Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.486
Filtrar
1.
Sci Rep ; 13(1): 7857, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188721

RESUMO

Plasma processing appears to be the mainstay of food preservation in the present day due to its effectiveness in controlling microorganisms at low temperatures. Legumes are usually soaked before cooking. Six chickpea varieties (Kripa, Virat, Vishal, Vijay, Digvijay, and Rajas) were soaked in distilled water at room temperature, and Peleg model was fitted after plasma treatment. Cold plasma treatment was used at 40, 50 and 60 Watt with exposure times of 10, 15 and 20 min. K1 (Peleg rate constant) consistently decreased from 32.3 to 4.3 × 10-3 (h % - 1) for all six chickpea cultivars, indicating an increased water absorption rate with increasing plasma power and treatment time. It was lowest in 60 W 20 min plasma treatment in Virat cultivar. K2 (Peleg capacity constant) ranged from 9.4 to 12 × 10-3 (h % - 1) for all six chickpea cultivars. Thus, plasma treatment showed no effect on water uptake capacity (K2), as it did not increase or decrease consistently with increasing plasma power and treatment time. Fitting the Peleg model successfully revealed the correlation between the water absorption of chickpea cultivars. The model fit ranged from R2 ≥ 0.9873 to 0.9981 for all six chickpea cultivars.


Assuntos
Cicer , Fabaceae , Gases em Plasma , Água/farmacologia , Gases em Plasma/farmacologia , Culinária
2.
Planta ; 257(6): 111, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156996

RESUMO

MAIN CONCLUSION: Seed priming with NaCl mimicked the conditions of natural priming to improve the tissue tolerance nature of sensitive legumes, which helps to maintain survivability and yield in mildly saline areas. Seed priming with NaCl is a seed invigoration technique that helps to improve plant growth by altering Na+ and K+ content under salt stress. Legumes are overall sensitive to salt and salinity hampers their growth and yield. Therefore, a priming (50 mM NaCl) experiment was performed with two different legume members [Cicer arietinum cv. Anuradha and Lens culinaris cv. Ranjan] and different morpho-physiological, biochemical responses at 50 mM, 100 mM, and 150 mM NaCl and molecular responses at 150 mM NaCl were studied in hydroponically grown nonprimed and primed members. Similarly, a pot experiment was performed at 80 mM Na+, to check the yield. Tissue Na+ and K+ content suggested NaCl-priming did not significantly alter the accumulation of Na+ among nonprimed and primed members but retained more K+ in cells, thus maintaining a lower cellular Na+/K+ ratio. Low osmolyte content (e.g., proline) in primed members suggested priming could minimize their overall osmolytic requirement. Altogether, these implied tissue tolerance (TT) nature might have improved in case of NaCl-priming as was also reflected by a better TT score (LC50 value). An improved TT nature enabled the primed plants to maintain a significantly higher photosynthetic rate through better stomatal conductance. Along with this, a higher level of chlorophyll content and competent functioning of the photosynthetic subunits improved photosynthetic performance that ensured yield under stress. Overall, this study explores the potential of NaCl-priming and creates possibilities for considerably sensitive members; those in their nonprimed forms have no prospect in mildly saline agriculture.


Assuntos
Cicer , Fabaceae , Lens (Planta) , Cloreto de Sódio/farmacologia , Potássio , Estresse Salino , Sódio , Sementes , Verduras , Íons
3.
Food Chem ; 422: 136231, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141754

RESUMO

An integrated metabolomics approach based on UPLC-QTOF-MS and HS-SPME-GC-orbitrap-MS was performed to investigate the dynamic changes of metabolite profiling in chickpeas, red speckled kidney beans, and mung beans during soaking. There were 23, 23, 16 non-volatile metabolites, and 18, 21, 22 volatile metabolites were identified as differential metabolites in chickpeas, red speckled kidney beans, and mung beans during soaking, respectively. These metabolites mainly included flavonoids, lysophosphatidylcholines (LPCs), lysophosphatidylethanolamines (LPEs), fatty acids, alcohols, aldehydes, and esters. The key time points responsible for the significant changes in metabolites and quality of the three pulses were 4, 8, and 24 h of soaking. Results revealed that the variations of some metabolites could attribute to oxidation and hydrolysis reactions. These results contribute to a better understanding of how soaking affects pulses quality, and provide useful information for determining soaking time according to nutritional and sensory requirements of their final products or dishes.


Assuntos
Cicer , Fabaceae , Compostos Orgânicos Voláteis , Álcoois/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Aldeídos/análise , Flavonoides , Verduras , Compostos Orgânicos Voláteis/análise , Metabolômica/métodos
4.
Meat Sci ; 202: 109217, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37172550

RESUMO

Reformulation of cooked sausages using high-protein plant-based food such as chickpea as meat extenders and vegetable oils to replace animal fat can be a suitable approach to promote the consumption of smaller portions of meat. The pre-processing of chickpea and the sausage cooking intensity can potentially affect the quality of reformulated sausages. In this study, an emulsion-type sausage made with lamb meat, chickpea and olive oil was prepared in triplicate following three different formulations containing the same targeted levels of protein (8.9%), lipids (21.5%), and starch (2.9%): control sausage (CON; control, without chickpea), and raw (RCP) and cooked chickpea (CCP) sausages (both with 7% chickpea). Sausages were cooked at 85 °C for two heating times (40 min or 80 min) and were analysed for weight loss, emulsion stability, colour, texture, lipid oxidation and volatile composition. Compared to CON sausages, the use of raw chickpea reduced the elasticity and significantly increased lipid oxidation during the sausage-making process resulting in major changes in the volatile composition. The use of previously cooked chickpea, however, resulted in the sausages having greater cooking loss, hardness and chewiness than CON sausages, while there was no difference in lipid oxidation, and differences in volatile compounds were scarce. The reformulation with cooked chickpea could provide a sausage with more similarity to the CON sausage. The extended heating time of 80 min at 85 °C did not significantly affect the quality traits in either CON or reformulated sausages except for a higher cooking loss.


Assuntos
Cicer , Produtos da Carne , Carne Vermelha , Animais , Ovinos , Azeite de Oliva , Emulsões , Culinária , Produtos da Carne/análise , Carne Vermelha/análise
5.
Sci Rep ; 13(1): 8598, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237041

RESUMO

This paper presents a simple method for detecting both biotic and abiotic stress in plants. Stress levels are measured based on the increase in nutrient uptake by plants as a mechanism of self-defense when under stress. A continuous electrical resistance measurement was used to estimate the rate of change of nutrients in agarose as the growth medium for Cicer arietinum (Chickpea) seeds. To determine the concentration of charge carriers in the growth medium, Drude's model was used. For identifying anomalies and forecasting plant stress, two experiments were conducted and outliers were found in electrical resistance and relative changes in carrier concentration. Anomaly in the first iteration was detected by applying k-Nearest Neighbour, One Class Support Vector Machine and Local Outlier Factor in unsupervised mode on electrical resistance data. In the second iteration, the neural network-based Long Short Term Memory method was used on the relative change in the carrier concentration data. As a result of the change in resistance of growth media during stress, nutrient concentrations shifted by 35%, as previously reported. Farmers who cater to small communities around them and are most affected by local and global stress factors can use this method of forecasting.


Assuntos
Cicer , Aprendizado Profundo , Plantas , Estresse Fisiológico , Sementes , Nutrientes
6.
PLoS One ; 18(5): e0286474, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37235596

RESUMO

Saffron (Crocus sativus L.) is among the world's most expensive crops; nevertheless, it struggles to compete with weeds. Non-chemical farming practices, such as intercropping and reduced irrigation, can help to decrease weed problems. Therefore, this study aimed to evaluate the changes in the weed density, biomass and weed diversity under saffron-chickpea intercropping system with two irrigation regimes. The study's treatments included two irrigation regimes, namely one-time irrigation and conventional irrigation (carried out four times from October through May), and six planting ratios of saffron and chickpea, namely saffron sole-crop (C1), chickpea sole-crop (C2) in eight rows, 1:1 (C3), 2:2 (C4), 2:1 (C5), and 3:1 (C6)] as main and sub-plots, respectively. The result showed that the conventional irrigation regimes increased weed diversity, however, it didn't affect the Pielou index. Intercropping ratios decreased weed diversity compared to saffron and chickpea mono-cropping systems. The interaction effect of treatments was significant for weed density and weed biomass. In most intercropping ratios, weed density and weed biomass decreased under one-time irrigation regimes. The lowest values for weed density and biomass were observed with an average of 15.5 plants/m2 and 37.51 g/m2, respectively, under the one-time irrigation regime with C4 intercropping systems. This intercropping system did not show a significant difference with C3. Overall, the results indicate that a one-time irrigation regime and intercropping with chickpea, specifically with a 1:1 saffron-chickpea ratio (C3) and a 2:2 saffron-chickpea ratio (C4), could be effective strategies for weed management in saffron in semiarid cropping systems.


Assuntos
Cicer , Crocus , Agricultura/métodos , Produtos Agrícolas , Plantas Daninhas
7.
Meat Sci ; 201: 109194, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37087874

RESUMO

The effects of combined chickpea protein isolate (CPI, 1%, w/w) and chitosan (CHI, 1%, w/w) on the technological, thermal, and structural properties of phosphate-free pork meat emulsions (PPMEs) were investigated. The results showed that CPI + CHI significantly improved the emulsion stability (P < 0.05), synergistically elevated the hardness and chewiness, and did not negatively impact the color attributes, which endowed the PPMEs with similar or even better technological performances compared to the high-phosphate control. These alterations were related to the reduced myosin enthalpy values, the rearrangement of free water into immobilized water, the synergistic reduction in α-helical structure and increase in ß-sheet structure, the increased trans-gauche-trans SS conformation intensity of the Raman bands, and the formation of interactive protein gel networks where small-sized fat particles were evenly dispersed in the protein matrix. Therefore, combined CPI and CHI shows promise as a phosphate replacer for meat products.


Assuntos
Quitosana , Cicer , Produtos da Carne , Carne de Porco , Carne Vermelha , Animais , Suínos , Culinária , Manipulação de Alimentos , Emulsões/química , Fosfatos , Produtos da Carne/análise , Água
8.
Sci Rep ; 13(1): 6279, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072529

RESUMO

Chickpea is an important food legume cultivated in several countries. A sudden drop in autumn temperature, freezing winter temperature, and late spring cold events result in significant losses in chickpea production. The current study used RNA sequencing of two cold tolerant (Saral) and sensitive (ILC533) Kabuli chickpea genotypes to identify cold tolerance-associated genes/pathways. A total of 200.85 million raw reads were acquired from the leaf samples by Illumina sequencing, and around 86% of the clean reads (199 million) were mapped to the chickpea reference genome. The results indicated that 3710 (1980 up- and 1730 down-regulated) and 3473 (1972 up- and 1501 down-regulated) genes were expressed differentially under cold stress in the tolerant and sensitive genotypes, respectively. According to the GO enrichment analysis of uniquely down-regulated genes under cold stress in ILC533, photosynthetic membrane, photosystem II, chloroplast part, and photosystem processes were enriched, revealing that the photosynthesis is severely sensitive to cold stress in this sensitive genotype. Many remarkable transcription factors (CaDREB1E, CaMYB4, CaNAC47, CaTCP4, and CaWRKY33), signaling/regulatory genes (CaCDPK4, CaPP2C6, CaMKK2, and CaHSFA3), and protective genes (CaCOR47, CaLEA3, and CaGST) were identified among the cold-responsive genes of the tolerant genotype. These findings would help improve cold tolerance across chickpea genotypes by molecular breeding or genetic engineering.


Assuntos
Cicer , Cicer/genética , Temperatura Baixa , Fatores de Transcrição/genética , Genótipo , Congelamento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas
9.
Molecules ; 28(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37110634

RESUMO

Skin aging represents a health and aesthetic problem that could result in infections and skin diseases. Bioactive peptides can potentially be used in skin aging regulation. Chickpea (Cicer arietinum L.) selenoproteins were obtained from germination with 2 mg Na2SeO3/100 g of seeds for 2 days. Alcalase, pepsin, and trypsin were used as hydrolyzers, and a membrane < 10 kDa was used to fractionate the hydrolysate. Se content, antioxidant capacity, elastase and collagen inhibition, functional stability, and preventative capacity were analyzed. Significant increases in Se content were found in germinated chickpea flour and protein related to the control. An increase of 38% in protein was observed in the selenized flour related to the control. A band (600-550 cm-1) observed in the selenized hydrolysates suggested the insertion of Se into the protein. Hydrolysates from pepsin and trypsin had the highest antioxidant potential. Se enhanced the stability of total protein and protein hydrolysates through time and increased their antioxidant capacity. Hydrolysates > 10 kDa had higher elastase and collagenase inhibition than the total protein and hydrolysates < 10 kDa. Protein hydrolysates < 10 kDa 6 h before UVA radiation had the highest inhibition of collagen degradation. Selenized protein hydrolysates showed promising antioxidant effects that could be related to skin anti-aging effects.


Assuntos
Antioxidantes , Cicer , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cicer/química , Hidrolisados de Proteína/química , Pepsina A/metabolismo , Tripsina/metabolismo , Elastase Pancreática/metabolismo
10.
PeerJ ; 11: e15134, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37009149

RESUMO

Biotic stress due to fungal infection is detrimental to the growth and development of chickpea. In our study, two chickpea genotypes viz Cicer pinnatifidum (resistant) and PBG5 (susceptible) were inoculated with (1 × 104 spore mL-1) of nectrotrophic fungus Botrytis cinerea at seedling stage. These seedlings were evaluated for morphological, ultrastructural, and molecular differences after 3, 5 and 7 days post inoculation (dpi). Visual symptoms were recorded in terms of water-soaked lesions, rotten pods and twigs with fungal colonies. Light and scanning electron microscopy (SEM) revealed the differences in number of stomata, hyphal network and extent of topographical damage in resistant (C. pinnatifidum) and susceptible (PBG5) genotypes, which were validated by stomatal index studies done by using fluorescence microscopy in the infection process of B. cinerea in leaves of both chickpea genotypes. In case of control (water inoculated) samples, there were differences in PCR analysis done using five primers for screening the genetic variations between two genotypes. The presence of a Botrytis responsive gene (LrWRKY) of size ~300 bp was observed in uninoculated resistant genotype which might have a role in resistance against Botrytis grey mould. The present investigation provides information about the variation in the infection process of B. cinerea in two genotypes which can be further exploited to develop robust and effective strategies to manage grey mould disease.


Assuntos
Cicer , Cicer/genética , Botrytis/genética , Hifas , Genótipo , Esporos Fúngicos
11.
Sci Rep ; 13(1): 5914, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041245

RESUMO

Cicer arietinum, Cajanus cajan, Vigna radiata, and Phaseolus vulgaris are economically important legume crops with high nutritional value. They are negatively impacted globally by different biotic and abiotic stresses. Hyperosmolality-gated calcium-permeable channels (OSCA) have been characterized as osmosensors in Arabidopsis thaliana but have not previously reported in legumes. This study provides a genome-wide identification, characterization, and comparative analysis of OSCA genes in legumes. Our study identified and characterized 13 OSCA genes in C. cajan, V. radiata, P. vulgaris, and 12 in C. arietinum, classified into four distinct clades. We found evidence to suggest that the OSCAs might be involved in the interaction between hormone signalling pathways and stress signalling pathways. Furthermore, they play a major role in plant growth and development. The expression levels of the OSCAs vary under different stress conditions in a tissue-specific manner. Our study can be used to develop a detailed understanding of stress regulatory mechanisms of the OSCA gene family in legumes.


Assuntos
Cajanus , Cicer , Phaseolus , Cajanus/genética , Cicer/genética , Estresse Fisiológico/genética , Verduras
12.
Mol Biol Rep ; 50(6): 5509-5517, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37119417

RESUMO

BACKGROUND: Crop improvement for tolerance to various biotic and abiotic stress factors necessitates understanding the key gene regulatory mechanisms. One such mechanism of gene regulation involves changes in cytosine methylation at the gene body and flanking regulatory sequences. The present study was undertaken to identify genes which might be potential targets of drought-induced DNA methylation in chickpea. METHODS AND RESULTS: Two chickpea genotypes, which contrast for drought tolerance, were subjected to drought stress conditions and their differential response was studied by analysing different morpho-physiological traits. Utilizing the in-house, high throughput sequencing data, the SQUAMOSA promoter-binding (SBP) protein-like (SPL) transcription factor genes were identified to be differentially methylated and expressed amongst the two genotypes, in response to drought stress. The methylation status of one of these genes was examined and validated through bisulfite PCR (BS-PCR). The identified genes could be possible homologs to known epialleles and can therefore serve as potential epialleles which can be utilized for crop improvement in chickpea. CONCLUSION: The SPL TF genes are potential targets of epigenetic regulation in response to drought stress in chickpea. Since these are TFs, they might play important roles in controlling the expression of other genes, thus contributing to differential drought response of the two genotypes.


Assuntos
Cicer , Cicer/genética , Cicer/metabolismo , Secas , Epigênese Genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas/genética
13.
Plant Mol Biol ; 111(6): 473-491, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37016106

RESUMO

Chickpea is one of the most widely consumed grain legume world-wide. Advances in next-generation sequencing and genomics tools have led to genetic dissection and identification of potential candidate genes regulating agronomic traits in chickpea. However, the developmental particularities and its potential in reforming the yield and nutritional value remain largely unexplored. Studies in crops such as rice, maize, tomato and pea have highlighted the contribution of key regulator of developmental events in yield related traits. A comprehensive knowledge on the development aspects of a crop can pave way for new vistas to explore. Pea and Medicago are the close relatives of genus Cicer and the basic developmental events in these legumes are similar. However, there are some distinct developmental features in chickpea which hold potential for future crop improvement endeavours. The global chickpea germplasm encompasses wide range of diversities in terms of morphology at both vegetative and reproductive stages. There is an immediate need for understanding the genetic and molecular basis of this diversity and utilizing them for the yield contributing trait improvement. The review discusses some of the key developmental events which have potential in yield enhancement and the lessons which can be learnt from model legumes in this regard.


Assuntos
Cicer , Fabaceae , Estações do Ano , Genômica , Fenótipo
14.
J Environ Manage ; 338: 117779, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37023603

RESUMO

Environmental pollution has become a transnational issue that impacts ecosystems, soil, water, and air and is directly related to human health and well-being. Chromium pollution decreases the development of plant and microbial populations. It warrants the need to remediate chromium-contaminated soil. Decontaminating chromium-stressed soils via phytoremediation is a cost-effective and environmentally benign method. Using multifunctional plant growth-promoting rhizobacteria (PGPR) lower chromium levels and facilitates chromium removal. PGPR work by altering root architecture, secreting chemicals that bind metals in the rhizosphere, and reducing phytotoxicity brought on by chromium. The present study aimed to investigate the chromium bioremediation capacity of metal-tolerant PGPR isolate while promoting the growth of chickpeas in the presence of varying levels of chromium (15.13, 30.26, and 60.52 mg/kg of chromium). The isolate, Mesorhizobium strain RC3, substantially reduced chromium content (60.52 mg/kg) in the soil. It enhanced the root length by 10.87%, the shoot length by 12.38%, the number of nodules by 6.64%, and nodule dry weight by 13.77% at 90 days. After 135 days of sowing, more improvement in the root length (18.05), shoot length (21.60%)the chlorophyll content (6.83%), leghaemoglobin content (9.47%), and the highest growth in the crop seed yield (27.45%) and crop protein content (16.83%)The isolate reduced chromium accumulation in roots, shoots, and grains chickpea. Due to chromium bioremediation and its plant growth-promoting and chromium-attenuating qualities, Mesorhizobium strain RC3 could be used as a green bioinoculant for plant growth promotion under chromium stress.


Assuntos
Cicer , Mesorhizobium , Poluentes do Solo , Humanos , Cromo , Solo/química , Cicer/microbiologia , Ecossistema , Poluentes do Solo/toxicidade , Raízes de Plantas , Microbiologia do Solo , Biodegradação Ambiental
15.
PeerJ ; 11: e14818, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923507

RESUMO

The aim of this study was to determine the drought stress resistance of three chickpea cultivars (Inci, Hasanbey and Seçkin) grown under water deficit conditions and to discuss the use of yield, crop water stress index and chlorophyll index values as drought stress tolerance indicators in breeding studies. Three drought stress levels, (full irrigation = no stress - I100, deficit irrigation = moderate stress - I50, and no irrigation = severe stress - I0) were used as irrigation treatments. The highest seed yield (1,984 kg ha-1) in severe stress conditions was recorded for the Inci cultivar with a low crop water stress index (CWSI) (0.50) and high chlorophyll index (33.60 SPAD). The lowest seed yield (1,783.66 kg ha-1) in I0treatment was noted for the Seçkin cultivar which had a high CWSI (0.58) and low chlorophyll index (32.88 SPAD). The highest seed yield (2,566.33 kg ha-1) in full irrigation was recorded for the Inci cultivar which had a low CWSI (0.19) and high chlorophyll index (44.39 SPAD), while the lowest seed yield (2,328.00 kg ha-1) in I100 treatment was recorded for the Seçkin cultivar which had a high CWSI (0.26) and low chlorophyll index (42.12 SPAD). The seed yield of the Hasanbey cultivar in both severe stress (1,893 kg ha-1) and full irrigation (2,424.00 kg ha-1) conditions was between Inci and Seçkin varieties. The chlorophyll index and yield had a significant positive (r = 0.877) correlation, while a significant negative (r = -0.90) relationship was determined between CWSI and yield. Seed yield of the Inci cultivar in I0and I100treatments and water use efficiency revealed that the Inci cultivar is resistant to drought stress. Therefore, the Inci cultivar can be used in drought stress tolerance studies. In addition, the CWSI and chlorophyll index values can be employed as resistance indicators in chickpea breeding studies to determine the drought resistant chickpea cultivars.


Assuntos
Cicer , Secas , Desidratação , Melhoramento Vegetal , Clorofila
16.
Physiol Plant ; 175(2): e13897, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36960640

RESUMO

Iron deficiency is a major nutritional stress that severely impacts crop productivity worldwide. However, molecular intricacies and subsequent physiological and metabolic changes in response to Fe starvation, especially in leguminous crops like chickpea, remain elusive. In the present study, we investigated physiological, transcriptional, and metabolic reprogramming in two chickpea genotypes (H6013 and L4958) with contrasting seed iron concentrations upon Fe deficiency. Our findings revealed that iron starvation affected growth and physiological parameters of both chickpea genotypes. Comparative transcriptome analysis led to the identification of differentially expressed genes between the genotypes related to strategy I uptake, metal ions transporters, reactive oxygen species-associated genes, transcription factors, and protein kinases that could mitigate Fe deficiency. Our gene correlation network discovered several putative candidate genes like CIPK25, CKX3, WRKY50, NAC29, MYB4, and PAP18, which could facilitate the investigation of the molecular rationale underlying Fe tolerance in chickpea. Furthermore, the metabolite analysis also illustrated the differential accumulation of organic acids, amino acids and other metabolites associated with Fe mobilization in chickpea genotypes. Overall, our study demonstrated the comparative transcriptional dynamics upon Fe starvation. The outcomes of the current endeavor will enable the development of Fe deficiency tolerant chickpea cultivars.


Assuntos
Cicer , Transcriptoma , Cicer/genética , Perfilação da Expressão Gênica , Genótipo , Ferro/metabolismo , Regulação da Expressão Gênica de Plantas
17.
Mol Biol Rep ; 50(5): 4175-4185, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36894768

RESUMO

BACKGROUND: The narrow genetic diversity of chickpea is a serious impediment to modern cultivar creation. Seed storage proteins (SSPs) are stable and have minimal or no degradation when subjected to isolation and SDS-PAGE. METHODS AND RESULTS: We have characterized SSPs of 436 chickpea genotypes, belonging to nine annual Cicer species, originated from 47 countries by SDS-PAGE and determined the extent of genetic diversity in chickpea through clustering. Based on scoring, a total of 44 bands (10 to 170 kDa) were identified, which were all polymorphic. The least appeared protein bands were 11, 160 and 170 kDa where band of 11 and 160 kDa was present exclusively in wild type. Five bands were present in < 10% of genotypes. Bands appeared in 200-300 genotypes were suggested less polymorphic, on contrary bands present in 10-150 genotypes were suggested more polymorphic. Polymorphism of protein bands in context to their potential functions reported in literature were explored and suggested that the glubulins were most and glutelins were least abundant, whereas albumins with their known role in stress tolerance can be used as marker in chickpea breeding. Cluster analysis produced 14 clusters, interestingly three clusters contained only Pakistani genotypes and thus Pakistani genotypes appeared as a separate entity from the rest of the genotypes. CONCLUSION: Our results indicate that SDS-PAGE of SSPs is a powerful technique in determining the genetic diversity plus it is easily adaptable, due to its cost effectiveness in comparison to other genomics tools.


Assuntos
Cicer , Proteínas de Armazenamento de Sementes , Proteínas de Armazenamento de Sementes/genética , Cicer/genética , Melhoramento Vegetal , Polimorfismo Genético , Genótipo , Variação Genética
18.
Gene ; 868: 147372, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36933813

RESUMO

Orf147, a cytotoxic peptide, has been found to cause cytoplasmic male sterility (CMS) in Cajanus cajanifolius (pigeonpea). In our study, Orf147 was introduced into self-pollinating Cicer arietinum (chickpea) using Agrobacterium-mediated transformation for induction of CMS. The stable integration and expression of the transgene has been assessed through PCR and qRT-PCR analysis. In addition, phenotypic sterility analysis has been performed, considering developmental parameters like flower development, pod formation and flower drop. Transgene inheritance analysis demonstrates that out of the five PCR positive events in the T0 generation, two events have segregated according to the Mendelian segregation ratio (3:1) in the T2 generation. Further, pollen viability test using microscopic analysis confirms the induction of partial CMS in transgenic chickpea. The study holds significant value regarding the heterosis of self-pollinating legumes like chickpea. As a part of the prospect, exploring inducible promoters of species-specific or related legumes would be the next step to developing a two-line hybrid system.


Assuntos
Cajanus , Cicer , Fabaceae , Infertilidade , Cicer/genética , Expressão Ectópica do Gene , Cajanus/genética
19.
J Nutr ; 153(5): 1567-1576, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36990184

RESUMO

BACKGROUND: Chickpeas are an affordable and nutrient-dense legume, but there is limited United States data on consumption patterns and the relationship between chickpea consumption and dietary intakes. OBJECTIVES: This study examined trends and sociodemographic patterns among chickpea consumers and the relationship between chickpea consumption and dietary intake. METHODS: Adults consuming chickpeas or chickpea-containing foods on 1 or both of the 24-h dietary recalls were categorized as chickpea consumers. Data from NHANES 2003-2018 were used to evaluate trends and sociodemographic patterns in chickpea consumption (n = 35,029). The association between chickpea consumption and dietary intakes was compared to other legume consumers and nonlegume consumers from 2015-2018 (n = 8,342). RESULTS: The proportion of chickpea consumers increased from 1.9% in 2003-2006 to 4.5% in 2015-2018 (P value for trend < 0.001). This trend was consistent across age group, sex, race/ethnicity, education, and income. In 2015-2018, chickpea consumption was highest among individuals with higher incomes (2.4% among those with incomes <185% of the federal poverty guideline compared with 6.4% with incomes ≥300%), education levels (1.0% for less than high school compared with 10.2% for college graduates), physical activity levels (1.9% for no physical activity compared with 7.7% for ≥430 min of moderate-equivalent physical activity per week), and those with better self-reported health (1.7% fair/poor compared with 6.5% for excellent/very good, P-trend < 0.001 for each). Chickpea consumers had greater intakes of whole grains (1.48 oz/d for chickpea consumers compared with 0.91 for nonlegume consumers) and nuts/seeds (1.47 compared with 0.72 oz/d), less intake of red meat (0.96 compared with 1.55 oz/d), and higher Healthy Eating Index scores (62.1 compared with 51.2) compared with both nonlegume and other legume consumers (P value < 0.05 for each). CONCLUSIONS: Chickpea consumption among United States adults has doubled between 2003 and 2018, yet intake remains low. Chickpea consumers have higher socioeconomic status and better health status, and their overall diets are more consistent with a healthy dietary pattern.


Assuntos
Cicer , Humanos , Adulto , Estados Unidos , Inquéritos Nutricionais , Dieta , Dieta Saudável , Verduras , Ingestão de Energia
20.
Sci Rep ; 13(1): 4471, 2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36934106

RESUMO

Industrialization and human urbanization have led to an increase in heavy metal (HM) pollution which often cause negative/toxic effect on agricultural crops. The soil-HMs cannot be degraded biologically however, microbe-mediated detoxification of toxic HMs into lesser toxic forms are reported. Considering the potentiality of HMs-tolerant soil microbes in metal detoxification, Pseudomonas fluorescence PGPR-7 and Trichoderma sp. T-4 were recovered from HM-affected areas. Under both normal and cadmium stress, the ability of both microorganisms to produce different plant hormones and biologically active enzymes was examined. Strains PGPR-7 and T-4 tolerated cadmium (Cd) an up-to 1800 and 2000 µg mL-1, respectively, and produced various plant growth regulating substances (IAA, siderophore, ACC deaminase ammonia and HCN) in Cd-stressed condition. The growth promoting and metal detoxifying ability of both strains were evaluated (either singly/combined) by applying them in chickpea (Cicer arietinum L.) plants endogenously contaminated with different Cd levels (0-400 µg kg-1 soils). The higher Cd concentration (400 µg kg-1 soils) negatively influenced the plant parameters which, however, improved following single/combined inoculation of P. fluorescence PGPR-7 and Trichoderma sp. T-4. Both microbial strains increased the growth of Cd-treated chickpeas however, their combined inoculation (PGPR-7 + T-4) caused the most positive effect. For instance, 25 µg Cd Kg-1 + PGPR-7 + T4 treatment caused maximum increase in germination percentage (10%), root dry biomass (71.4%) and vigour index (33%), chl-a (38%), chl-b (41%) and carotenoid content (52%). Furthermore, combined inoculation of P. fluorescence PGPR-7 and Trichoderma sp. T-4 maximally decreased the proline, MDA content, POD and CAT activities by 50%, 43% and 62%, respectively following their application in 25 µg Cd kg-1 soils-treated chickpea. Additionally, microbial strains lowered the plant uptake of Cd. For example, Cd-uptake in root tissues was decreased by 42 and 34% when 25 µg Cd Kg-1- treated chickpea plants were inoculated with P. fluorescence PGPR-7, Trichoderma sp. T-4 and co-inoculation (PGPR-7 + T4) of both strains, respectively. Therefore, from the current observation, it is suggested that dual inoculation of metal tolerant P. fluorescence and Trichoderma sp. may potentially be used in detoxification and reclamation of metal-contaminated soils.


Assuntos
Cicer , Metais Pesados , Poluentes do Solo , Trichoderma , Humanos , Cádmio/metabolismo , Pseudomonas/metabolismo , Trichoderma/metabolismo , Sideróforos/metabolismo , Fluorescência , Metais Pesados/metabolismo , Solo/química , Poluentes do Solo/metabolismo , Raízes de Plantas/metabolismo , Biodegradação Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...