas , Quimiocina CCL5 , Proteínas de Ligação a DNA , Camundongos Knockout , Microglia , Fatores de Transcrição , Animais , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/genética , Microglia/metabolismo , Microglia/patologia , Quimiocina CCL5/metabolismo , Quimiocina CCL5/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Camundongos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Movimento Celular , Cicatriz/patologia , Cicatriz/metabolismo , Camundongos Endogâmicos C57BL , MasculinoRESUMO
During the wound healing process, the activation of signal transducer and activator of transcription 3 (STAT3) is considered crucial for the migration and proliferation of epithelial cells, as well as for establishing the inflammatory environment. However, an excessive STAT3 activation aggravates scar formation. Here we show that 450 nm blue light and 630 nm red light can differentially regulate the phosphorylation of STAT3 (p-STAT3) and its downstream cytokines in keratinocytes. Further mechanistic studies reveal that red light promotes wound healing by activating the PI3 kinase p110 beta (PI3Kß)/STAT3 signaling axis, while blue light inhibits p-STAT3 at the wound site by modulating cytochrome c-P450 (CYT-P450) activity and reactive oxygen species (ROS) generation. In a mouse scar model, skin wound healing can be significantly accelerated with red light followed by blue light to reduce scar formation. In summary, our study presents a potential strategy for regulating epithelial cell p-STAT3 through visible light to address skin scarring issues and elucidates the underlying mechanisms.
Assuntos
Cicatriz , Luz , Fator de Transcrição STAT3 , Transdução de Sinais , Pele , Cicatrização , Animais , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Cicatriz/metabolismo , Cicatriz/patologia , Cicatriz/prevenção & controle , Camundongos , Luz/efeitos adversos , Pele/efeitos da radiação , Pele/metabolismo , Pele/patologia , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Humanos , Masculino , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Modelos Animais de DoençasRESUMO
Wounds are most commonly caused by accidents, surgery and burns, and can be internal or external. Naturally, the wound healing process can take a long time and lead to scarring. In this study we present a technique to shorten wound healing time and prevent or mitigate scarring using D-mannose that is applied directly on the wound. The results showed that the healing time is almost halved compared to treatment with povidone-iodine solution which is an antiseptic widely used in surgery. D-Mannose is neither an antisepsis nor an antibiotic. We propose a posssible mechanism by which D-mannose binds to D-mannose binding lectin and immediately activates the innate immune system that ultimately phagocytizes pathogens and clears the wound of degraded cells and materials, which reduces inflammation and implicitly wound healing time. D-Mannose also intervenes in the coagulation process by binding to fibrinogen, generating a finer and denser fibrin, which visibly reduces collagen scars. Our findings show that applying D-mannose directly on the wound as a powder shortens wound healing time and visibly attenuates scarring. Apart from the unaesthetic appearance, these scars can also cause a certain tissue dysfunction, regardless of the affected organ.
Assuntos
Cicatriz , Lectina de Ligação a Manose , Manose , Cicatrização , Cicatrização/efeitos dos fármacos , Cicatriz/patologia , Cicatriz/prevenção & controle , Lectina de Ligação a Manose/metabolismo , Animais , Humanos , Masculino , Pele/patologia , Pele/efeitos dos fármacos , Pele/metabolismo , Feminino , Imunidade Inata/efeitos dos fármacosRESUMO
Follicular unit hair extraction (FUE) is effective for hair restoration but is less successful on scarred tissue due to reduced vascularity and altered tissue architecture. Stem cell therapy can enhance tissue regeneration, possibly improving FUE outcomes on scarred tissue. This study investigated the impact of stem cell therapy prior to FUE on scarred tissue. Sixty patients with scalp scars from trauma or previous surgeries were divided into two groups. Group A (n = 30) received autologous stem cell therapy followed by FUE, while Group B (n = 30) underwent FUE without prior stem cell treatment. Autologous stem cells were harvested from patients' adipose tissue and injected into the scarred area four weeks before FUE. Outcomes were assessed at 3-, 6-, and 12-months post-transplantation, focusing on hair density, graft survival rate, and patient satisfaction. Histological examinations evaluated tissue regeneration. Group A showed significantly higher hair density (mean increase of 45%) and graft survival rates (87%) compared to Group B (mean increase of 25%, graft survival rate of 60%) at all follow-up points (P < 0.05). Histological analysis revealed enhanced neovascularization and reduced fibrosis in the stem cell-treated group, with 70% more new blood vessels and 50% less fibrotic tissue compared to the control group. Patient satisfaction scores were higher in Group A (average score of 8.5 out of 10) versus Group B (6.0), indicating better aesthetic outcomes and reduced scar visibility. Pre-treatment with autologous stem cell therapy significantly improved FUE effectiveness on scarred tissue, enhancing graft survival, hair density, and patient satisfaction. Further research is recommended to optimize this therapeutic strategy.
Assuntos
Cicatriz , Folículo Piloso , Transplante de Células-Tronco , Humanos , Cicatriz/terapia , Cicatriz/patologia , Folículo Piloso/transplante , Feminino , Adulto , Transplante de Células-Tronco/métodos , Masculino , Pessoa de Meia-Idade , Transplante Autólogo , Alopecia/terapia , Couro Cabeludo , Cabelo/transplante , Adulto JovemRESUMO
Spinal cord injury (SCI) often results in permanent loss of motor and sensory function. After SCI, the blood-spinal cord barrier (BSCB) is disrupted, causing the infiltration of neutrophils and macrophages, which secrete several kinds of cytokines, as well as matrix metalloproteinases (MMPs). MMPs are proteases capable of degrading various extracellular matrix (ECM) proteins, as well as many non-matrix substrates. The tissue inhibitor of MMPs (TIMP)-1 is significantly upregulated post-SCI and operates via MMP-dependent and MMP-independent pathways. Through the MMP-dependent pathway, TIMP-1 directly reduces inflammation and destruction of the ECM by binding and blocking the catalytic domains of MMPs. Thus, TIMP-1 helps preserve the BSCB and reduces immune cell infiltration. The MMP-independent pathway involves TIMP-1's cytokine-like functions, in which it binds specific TIMP surface receptors. Through receptor binding, TIMP-1 can stimulate the proliferation of several types of cells, including keratinocytes, aortic smooth muscle cells, skin epithelial cells, corneal epithelial cells, and astrocytes. TIMP-1 induces astrocyte proliferation, modulates microglia activation, and increases myelination and neurite extension in the central nervous system (CNS). In addition, TIMP-1 also regulates apoptosis and promotes cell survival through direct signaling. This review provides a comprehensive assessment of TIMP-1, specifically regarding its contribution to inflammation, ECM remodeling, and scar formation after SCI.
Assuntos
Cicatriz , Traumatismos da Medula Espinal , Inibidores Teciduais de Metaloproteinases , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/metabolismo , Humanos , Animais , Cicatriz/patologia , Cicatriz/metabolismo , Inibidores Teciduais de Metaloproteinases/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismoRESUMO
Scar tissue formation following skin wound healing is a challenging public health problem. Skin regeneration and preventing the formation of scar tissue by currently available commercial products are largely ineffective. This study aimed to test the efficacy of a novel topical metformin lotion (ML) in inhibiting scar tissue formation during skin wound healing in rats and to determine the mechanisms of action involved. A 6% ML was prepared in our laboratory. A skin wound healing model in rats was used. The wounded rats were divided into two groups and treated daily for 10 days as follows: Group 1 received a daily application of 50 mg of control lotion, or 0% ML (totaling 100 mg of lotion per rat), and Group 2 received a daily application of 50 mg of 6% ML (totaling 100 mg of 6% ML per rat). Blood samples from the heart of each rat were analyzed for inflammatory markers, HMGB1 and IL-1ß, using ELISA, and immunological and histological analyses were performed on skin tissue sections. ML decreased levels of inflammatory markers HMGB1 and IL-1ß in the serum of rats and inhibited the release of HMGB1 from cell nuclei into the skin tissue matrix. Additionally, ML demonstrated anti-fibrotic properties by enhancing AMPK activity, decreasing the expression of TGF-ß1, reducing the number of myofibroblasts, decreasing the production of collagen III, and increasing the expression of collagen I. ML promotes the regeneration of high-quality skin during wound healing by reducing scar tissue formation. This effect is mediated through the activation of AMPK, inhibition of TGF-ß1, and a decrease in the number of myofibroblasts.
Assuntos
Proteínas Quinases Ativadas por AMP , Cicatriz , Metformina , Miofibroblastos , Pele , Fator de Crescimento Transformador beta1 , Cicatrização , Animais , Metformina/farmacologia , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Ratos , Cicatrização/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Cicatriz/prevenção & controle , Cicatriz/patologia , Cicatriz/tratamento farmacológico , Cicatriz/metabolismo , Masculino , Interleucina-1beta/metabolismo , Proteína HMGB1/metabolismo , Ratos Sprague-DawleyRESUMO
A burn is a type of injury to the skin or other tissues caused by heat, chemicals, electricity, sunlight, or radiation. Burn injuries have been proven to have the potential for long-term detrimental effects on the human body. The conventional therapeutic approaches are not able to effectively and easily heal these burn wounds completely. The main potential drawbacks of these treatments include hypertrophic scarring, contracture, infection, necrosis, allergic reactions, prolonged healing times, and unsatisfactory cosmetic results. The existence of these drawbacks and limitations in current treatment approaches necessitates the need to search for and develop better, more efficient therapies. The regenerative potential of microRNAs (miRNAs) and the exosomal miRNAs derived from various cell types, especially stem cells, offer advantages that outweigh traditional burn wound healing treatment procedures. The use of multiple types of stem cells is gaining interest due to their improved healing efficiency for various applications. Stem cells have several key distinguishing characteristics, including the ability to promote more effective and rapid healing of burn wounds, reduced inflammation levels at the wound site, and less scar tissue formation and fibrosis. In this review, we have discussed the stages of wound healing, the role of exosomes and miRNAs in improving thermal-induced wounds, and the impact of miRNAs in preventing the formation of hypertrophic scars. Research studies, pre-clinical and clinical, on the use of different cell-derived exosomal miRNAs and miRNAs for the treatment of thermal burns have been documented from the year 2000 up to the current time. Studies show that the use of different cell-derived exosomal miRNAs and miRNAs can improve the healing of burn wounds. The migration of exosomal miRNAs to the site of a wound leads to inhibition of apoptosis, induction of autophagy, re-epithelialization, granulation, regeneration of skin appendages, and angiogenesis. In conclusion, this study underscores the importance of integrating miRNA and exosome research into treatment strategies for burn injuries, paving the way for novel therapeutic approaches that could significantly improve patient outcomes and recovery times.
Assuntos
Queimaduras , Exossomos , MicroRNAs , Pele , Cicatrização , Exossomos/genética , Exossomos/metabolismo , MicroRNAs/genética , Cicatrização/genética , Humanos , Queimaduras/genética , Queimaduras/patologia , Queimaduras/terapia , Animais , Pele/patologia , Pele/lesões , Pele/metabolismo , Cicatriz/genética , Cicatriz/patologia , Células-Tronco/metabolismoRESUMO
Scar tissue formation is a hallmark of wound repair in adults and can chronically affect tissue architecture and function. To understand the general phenomena, we sought to explore scar-driven imbalance in tissue homeostasis caused by a common, and standardized surgical procedure, the uterine scar due to cesarean surgery. Deep uterine scar is associated with a rapidly increasing condition in pregnant women, placenta accreta spectrum (PAS), characterized by aggressive trophoblast invasion into the uterus, frequently necessitating hysterectomy at parturition. We created a model of uterine scar, recapitulating PAS-like invasive phenotype, showing that scar matrix activates mechanosensitive ion channel, Piezo1, through glycolysis-fueled cellular contraction. Piezo1 activation increases intracellular calcium activity and Protein kinase C activation, leading to NF-κB nuclear translocation, and MafG stabilization. This inflammatory transformation of decidua leads to production of IL-8 and G-CSF, chemotactically recruiting invading trophoblasts towards scar, initiating PAS. Our study demonstrates aberrant mechanics of scar disturbs stroma-epithelia homeostasis in placentation, with implications in cancer dissemination.
Assuntos
Cicatriz , Inflamação , Canais Iônicos , Placenta Acreta , Trofoblastos , Feminino , Gravidez , Humanos , Placenta Acreta/metabolismo , Placenta Acreta/patologia , Cicatriz/metabolismo , Cicatriz/patologia , Canais Iônicos/metabolismo , Canais Iônicos/genética , Animais , Inflamação/metabolismo , Inflamação/patologia , Trofoblastos/metabolismo , Trofoblastos/patologia , Decídua/patologia , Decídua/metabolismo , Camundongos , NF-kappa B/metabolismo , Cesárea/efeitos adversos , Proteína Quinase C/metabolismo , Proteína Quinase C/genética , Interleucina-8/metabolismo , Útero/patologia , Útero/metabolismoRESUMO
Pathological scarring has been a challenge in skin injury repair since ancient times, and prophylactic treatment in the early stages of wound healing usually results in delayed wound healing. In this study, poly(ethylene oxide) (PEO) and chitosan (CTS) were used as carrier materials to construct multifunctional pirfenidone (PFD)/CTS/PEO (PCP) nanofiber membranes (NFMs) loaded with PFD by microfluidic blow-spinning (MBS). MBS is a good method for quickly, safely, and greenly constructing large-area manufacturing of inexpensive NFMs. PCP NFMs were uniform in external morphology, with diameters ranging from 200 to 500 nm. The encapsulation efficiency of the drug-loaded PCP NFMs was above 80%, which had a good slow release, visualization, water absorption, and biocompatibility. The inhibitory effect of PCP NFMs on normal human dermal fibroblasts was dose-dependent and inhibited the expression of the transforming growth factor-ß1/SMAD family member 3 (TGF-ß1/SMAD3) signaling pathway. PCP NFMs showed significant antibacterial effects against both Staphylococcus aureus and Escherichia coli. In the rabbit ear scar experiment, the wound healed about 70% on day 5 and almost completely on day 10 after PCP-3 NFMs treatment, with the thinnest scar tissue, skin color, tenderness close to normal tissue, and a Vancouver scar scale score of less than 5. PCP-3 NFMs had good effects on anti-inflammatory, wound healing, and collagen-I deposition reducing effects. In conclusion, PCP-3 NFMs can both promote wound healing and intervene to inhibit pathological scarring in advance, making them a potential multifunctional wound dressing for early prevention and treatment of pathological scarring.
Assuntos
Antibacterianos , Quitosana , Cicatriz , Nanofibras , Staphylococcus aureus , Cicatrização , Nanofibras/química , Animais , Coelhos , Humanos , Cicatriz/prevenção & controle , Cicatriz/patologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Quitosana/química , Quitosana/farmacologia , Cicatrização/efeitos dos fármacos , Piridonas/química , Piridonas/farmacologia , Escherichia coli/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Polietilenoglicóis/química , Fator de Crescimento Transformador beta1/metabolismo , Membranas Artificiais , Microfluídica/métodosRESUMO
Excessive fibrotic scar formation during skin defect repair poses a formidable challenge, impeding the simultaneous acceleration of wound healing and prevention of scar formation and hindering the restoration of skin integrity and functionality. Drawing inspiration from the structural, compositional, and biological attributes of skin, we developed a hydrogel containing modified recombinant human collagen type III and thiolated hyaluronic acid to address the challenges of regenerating skin appendages and improving the recovery of skin functions after injury by reducing fibrotic scarring. The hydrogel displayed favorable biocompatibility, antioxidant properties, angiogenic potential, and fibroblast migration stimulation in vitro. In a rat full-layer defect model, it reduced inflammation, promoted microvascular formation, and significantly enhanced the wound healing speed and effectiveness. Additionally, by upregulating fibrosis-associated genes, such as TGFB1, it facilitated collagen accumulation and a beneficial balance between type I and type III collagen, potentially expediting skin regeneration and functional recovery. In conclusion, the utilization of rhCol III-HS demonstrated considerable potential as a wound dressing, offering a highly effective strategy for the restoration and rejuvenation of complete skin defects.
Assuntos
Cicatriz , Colágeno Tipo III , Hidrogéis , Proteínas Recombinantes , Cicatrização , Cicatrização/efeitos dos fármacos , Colágeno Tipo III/metabolismo , Colágeno Tipo III/genética , Colágeno Tipo III/química , Animais , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Ratos , Cicatriz/patologia , Cicatriz/tratamento farmacológico , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/química , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Pele/efeitos dos fármacos , Pele/patologia , Masculino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Polissacarídeos/química , Polissacarídeos/farmacologia , Ácido Hialurônico/química , Ácido Hialurônico/farmacologiaRESUMO
BACKGROUND: Laser technology is a viable therapeutic option for treating a number of skin pathologic conditions, including pigmented lesions, vascular lesions and acne scars. AIM: In this work, through in vitro and clinical investigations we test the efficacy, the safety and the speed of treatment of high-powered laser system emitting a 675-nm in the management of various skin condition. MATERIALS AND METHODS: In vitro experiments were performed irradiating adult human dermal fibroblasts cells (HDFa) with 675-nm laser for 24, 48 and 72 h with different fluences and Ki-67+ cells were counted. The confocal microscopy images of control and treated samples were acquired. Clinical skin rejuvenation/diseases treatments with 675 nm laser device were performed with different laser parameters in 11 patients with pigmented lesions, 5 patients with acne scars and 23 patients for skin rejuvenation. Data were evaluated with the validated global score using 5-point scales (GAIS) and patient's satisfaction scale. RESULTS: The application of the high-power 675 nm laser has proven effective in stimulating cell proliferation in in vitro experiments and it led to good results for all skin pathologies. GAIS showed values between 3 and 4 points for all treated pathologies, all scores between '75%-good improvements' and '100%-excellent improvements'. The treatment time was reduced by 50% compared to the old parameters setting, resulting in a faster and good patient's satisfying technique. No serious adverse effects were recorded. CONCLUSION: the preclinical and clinical data confirm the efficacy and safety of this high-powered 675 nm laser for several skin condition.
Assuntos
Fibroblastos , Rejuvenescimento , Humanos , Adulto , Feminino , Fibroblastos/efeitos da radiação , Masculino , Pessoa de Meia-Idade , Dermatopatias/radioterapia , Dermatopatias/patologia , Proliferação de Células , Resultado do Tratamento , Células Cultivadas , Satisfação do Paciente , Terapia a Laser/métodos , Terapia a Laser/instrumentação , Pele/patologia , Pele/efeitos da radiação , Envelhecimento da Pele/efeitos da radiação , Acne Vulgar/radioterapia , Acne Vulgar/patologia , Acne Vulgar/complicações , Cicatriz/patologia , Adulto JovemRESUMO
Wound rehabilitation is invariably time-consuming, scar formation further weakens therapeutic efficacy, and detailed mechanisms at the molecular level remain unclear. In this work, a Mo4/3B2-x nanoscaffold was fabricated and utilized for wound healing and scar removing in a mice model, while metabolomics was used to study the metabolic reprogramming of metabolome during therapy at the molecular level. The results showed that transition metal borides, called Mo4/3B2-x nanoscaffolds, could mimic superoxide dismutase and glutathione peroxidase to eliminate excess reactive oxygen species (ROS) in the wound microenvironment. During the therapeutic process, the Mo4/3B2-x nanoscaffold could facilitate the regeneration of wounds and removal of scars by regulating the biosynthesis of collagen, fibers, and blood vessels at the pathological, imaging, and molecular levels. Subsequent metabolomics study revealed that the Mo4/3B2-x nanoscaffold effectively ameliorated metabolic disorders in both wound and scar microenvironments through regulating ROS-related pathways including the amino acid metabolic process (including glycine and serine metabolism and glutamate metabolism) and the purine metabolic process. This study is anticipated to illuminate the potential clinical application of the Mo4/3B2-x nanoscaffold as an effective therapeutic agent in traumatic diseases and provide insights into the development of analytical methodology for interrogating wound healing and scar removal-related metabolic mechanisms.
Assuntos
Aminoácidos , Cicatriz , Purinas , Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Cicatriz/metabolismo , Cicatriz/patologia , Cicatriz/tratamento farmacológico , Camundongos , Aminoácidos/química , Aminoácidos/metabolismo , Purinas/química , Purinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , MasculinoRESUMO
BACKGROUND: The inflammatory response and scar formation after spinal cord injury (SCI) limit nerve regeneration and functional recovery. Our research group has previously shown that the expression of astrocyte-derived lipocalin 2 (Lcn2) is upregulated after SCI, which correlates with neuronal apoptosis and functional recovery. Therefore, we speculate that astrocyte-specific knockdown of Lcn2 after SCI may lead to a better prognosis. METHODS: Tissue RNA sequencing, Western blotting, PCR, and immunofluorescence assays were conducted to assess the expression of Lcn2 following SCI in mice. Adeno-associated virus 9 (AAV9) transfection was employed to specifically reduce the expression of Lcn2 in astrocytes, and subsequent evaluations of scarring and inflammation were conducted. In vitro experiments involved treating primary astrocytes with TGF-ß or an A1-induced mixture (C1q, TNF-α and IL-1α) following Lcn2 knockdown. Finally, the intrathecal injection of recombinant Lcn2 (ReLcn2) protein was conducted post-injury to further confirm the role of Lcn2 and its underlying mechanism in SCI. RESULTS: Lcn2 expression was elevated in astrocytes after SCI at 7 dpi (days post injury). Lcn2 knockdown in astrocytes is beneficial for neuronal survival and functional recovery after SCI, and is accompanied by a reduced inflammatory response and inhibited scar formation. The inhibition of SMAD-associated signaling activation was identified as a possible mechanism, and in vitro experiments further confirmed this finding. ReLcn2 further activated SMAD-associated signaling and aggravated motor function after SCI. CONCLUSION: The upregulation of Lcn2 expression in astrocytes is involved in neuroinflammation and scar formation after SCI, and the activation of SMAD-associated signaling is one of the underlying mechanisms.
Assuntos
Astrócitos , Cicatriz , Lipocalina-2 , Camundongos Endogâmicos C57BL , Proteínas Smad , Traumatismos da Medula Espinal , Animais , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/genética , Lipocalina-2/genética , Lipocalina-2/metabolismo , Camundongos , Astrócitos/metabolismo , Cicatriz/etiologia , Cicatriz/patologia , Cicatriz/metabolismo , Proteínas Smad/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Inflamação/etiologia , Masculino , Doenças Neuroinflamatórias/etiologia , Feminino , Recuperação de Função Fisiológica/fisiologia , Células CultivadasRESUMO
One of the biggest neurophysiological science news headlines of the 2024 summer reported a critical link between post-traumatic stress disorder (PTSD), suicide, and brain injury from blast events in members of the elite US fighting force, Navy SEALS. Researchers from the Department of Defense/Uniformed Services University Brain Tissue Repository (DOD/USU BTR) had discovered a border of neural damage between the layers of white and gray matter comprising the cortical folds of service members' brains. Described as a distinctive anatomical line of astroglial scarring along the shared junctions of gray and white cellular zones of the brain, this tissue injury was unlike that observed for concussive brain trauma. Rather, it was consistent with blast biophysics of mammalian tissues. In this new study, the damage appears to be correlated with long-term, repeated exposure to blast waves from nearby explosions or firing weapons. A cascade of progressive unexplained behaviors, cognitive decline, and severe depression in the trained fighters ensued. This analysis suggested that repetitive, impulsive pressure waves traveling through the service members' heads and brains with each blast had compromised their cognitive centers, setting a downward trajectory in their mental and physical health.
Assuntos
Traumatismos por Explosões , Lesões Encefálicas Traumáticas , Substância Cinzenta , Militares , Transtornos de Estresse Pós-Traumáticos , Suicídio , Animais , Humanos , Traumatismos por Explosões/complicações , Traumatismos por Explosões/etiologia , Traumatismos por Explosões/patologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/etiologia , Explosões , Substância Cinzenta/lesões , Substância Cinzenta/patologia , Transtornos de Estresse Pós-Traumáticos/etiologia , Cicatriz/etiologia , Cicatriz/patologiaRESUMO
INTRODUCTION: Lupus erythematosus (LE) is an inflammatory autoimmune disease, that can affect the skin to varying degree. In particular, discoid LE (DLE) and the rare form of lupus panniculitis/profundus are associated with scarring alopecia. The heterogeneity of the clinical, dermatoscopic, and histologic presentation poses a major challenge to the clinician in the diagnosis and differential diagnosis of other forms of scarring alopecia. OBJECTIVE: While noninvasive imaging techniques using optical coherence tomography (OCT) and reflectance confocal microscopy (RCM) have proven to be helpful in the diagnosis of scarring alopecia in the context of LE, this study aimed to investigate line-field confocal OCT (LC-OCT) to identify characteristic features of cicatricial alopecia in LE. METHODS: Fifteen patients with cicatricial alopecia in LE were included and the most affected/inflamed areas of the scalp were prospectively examined. In analogy to histopathology and previously reported criteria in RCM, all images were evaluated according to seven established criteria and underwent descriptive analyses. RESULTS: LC-OCT revealed characteristic features of cicatricial alopecia, such as lymphocytic interface dermatitis (14/15; 93.3%) and basal cell vacuolization (13/15; 86.7%). The most impressive feature was the occurrence of prominent hyperreflective fibers in 14/15 patients (93.3%). CONCLUSION: LC-OCT imaging can noninvasively detect morphologic criteria such as lymphocytic and vacuolar interface dermatitis of cicatricial alopecia due to LE. In particular, the presence of hyperreflective collagen fibers appears to be a characteristic easily recognizable feature that may facilitate differential diagnosis with other forms of cicatricial alopecia. Further studies are mandatory to differentiate other forms of scarring alopecia.
Assuntos
Alopecia , Cicatriz , Tomografia de Coerência Óptica , Humanos , Tomografia de Coerência Óptica/métodos , Alopecia/patologia , Alopecia/diagnóstico por imagem , Feminino , Cicatriz/diagnóstico por imagem , Cicatriz/patologia , Adulto , Pessoa de Meia-Idade , Masculino , Diagnóstico Diferencial , Microscopia Confocal/métodos , Adulto Jovem , Lúpus Eritematoso Discoide/patologia , Lúpus Eritematoso Discoide/diagnóstico por imagem , Lúpus Eritematoso Discoide/complicações , Estudos Prospectivos , Lúpus Eritematoso Cutâneo/patologia , Lúpus Eritematoso Cutâneo/diagnóstico por imagem , IdosoRESUMO
Lactate-derived histone lactylation is involved in multiple pathological processes through transcriptional regulation. The role of lactate-derived histone lactylation in the repair of spinal cord injury (SCI) remains unclear. Here we report that overall lactate levels and lactylation are upregulated in the spinal cord after SCI. Notably, H4K12la was significantly elevated in the microglia of the injured spinal cord, whereas exogenous lactate treatment further elevated H4K12la in microglia after SCI. Functionally, lactate treatment promoted microglial proliferation, scar formation, axon regeneration, and locomotor function recovery after SCI. Mechanically, lactate-mediated H4K12la elevation promoted PD-1 transcription in microglia, thereby facilitating SCI repair. Furthermore, a series of rescue experiments confirmed that a PD-1 inhibitor or microglia-specific AAV-sh-PD-1 significantly reversed the therapeutic effects of lactate following SCI. This study illustrates the function and mechanism of lactate/H4K12la/PD-1 signaling in microglia-mediated tissue repair and provides a novel target for SCI therapy.
Assuntos
Histonas , Ácido Láctico , Microglia , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Animais , Microglia/metabolismo , Microglia/efeitos dos fármacos , Histonas/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Ácido Láctico/metabolismo , Ratos , Lisina/metabolismo , Lisina/análogos & derivados , Lisina/farmacologia , Camundongos , Cicatriz/metabolismo , Cicatriz/patologia , Feminino , Ratos Sprague-Dawley , Camundongos Endogâmicos C57BL , Masculino , Locomoção/efeitos dos fármacos , Locomoção/fisiologiaRESUMO
Scars may represent more than a cosmetic concern for patients; they may impose functional limitations and are frequently associated with the sensation of itching or pain, thus impacting both psychological and physical well-being. From an aesthetic perspective, scars display variances in color, thickness, texture, contour, and their homogeneity, while the functional aspect encompasses considerations of functionality, pliability, and sensory perception. Scars located in critical anatomic areas have the potential to induce profound impairments, including contracture-related mobility restrictions, thereby significantly impacting daily functioning and the quality of life. Conventional approaches to scar management may suffice to a certain extent, yet there are cases where tailored interventions are warranted. Autologous fat grafting emerges as a promising therapeutic avenue in such instances. Fundamental mechanisms underlying scar formation include chronic inflammation, fibrogenesis and dysregulated wound healing, among other contributing factors. These mechanisms can potentially be alleviated through the application of adipose-derived stem cells, which represent the principal cellular component utilized in the process of lipofilling. Adipose-derived stem cells possess the capacity to secrete proangiogenic factors such as fibroblast growth factor, vascular endothelial growth factor and hepatocyte growth factor, as well as neurotrophic factors, such as brain-derived neurotrophic factors. Moreover, they exhibit multipotency, remodel the extracellular matrix, act in a paracrine manner, and exert immunomodulatory effects through cytokine secretion. These molecular processes contribute to neoangiogenesis, the alleviation of chronic inflammation, and the promotion of a conducive milieu for wound healing. Beyond the obvious benefit in restoring volume, the adipose-derived stem cells and their regenerative capacities facilitate a reduction in pain, pruritus, and fibrosis. This review elucidates the regenerative potential of autologous fat grafting and its beneficial and promising effects on both functional and aesthetic outcomes when applied to scar tissue.
Assuntos
Tecido Adiposo , Cicatriz , Transplante Autólogo , Humanos , Cicatriz/patologia , Tecido Adiposo/transplante , Cicatrização , AnimaisRESUMO
Glial scar formation represents a fundamental response to central nervous system (CNS) injuries. It is mainly characterized by a well-defined spatial rearrangement of reactive astrocytes and microglia. The mechanisms underlying glial scar formation have been extensively studied, yet quantitative descriptors of the spatial arrangement of reactive glial cells remain limited. Here, we present a novel approach using point pattern analysis (PPA) and topological data analysis (TDA) to quantify spatial patterns of reactive glial cells after experimental ischemic stroke in mice. We provide open and reproducible tools using R and Julia to quantify spatial intensity, cell covariance and conditional distribution, cell-to-cell interactions, and short/long-scale arrangement, which collectively disentangle the arrangement patterns of the glial scar. This approach unravels a substantial divergence in the distribution of GFAP+ and IBA1+ cells after injury that conventional analysis methods cannot fully characterize. PPA and TDA are valuable tools for studying the complex spatial arrangement of reactive glia and other nervous cells following CNS injuries and have potential applications for evaluating glial-targeted restorative therapies.
Assuntos
Astrócitos , Cicatriz , Neuroglia , Animais , Camundongos , Cicatriz/patologia , Neuroglia/patologia , Astrócitos/patologia , Microglia/patologia , AVC Isquêmico/patologia , Análise de Dados , Modelos Animais de Doenças , Masculino , Proteína Glial Fibrilar Ácida/metabolismo , Camundongos Endogâmicos C57BLRESUMO
BACKGROUND: Members of the cellular communication network family (CCN) of matricellular proteins, like CCN1, have long been implicated in the regulation of cellular processes underlying wound healing, tissue fibrogenesis, and collagen dynamics. While many studies suggest antifibrotic actions for CCN1 in the adult heart through the promotion of myofibroblast senescence, they largely relied on exogenous supplementation strategies in in vivo models of cardiac injury where its expression is already induced-which may confound interpretation of its function in this process. The objective of this study was to interrogate the role of the endogenous protein on fibroblast function, collagen structural dynamics, and its associated impact on cardiac fibrosis after myocardial infarction (MI). METHODS/RESULTS: Here, we employed CCN1 loss-of-function methodologies, including both in vitro siRNA-mediated depletion and in vivo fibroblast-specific knockout mice to assess the role of the endogenous protein on cardiac fibroblast fibrotic signaling, and its involvement in acute scar formation after MI. In vitro depletion of CCN1 reduced cardiac fibroblast senescence and proliferation. Although depletion of CCN1 decreased the expression of collagen processing and stabilization enzymes (i.e., P4HA1, PLOD1, and PLOD2), it did not inhibit myofibroblast induction or type I collagen synthesis. Alone, fibroblast-specific removal of CCN1 did not negatively impact ventricular performance or myocardial collagen content but did contribute to disorganization of collagen fibrils and increased matrix compliance. Similarly, Ccn1 ablated animals subjected to MI showed no discernible alterations in cardiac structure or function one week after permanent coronary artery ligation, but exhibited marked increases in incidence of mortality and cardiac rupture. Consistent with our findings that CCN1 depletion does not assuage myofibroblast conversion or type I collagen synthesis in vitro, Ccn1 knockout animals revealed no measurable differences in collagen scar width or mass compared to controls; however, detailed structural analyses via SHG and TEM of scar regions revealed marked alterations in their scar collagen topography-exhibiting changes in numerous macro- and micro-level collagen architectural attributes. Specifically, Ccn1 knockout mice displayed heightened ECM structural complexity in post-MI scar regions, including diminished local alignment and heightened tortuosity of collagen fibers, as well as reduced organizational coherency, packing, and size of collagen fibrils. Associated with these changes in ECM topography with the loss of CCN1 were reductions in fibroblast-matrix interactions, as evidenced by reduced fibroblast nuclear and cellular deformation in vivo and reduced focal-adhesion formation in vitro; findings that ultimately suggest CCN1's ability to influence fibroblast-led collagen alignment may in part be credited to its capacity to augment fibroblast-matrix interactions. CONCLUSIONS: These findings underscore the pivotal role of endogenous CCN1 in the scar formation process occurring after MI, directing the appropriate arrangement of the extracellular matrix's collagenous components in the maturing scar-shaping the mechanical properties that support its structural stability. While this suggests an adaptive role for CCN1 in regulating collagen structural attributes crucial for supporting scar integrity post MI, the long-term protracted expression of CCN1 holds maladaptive implications, potentially diminishing collagen structural complexity and compliance in non-infarct regions.