Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.124
Filtrar
1.
Nat Commun ; 14(1): 1376, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914620

RESUMO

Mitochondrial transport along microtubules is mediated by Miro1 and TRAK adaptors that recruit kinesin-1 and dynein-dynactin. To understand how these opposing motors are regulated during mitochondrial transport, we reconstitute the bidirectional transport of Miro1/TRAK along microtubules in vitro. We show that the coiled-coil domain of TRAK activates dynein-dynactin and enhances the motility of kinesin-1 activated by its cofactor MAP7. We find that TRAK adaptors that recruit both motors move towards kinesin-1's direction, whereas kinesin-1 is excluded from binding TRAK transported by dynein-dynactin, avoiding motor tug-of-war. We also test the predictions of the models that explain how mitochondrial transport stalls in regions with elevated Ca2+. Transport of Miro1/TRAK by kinesin-1 is not affected by Ca2+. Instead, we demonstrate that the microtubule docking protein syntaphilin induces resistive forces that stall kinesin-1 and dynein-driven motility. Our results suggest that mitochondrial transport stalls by Ca2+-mediated recruitment of syntaphilin to the mitochondrial membrane, not by disruption of the transport machinery.


Assuntos
Dineínas , Cinesinas , Dineínas/metabolismo , Cinesinas/metabolismo , Complexo Dinactina/metabolismo , Microtúbulos/metabolismo , Transporte Biológico , Proteínas Associadas aos Microtúbulos/metabolismo
2.
Int J Oncol ; 62(5)2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36929198

RESUMO

Lung cancer is the leading cause of cancer­related mortality worldwide. Non­small cell lung cancer (NSCLC) is the most common pathological subtype of lung cancer and is associated with low 5­year overall survival rates. Therefore, novel and effective chemotherapeutic drugs are urgently required for improving the survival outcomes of patients with lung cancer. Cyclovirobuxine D (CVB­D) is a natural steroidal alkaloid, used for the treatment of cardiovascular diseases in Traditional Chinese Medicine. Several studies have also demonstrated the antitumor effects of CVB­D. Therefore, in the present study, the therapeutic effects of CVB­D in lung cancer and the underlying mechanisms were investigated using the in vivo xenograft model of NSCLC in nude mice and in vitro experiments with the NSCLC cell lines. Bioinformatics analyses of RNA­sequencing data, and cell­based functional assays demonstrated that CVB­D treatment significantly inhibited in vitro and in vivo NSCLC cell proliferation, survival, invasion, migration, angiogenesis, epithelial­to­mesenchymal transition and G2/M phase cell cycle. CVB­D exerted its antitumor effects by inhibiting the KIF11­CDK1­CDC25C­cyclinB1 G2/M phase transition regulatory oncogenic network and the NF­κB/JNK signaling pathway. CVB­D treatment significantly reduced the sizes and weights and malignancy of xenograft NSCLC tumors in the nude mice. In conclusion, the present study demonstrated that CVB­D inhibited the growth and progression of NSCLC cells by inhibiting the KIF11­CDK1­CDC25C­CyclinB1 G2/M phase transition regulatory network and the NF­κB/JNK signaling pathway. Therefore, CVB­D is a promising drug for the treatment of NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , NF-kappa B/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos Nus , Sistema de Sinalização das MAP Quinases , Linhagem Celular Tumoral , Proliferação de Células , Divisão Celular , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Cinesinas/metabolismo , Fosfatases cdc25/metabolismo
3.
J Vis Exp ; (192)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36912529

RESUMO

Neuronal cells are highly polarized cells that stereotypically harbor several dendrites and an axon. The length of an axon necessitates efficient bidirectional transport by motor proteins. Various reports have suggested that defects in axonal transport are associated with neurodegenerative diseases. Also, the mechanism of the coordination of multiple motor proteins has been an attractive topic. Since the axon has uni-directional microtubules, it is easier to determine which motor proteins are involved in the movement. Therefore, understanding the mechanisms underlying the transport of axonal cargo is crucial for uncovering the molecular mechanism of neurodegenerative diseases and the regulation of motor proteins. Here, we introduce the entire process of axonal transport analysis, including the culturing of mouse primary cortical neurons, transfection of plasmids encoding cargo proteins, and directional and velocity analyses without the effect of pauses. Furthermore, the open-access software "KYMOMAKER" is introduced, which enables the generation of a kymograph to highlight transport traces according to their direction and allow easier visualization of axonal transport.


Assuntos
Transporte Axonal , Doenças Neurodegenerativas , Camundongos , Animais , Transporte Axonal/fisiologia , Neurônios/metabolismo , Axônios/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Dineínas/metabolismo , Microtúbulos/metabolismo , Doenças Neurodegenerativas/metabolismo , Células Cultivadas
4.
Science ; 379(6636): 1010-1015, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36893247

RESUMO

Dynamic measurements of molecular machines can provide invaluable insights into their mechanism, but these measurements have been challenging in living cells. Here, we developed live-cell tracking of single fluorophores with nanometer spatial and millisecond temporal resolution in two and three dimensions using the recently introduced super-resolution technique MINFLUX. Using this approach, we resolved the precise stepping motion of the motor protein kinesin-1 as it walked on microtubules in living cells. Nanoscopic tracking of motors walking on the microtubules of fixed cells also enabled us to resolve the architecture of the microtubule cytoskeleton with protofilament resolution.


Assuntos
Cinesinas , Microtúbulos , Cinesinas/metabolismo , Microtúbulos/metabolismo , Movimento (Física) , Dineínas/metabolismo
5.
Science ; 379(6636): 1004-1010, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36893244

RESUMO

We introduce an interferometric MINFLUX microscope that records protein movements with up to 1.7 nanometer per millisecond spatiotemporal precision. Such precision has previously required attaching disproportionately large beads to the protein, but MINFLUX requires the detection of only about 20 photons from an approximately 1-nanometer-sized fluorophore. Therefore, we were able to study the stepping of the motor protein kinesin-1 on microtubules at up to physiological adenosine-5'-triphosphate (ATP) concentrations. We uncovered rotations of the stalk and the heads of load-free kinesin during stepping and showed that ATP is taken up with a single head bound to the microtubule and that ATP hydrolysis occurs when both heads are bound. Our results show that MINFLUX quantifies (sub)millisecond conformational changes of proteins with minimal disturbance.


Assuntos
Dineínas , Cinesinas , Cinesinas/metabolismo , Cinética , Dineínas/metabolismo , Trifosfato de Adenosina/metabolismo , Microtúbulos/metabolismo
6.
J Cell Sci ; 136(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36751992

RESUMO

Mitosis is a fundamental and highly regulated process that acts to faithfully segregate chromosomes into two identical daughter cells. Localization of gene transcripts involved in mitosis to the mitotic spindle might be an evolutionarily conserved mechanism to ensure that mitosis occurs in a timely manner. We identified many RNA transcripts that encode proteins involved in mitosis localized at the mitotic spindles in dividing sea urchin embryos and mammalian cells. Disruption of microtubule polymerization, kinesin-1 or dynein results in lack of spindle localization of these transcripts in the sea urchin embryo. Furthermore, results indicate that the cytoplasmic polyadenylation element (CPE) within the 3'UTR of the Aurora B transcript, a recognition sequence for CPEB, is essential for RNA localization to the mitotic spindle in the sea urchin embryo. Blocking this sequence results in arrested development during early cleavage stages, suggesting that RNA localization to the mitotic spindle might be a regulatory mechanism of cell division that is important for early development.


Assuntos
Dineínas , Cinesinas , Animais , Cinesinas/metabolismo , Dineínas/metabolismo , Fuso Acromático/metabolismo , Mitose , RNA/metabolismo , Microtúbulos/metabolismo , Mamíferos/metabolismo
7.
Curr Biol ; 33(5): 899-911.e5, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36787745

RESUMO

Many single-celled eukaryotes have complex cell morphologies defined by microtubules arranged into higher-order structures. The auger-like shape of the parasitic protist Trypanosoma brucei (T. brucei) is mediated by a parallel array of microtubules that underlies the plasma membrane. The subpellicular array must be partitioned and segregated using a microtubule-based mechanism during cell division. We previously identified an orphan kinesin, KLIF, that localizes to the ingressing cleavage furrow and is essential for the completion of cytokinesis. We have characterized the biophysical properties of a truncated KLIF construct in vitro to gain mechanistic insight into the function of this novel kinesin. We find that KLIF is a non-processive dimeric kinesin that dynamically crosslinks microtubules. Microtubules crosslinked by KLIF in an antiparallel orientation are translocated relative to one another, while microtubules crosslinked parallel to one another remain static, resulting in the formation of organized parallel bundles. In addition, we find that KLIF stabilizes the alignment of microtubule plus ends. These features provide a mechanistic understanding for how KLIF functions to form a new pole of aligned microtubule plus ends that defines the shape of the new cell posterior, which is an essential requirement for the completion of cytokinesis in T. brucei.


Assuntos
Citocinese , Trypanosoma brucei brucei , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/metabolismo , Divisão Celular
8.
Mol Biol Cell ; 34(4): ar30, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36790918

RESUMO

Tight regulation of microtubule (MT) dynamics is necessary for proper spindle assembly and chromosome segregation. The MT destabilizing Kinesin-8, Kif18B, controls astral MT dynamics and spindle positioning. Kif18B interacts with importin α/ß as well as with the plus-tip tracking protein EB1, but how these associations modulate Kif18B is not known. We mapped the key binding sites on Kif18B, made residue-specific mutations, and assessed their impact on Kif18B function. Blocking EB1 interaction disrupted Kif18B MT plus-end accumulation and inhibited its ability to control MT length on monopolar spindles in cells. Blocking importin α/ß interaction disrupted Kif18B localization without affecting aster size. In vitro, importin α/ß increased Kif18B MT association by increasing the on-rate and decreasing the off-rate from MTs, which stimulated MT destabilization. In contrast, EB1 promoted MT destabilization without increasing lattice binding in vitro, which suggests that EB1 and importin α/ß have distinct roles in the regulation of Kif18B-mediated MT destabilization. We propose that importin α/ß spatially modulate Kif18B association with MTs to facilitate its MT destabilization activity. Our results suggest that Ran regulation is important not only to control molecular motor function near chromatin but also to provide a spatial control mechanism to modulate MT binding of nuclear localization signal-containing spindle assembly factors.


Assuntos
Carioferinas , alfa Carioferinas , alfa Carioferinas/metabolismo , Carioferinas/metabolismo , Microtúbulos/metabolismo , Cinesinas/metabolismo , Ligação Proteica/genética , beta Carioferinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fuso Acromático/metabolismo
9.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835206

RESUMO

Kinesin family motors are microtubule (MT)-stimulated ATPases known best as transporters of cellular cargoes through the cytoplasm, regulators of MT dynamics, organizers of the mitotic spindle, and for insuring equal division of DNA during mitosis. Several kinesins have also been shown to regulate transcription by interacting with transcriptional cofactors and regulators, nuclear receptors, or with specific promotor elements on DNA. We previously showed that an LxxLL nuclear receptor box motif in the kinesin-2 family motor KIF17 mediates binding to the orphan nuclear receptor estrogen related receptor alpha (ERR1) and is responsible for the suppression of ERR1-dependent transcription by KIF17. Analysis of all kinesin family proteins revealed that multiple kinesins contain this LxxLL motif, raising the question as to whether additional kinesin motors contribute to the regulation of ERR1. In this study, we interrogate the effects of multiple kinesins with LxxLL motifs on ERR1-mediated transcription. We demonstrate that the kinesin-3 family motor KIF1B contains two LxxLL motifs, one of which binds to ERR1. In addition, we show that expression of a KIF1B fragment containing this LxxLL motif inhibits ERR1-dependent transcription by regulating nuclear entry of ERR1. We also provide evidence that the effects of expressing the KIF1B-LxxLL fragment on ERR1 activity are mediated by a mechanism distinct from that of KIF17. Since LxxLL domains are found in many kinesins, our data suggest an expanded role for kinesins in nuclear receptor mediated transcriptional regulation.


Assuntos
Regulação da Expressão Gênica , Cinesinas , Mitose , Receptores de Estrogênio , Núcleo Celular/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Motivos de Aminoácidos/genética
10.
Signal Transduct Target Ther ; 8(1): 82, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36828823

RESUMO

Alternative splicing (AS) is an important approach for pathogens and hosts to remodel transcriptome. However, tuberculosis (TB)-related AS has not been sufficiently explored. Here we presented the first landscape of TB-related AS by long-read sequencing, and screened four AS events (S100A8-intron1-retention intron, RPS20-exon1-alternaitve promoter, KIF13B-exon4-skipping exon (SE) and UBE2B-exon7-SE) as potential biomarkers in an in-house cohort-1. The validations in an in-house cohort-2 (2274 samples) and public datasets (1557 samples) indicated that the latter three AS events are potential promising biomarkers for TB diagnosis, but not for TB progression and prognosis. The excellent performance of classifiers further underscored the diagnostic value of these three biomarkers. Subgroup analyses indicated that UBE2B-exon7-SE splicing was not affected by confounding factors and thus had relatively stable performance. The splicing of UBE2B-exon7-SE can be changed by heat-killed mycobacterium tuberculosis through inhibiting SRSF1 expression. After heat-killed mycobacterium tuberculosis stimulation, 231 ubiquitination proteins in macrophages were differentially expressed, and most of them are apoptosis-related proteins. Taken together, we depicted a global TB-associated splicing profile, developed TB-related AS biomarkers, demonstrated an optimal application scope of target biomarkers and preliminarily elucidated mycobacterium tuberculosis-host interaction from the perspective of splicing, offering a novel insight into the pathophysiology of TB.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Tuberculose/diagnóstico , Tuberculose/metabolismo , Tuberculose/microbiologia , Mycobacterium tuberculosis/metabolismo , Splicing de RNA , Macrófagos/metabolismo , Biomarcadores , Enzimas de Conjugação de Ubiquitina/metabolismo , Cinesinas/metabolismo , Fatores de Processamento de Serina-Arginina
11.
Methods Mol Biol ; 2604: 113-125, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36773229

RESUMO

In plants, the segregation of genetic material is achieved by an acentrosomal, mitotic spindle. This macromolecular machinery consists of different microtubule subpopulations and interacting proteins. The majority of what we know about the assembly and shape control of the mitotic spindle arose from vertebrate model systems. The dynamic properties of the individual tubulin polymers are crucial for the accurate assembly of the spindle array and are modulated by microtubule-associated motor and non-motor proteins. The mitotic spindle relies on a phenomenon called poleward microtubule flux that is critical to establish spindle shape, chromosome alignment, and segregation. This flux is under control of the non-motor microtubule-associated proteins and force-generating motors. Despite the large number of (plant-specific) kinesin motor proteins expressed during mitosis, their mitotic roles remain largely elusive. Moreover, reports on mitotic spindle formation and shape control in higher plants are scarce. In this chapter, an overview of the basic principles and methods concerning live imaging of prometa- and metaphase spindles and the analysis of spindle microtubule flux using fluorescence recovery after photobleaching is provided.


Assuntos
Microtúbulos , Fuso Acromático , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitose , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
12.
Curr Med Sci ; 43(1): 35-47, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36808398

RESUMO

OBJECTIVE: To investigate whether human short interspersed nuclear element antisense RNA (Alu antisense RNA; Alu asRNA) could delay human fibroblast senescence and explore the underlying mechanisms. METHODS: We transfected Alu asRNA into senescent human fibroblasts and used cell counting kit-8 (CCK-8), reactive oxygen species (ROS), and senescence-associated beta-galactosidase (SA-ß-gal) staining methods to analyze the anti-aging effects of Alu asRNA on the fibroblasts. We also used an RNA-sequencing (RNA-seq) method to investigate the Alu asRNA-specific mechanisms of anti-aging. We examined the effects of KIF15 on the anti-aging role induced by Alu asRNA. We also investigated the mechanisms underlying a KIF15-induced proliferation of senescent human fibroblasts. RESULTS: The CCK-8, ROS and SA-ß-gal results showed that Alu asRNA could delay fibroblast aging. RNA-seq showed 183 differentially expressed genes (DEGs) in Alu asRNA transfected fibroblasts compared with fibroblasts transfected with the calcium phosphate transfection (CPT) reagent. The KEGG analysis showed that the cell cycle pathway was significantly enriched in the DEGs in fibroblasts transfected with Alu asRNA compared with fibroblasts transfected with the CPT reagent. Notably, Alu asRNA promoted the KIF15 expression and activated the MEK-ERK signaling pathway. CONCLUSION: Our results suggest that Alu asRNA could promote senescent fibroblast proliferation via activation of the KIF15-mediated MEK-ERK signaling pathway.


Assuntos
Sistema de Sinalização das MAP Quinases , RNA Antissenso , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Espécies Reativas de Oxigênio/metabolismo , RNA Antissenso/metabolismo , RNA Antissenso/farmacologia , Sincalida/metabolismo , Sincalida/farmacologia , Senescência Celular , Envelhecimento , Quinases de Proteína Quinase Ativadas por Mitógeno , Fibroblastos , Cinesinas/metabolismo , Cinesinas/farmacologia
13.
Soft Matter ; 19(9): 1834-1843, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36789956

RESUMO

We consider the dynamics of a bio-filament under the collective drive of motor proteins. They are attached irreversibly to a substrate and undergo stochastic attachment-detachment with the filament to produce a directed force on it. We establish the dependence of the mean directed force and force correlations on the parameters describing the individual motor proteins using analytical theory and direct numerical simulations. The effective Langevin description for the filament motion gives mean-squared displacement, asymptotic diffusion constant, and mobility leading to an effective temperature. Finally, we show how competition between motor protein extensions generates a self-load, describable in terms of the effective temperature, affecting the filament motion.


Assuntos
Modelos Biológicos , Miosinas , Miosinas/metabolismo , Citoesqueleto/metabolismo , Cinesinas/metabolismo , Fenômenos Mecânicos , Dineínas/metabolismo
14.
Int J Oral Sci ; 15(1): 11, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797232

RESUMO

Tumor-associated macrophages (TAMs) play crucial roles in tumor progression and immune responses. However, mechanisms of driving TAMs to antitumor function remain unknown. Here, transcriptome profiling analysis of human oral cancer tissues indicated that regulator of G protein signaling 12 (RGS12) regulates pathologic processes and immune-related pathways. Mice with RGS12 knockout in macrophages displayed decreased M1 TAMs in oral cancer tissues, and extensive proliferation and invasion of oral cancer cells. RGS12 increased the M1 macrophages with features of increased ciliated cell number and cilia length. Mechanistically, RGS12 associates with and activates MYC binding protein 2 (MYCBP2) to degrade the cilia protein kinesin family member 2A (KIF2A) in TAMs. Our results demonstrate that RGS12 is an essential oral cancer biomarker and regulator for immunosuppressive TAMs activation.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Proteínas RGS , Camundongos , Humanos , Animais , Macrófagos Associados a Tumor/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço , Proteínas de Ligação ao GTP/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas RGS/genética , Proteínas RGS/metabolismo , Cinesinas/metabolismo , Proteínas Repressoras/metabolismo
15.
J Med Chem ; 66(4): 2622-2645, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36749938

RESUMO

The existence of multiple centrosomes in some cancer cells can lead to cell death through the formation of multipolar mitotic spindles and consequent aberrant cell division. Many cancer cells rely on HSET (KIFC1) to cluster the extra centrosomes into two groups to mimic the bipolar spindle formation of non-centrosome-amplified cells and ensure their survival. Here, we report the discovery of a novel 2-(3-benzamidopropanamido)thiazole-5-carboxylate with micromolar in vitro inhibition of HSET (KIFC1) through high-throughput screening and its progression to ATP-competitive compounds with nanomolar biochemical potency and high selectivity against the opposing mitotic kinesin Eg5. Induction of the multipolar phenotype was shown in centrosome-amplified human cancer cells treated with these inhibitors. In addition, a suitable linker position was identified to allow the synthesis of both fluorescent- and trans-cyclooctene (TCO)-tagged probes, which demonstrated direct compound binding to the HSET protein and confirmed target engagement in cells, through a click-chemistry approach.


Assuntos
Cinesinas , Tiazóis , Humanos , Linhagem Celular Tumoral , Centrossomo/metabolismo , Cinesinas/antagonistas & inibidores , Cinesinas/genética , Cinesinas/metabolismo , Mitose , Fuso Acromático/metabolismo , Tiazóis/química , Tiazóis/farmacologia
16.
Elife ; 122023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36752605

RESUMO

Active matter systems can generate highly ordered structures, avoiding equilibrium through the consumption of energy by individual constituents. How the microscopic parameters that characterize the active agents are translated to the observed mesoscopic properties of the assembly has remained an open question. These active systems are prevalent in living matter; for example, in cells, the cytoskeleton is organized into structures such as the mitotic spindle through the coordinated activity of many motor proteins walking along microtubules. Here, we investigate how the microscopic motor-microtubule interactions affect the coherent structures formed in a reconstituted motor-microtubule system. This question is of deeper evolutionary significance as we suspect motor and microtubule type contribute to the shape and size of resulting structures. We explore key parameters experimentally and theoretically, using a variety of motors with different speeds, processivities, and directionalities. We demonstrate that aster size depends on the motor used to create the aster, and develop a model for the distribution of motors and microtubules in steady-state asters that depends on parameters related to motor speed and processivity. Further, we show that network contraction rates scale linearly with the single-motor speed in quasi-one-dimensional contraction experiments. In all, this theoretical and experimental work helps elucidate how microscopic motor properties are translated to the much larger scale of collective motor-microtubule assemblies.


Assuntos
Microtúbulos , Fuso Acromático , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Cinesinas/metabolismo , Dineínas/metabolismo
17.
Arch Biochem Biophys ; 737: 109551, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36822388

RESUMO

Docetaxel is a first-line chemotherapy drug for castration-resistant prostate cancer (CRPC); yet, some CRPC patients develop docetaxel drug resistance. Cabazitaxel is approved in the post-docetaxel treatment setting. However, recent studies suggested cross-resistance between the development of drug resistance and current treatments. In this study, we used docetaxel-resistant cell lines DU145/DTX50 and PC-3/DTX30 to measure the responses to cabazitaxel. Our findings demonstrated that docetaxel resistance could lead to cross-resistance to cabazitaxel. After docetaxel-resistant cells were treated with cabazitaxel, transcriptome analysis was performed, and the results were analyzed in combination with survival analysis and correlation analysis with Gleason score to screen the cross-resistance genes. The continuously increased expression of kinesin family member 14 (KIF14) was identified as the main cause of cross-resistance to cabazitaxel in docetaxel-resistant cells. Silencing the expression of KIF14 could restore the sensitivity of resistant PCa cells to docetaxel and cabazitaxel, attenuate proliferation and promote apoptosis of the resistant PCa cells. Notably, the depressed expression of KIF14 inhibited the phosphorylation of Akt located downstream. In summary, KIF14 mediates the cross-resistance between docetaxel and cabazitaxel, and targeting KIF14 could be an effective measurement for reversing docetaxel or cabazitaxel chemotherapy failure or enhancing the anti-tumor effects of docetaxel or cabazitaxel.


Assuntos
Antineoplásicos , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Docetaxel , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Fosforilação , Resistencia a Medicamentos Antineoplásicos/genética , Antineoplásicos/farmacologia , Proteínas Oncogênicas/metabolismo , Proteínas Oncogênicas/uso terapêutico , Cinesinas/metabolismo
18.
Biomolecules ; 13(2)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36830709

RESUMO

We aimed to investigate expression of the novel susceptibility genes for CAKUT, DLG1 and KIF12, proposed by a systematic in silico approach, in developing and postnatal healthy human kidneys to provide information about their spatiotemporal expression pattern. We analyzed expression of their protein products by immunohistochemistry and immunofluorescence and quantified relative mRNA levels by RT-qPCR. Statistically significant differences in expression patterns were observed between certain developmental stages. Strong expression of DLG1 was observed in the developing kidney, with a gradual decrease from the first phase of kidney development (Ph1) until the third phase (Ph3), when most nephrons are formed; at later stages, the highest expression was observed in the tubules. KIF12 was highly expressed in the developing structures, especially in Ph1, with a gradual decrease until the postnatal phase, which would indicate a significant role in nephrogenesis. Co-localization of DLG1 and KIF12 was pronounced in Ph1, especially on the apical side of the tubular epithelial cells. Thereafter, their expression gradually became weaker and was only visible as punctate staining in Ph4. The direct association of DLG1 with KIF12 as control genes of normal kidney development may reveal their new functional aspect in renal tubular epithelial cells.


Assuntos
Anormalidades Urogenitais , Refluxo Vesicoureteral , Humanos , Rim/metabolismo , Refluxo Vesicoureteral/metabolismo , Néfrons/metabolismo , Anormalidades Urogenitais/metabolismo , Proteína 1 Homóloga a Discs-Large/metabolismo , Cinesinas/metabolismo
19.
Cell Death Dis ; 14(2): 137, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36807568

RESUMO

Glycolysis is the most predominant metabolic reprogramming of pancreatic cancer (PC), the underlying mechanism of which in PC cells remains unclear. In this study, we found for the first time that KIF15 promotes the glycolytic capacity of PC cells and PC tumor growth. Moreover, the expression of KIF15 was negatively correlated with the prognosis of PC patients. The ECAR and OCR measurements indicated that KIF15 knockdown significantly impaired the glycolytic capacity of PC cells. Western blotting demonstrated that the expression of glycolysis molecular markers decreased rapidly after the knockdown of KIF15. Further experiments revealed that KIF15 promoted the stability of PGK1 and its effect on PC cell glycolysis. Interestingly, the overexpression of KIF15 impaired the ubiquitination level of PGK1. To investigate the underlying mechanism by which KIF15 regulates the function of PGK1, we performed mass spectrometry (MS). The MS and Co-IP assay indicated that KIF15 recruited and enhanced the binding between PGK1 and USP10. The ubiquitination assay verified that KIF15 recruited and promoted the effect of USP10 on PGK1, thereby deubiquitinating PGK1. Through the construction of KIF15 truncators, we found that KIF15 is bound to PGK1 and USP10 through its coil2 domain. Together, our study demonstrated for the first time that KIF15 enhances the glycolytic capacity of PC through the recruitment of USP10 and PGK1, and that the KIF15/USP10/PGK1 axis may serve as an effective therapeutic agent for PC.


Assuntos
Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , Ubiquitinação , Glicólise , Linhagem Celular Tumoral , Proliferação de Células , Cinesinas/metabolismo , Ubiquitina Tiolesterase/metabolismo , Fosfoglicerato Quinase/genética
20.
Methods Mol Biol ; 2623: 97-111, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36602682

RESUMO

Long-range transport of organelles and other cellular cargoes along microtubules is driven by kinesin and dynein motor proteins in complex with cargo-specific adaptors. While some adaptors interact exclusively with a single motor, other adaptors interact with both kinesin and dynein motors. However, the mechanisms by which bidirectional motor adaptors coordinate opposing microtubule motors are not fully understood. While single-molecule studies of adaptors using purified proteins can provide key insight into motor adaptor function, these studies may be limited by the absence of cellular factors that regulate or coordinate motor function. As a result, motility assays using cell lysates have been developed to gain insight into motor adaptor function in a more physiological context. These assays are a powerful means to dissect the regulation of motor adaptors as cell lysates contain endogenous microtubule motors and additional factors that regulate motor function. Further, this system is highly tractable as individual proteins can readily be added or removed via overexpression or knockdown in cells. Here, we describe a protocol for in vitro reconstitution of motor-driven transport along dynamic microtubules at single-molecule resolution using total internal reflection fluorescence microscopy of cell lysates.


Assuntos
Dineínas , Proteínas Associadas aos Microtúbulos , Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Organelas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...