RESUMO
Cinnamon is a natural spice with a wide range of pharmacological functions, including anti-microbial, antioxidant, and anti-tumor activities. The aim of this study is to investigate the effects of cinnamaldehyde-rich cinnamon extract (CRCE) on the colorectal cancer cell lines HCT 116 and HT-29. The gas chromatography mass spectrometry analysis of a lipophilic extract of cinnamon revealed the dominance of trans-cinnamaldehyde. Cells treated with CRCE (10-60 µg/mL) showed significantly decreased cell viability in a time- and dose-dependent manner. We also observed that cell proliferation and migration capacity were inhibited in CRCE-treated cells. In addition, a remarkable increase in the number of sub-G1-phase cells was observed with arrest at the G2 phase by CRCE treatment. CRCE also induced mitochondrial stress, and finally, CRCE treatment resulted in activation of apoptotic proteins Caspase-3, -9, and PARP and decreased levels of mu-2-related death-inducing gene protein expression with BH3-interacting domain death agonist (BID) activation.
Assuntos
Cinnamomum zeylanicum , Neoplasias do Colo , Humanos , Cinnamomum zeylanicum/química , Apoptose , Neoplasias do Colo/tratamento farmacológico , Células HT29 , Morte Celular , Proliferação de Células , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Sobrevivência CelularRESUMO
Phosphorus (P) is often the limiting factor for plant growth because of its low mobility and availability in soils. Phosphate-solubilizing bacteria (PSB) have been shown to increase the availability of soil P fractions, thereby promoting plant growth. We herein investigated the effects of PSB on P availability in two important Chinese soil types: Lateritic red earths (La) and Cinnamon soils (Ci). We initially isolated 5 PSB strains and assessed their effects on soil P fractions. PSB mainly increased moderately labile P in La and labile P in Ci. We then selected the most promising PSB isolate (99% similarity with Enterobacter chuandaensis) and examined its effects on P accumulation in maize seedlings. The results obtained showed that plant P accumulation increased in response to a PSB inoculation in both soil types and the combination of the PSB inoculation and tricalcium phosphate fertilization in La significantly enhanced P accumulation in plant shoots. The present study demonstrated that the PSB isolates tested differed in their ability to mobilize P from distinct P fertilizers and that PSB isolates have potential as a valuable means of sustainably enhancing seedling growth in Chinese agricultural soils.
Assuntos
Fosfatos , Fósforo , Plântula , Cinnamomum zeylanicum , Zea mays , SoloRESUMO
Cinnamon essential oil (CEO)-based Pickering emulsions were prepared using chitosan (CS) and soy protein isolate (SPI) colloid particles as stabilizers and genipin as cross-linker. Pickering emulsions have smaller particle sizes, higher stability, and encapsulation efficiency at a CS:SPI ratio of 1:4. The Pickering emulsion-modified collagen films showed enhanced thermal stability, UV-blocking properties, and water resistance. In addition, the antioxidant (DPPH scavenging activity, 18.35%-50.59%) and antimicrobial activities (inhibition zone, Escherichia coli, 0-1.85 cm; Staphylococcus aureus, 0-1.57 cm; Pseudomonas fluorescens, 0-1.34 cm) of the films were improved due to the sustained release of CEO, with the release kinetics following the Fickian diffusion of the Ritger-Peppas model. When the functionalized film was used for pork preservation, a four-day extension of shelf life was observed. Collectively, our findings suggest that Pickering emulsions provide great potential for the application of collagen film in pork preservation.
Assuntos
Anti-Infecciosos , Quitosana , Óleos Voláteis , Carne de Porco , Carne Vermelha , Animais , Suínos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Emulsões/química , Cinnamomum zeylanicum/química , Antioxidantes/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Tamanho da Partícula , Colágeno , Quitosana/químicaRESUMO
Natural essential oils (EOs), especially those combining different individual EOs (also termed composite EOs) with enhanced performance, are becoming healthy, market-sought food preservatives/additives. This study aims to provide insights into the challenge regarding EOs processing due to their low solubility and the elusive mechanism under the enhanced bio-reactivity of composite EOs. A unique oil/water interacting network was created by phase-inversion processing, which enhances EO solubilization and emulsification to form composite EO formulations (EOFs) containing ordinary cinnamon, oregano and clove EOs. These EOFs mainly contained cinnamaldehyde, carvacrol and eugenol and exhibited excellent post-storage stability. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging ability of EOFs (at 15.880 µL/mL) was > 88%, and the Ferric reducing antioxidant power (FRAP) was 1.8 mM FeSO4·7H2O. The minimum inhibitory concentration (MIC) of EOFs against E. coli and S. aureus was â¼7.940 µL/mL. The EOFs could cause quick deterioration of bacterial structures, demonstrating high efficacy in bacteria-killing and anti-biofilm formation.
Assuntos
Óleos Voláteis , Origanum , Syzygium , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Origanum/química , Cinnamomum zeylanicum/química , Staphylococcus aureus , Emulsões , Escherichia coli , Antibacterianos/farmacologia , Testes de Sensibilidade MicrobianaRESUMO
The use of non-conventional starch sources to develop biodegradable and bioactive starch-based films have attracted increasing attention recently. In this study, a nonconventional chayote tuber starch (CTS) was functionalized by zein-pectin nanoparticle-stabilized cinnamon essential oil (CEO) Pickering emulsion (ZPCO) to develop a novel bioactive composite films for food packaging application. Results demonstrated that antibacterial ZPCO featuring long-term stability was successfully obtained. FTIR and SEM analyses suggested that ZPCO have favorable dispersibility and compatibility with CTS matrix. With ZPCO increasing, the transmittance, tensile strength, and moisture content of composite films decreased, whereas their elongation at break, antimicrobial and antioxidant activities increased. ZPCO added at an appropriate level (2 %) can improve water-resistance of the films and reduce water vapor permeability. More importantly, ZPCO can achieve a slower sustained-release of CEO from composite films into food simulants. Furthermore, the composite film containing 2 % ZPCO is safe and nontoxic as proved by cell cytotoxicity test, and it can significantly prolong the shelf life of ground beef by showing the lowest total volatile base nitrogen and best acceptable sensory characteristic. Overall, the incorporation of ZPCO into CTS films offers a great potential application as a bioactive material in the food packing.
Assuntos
Anti-Infecciosos , Óleos Voláteis , Animais , Bovinos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Amido/química , Cinnamomum zeylanicum/química , Emulsões , Anti-Infecciosos/farmacologia , Permeabilidade , Embalagem de Alimentos/métodosRESUMO
Encapsulated phytochemicals with augmented therapeutic and nutritional characteristics have become promising alternatives to antimicrobials in the poultry industry. Hence, our key target was to explore the efficacy of liposomal encapsulation, as a novel carrier, for essential oils (LEOs) on growth, digestibility, intestinal microbiota, and bacterial metabolites of broiler chickens. Moreover, the impact of encapsulated EOs on transcription mechanisms targeting the genes encoding digestive enzymes, gut barrier functions and antioxidant potential of broiler chickens was evidenced. Four equal broiler groups were fed 4 basal diets fortified with LEOs (oregano, cinnamon, and clove) at the levels of 0, 200, 300, and 400 mg/kg diet. Our findings revealed significant improvement in body weight gain and feed conversion ratio of birds fed higher levels of LEOs. These results came concurrently with increasing the activities of digestive enzymes at both serum and molecular levels and consequently nutrient digestibility (dry matter, ether extract, crude protein, and crude fiber) in these groups. Remarkably, the abundance of beneficial bacteria as well as the bacterial metabolites (valeric acid, butyric acid, propionic acid, acetic acid, and total short-chain fatty acids) was increased, while that of pathogenic ones was reduced following dietary inclusion of LEOs. Of note, the mRNA expression of genes encoding antioxidant stability [catalase (CAT), superoxide dismutase 1 (SOD-1), glutathione peroxidase 1 (GPX-1), nuclear factor erythroid 2-related factor 2 (NRF2), NAD(P)H dehydrogenase quinone 1 (NQO1), and heme oxygenase-1 (HO-1)] as well as barrier functions [mucin-2 (MUC-2)] and tight junction proteins, TJP [junctional adhesion molecule-2 (JAM-2) and occludin] were noticeably upregulated in broilers fortified with 400 mg/kg diet of LEOs. Overall, the present work recommended dietary inclusion of LEOs as beneficial additives for attaining targeted performance, gut health and antioxidant stability in poultry farming.
Assuntos
Microbioma Gastrointestinal , Óleos Voláteis , Origanum , Syzygium , Animais , Antioxidantes/metabolismo , Suplementos Nutricionais/análise , Galinhas , Cinnamomum zeylanicum , Ração Animal/análise , Dieta/veterinária , Óleos Voláteis/metabolismoRESUMO
Cinnamon (Cinnamomum zeylanicum Blume) essential oil has vast potential as an antimicrobial but is limited by its volatility and rapid degradation. To decrease its volatility and prolong the efficacy of the biocide, cinnamon essential oil was encapsulated into mesoporous silica nanoparticles (MSNs). The characterization of MSNs and cinnamon oil encapsulated with silica nanoparticles (CESNs) was estimated. Additionally, their insecticidal activity against the rice moth Corcyra cephalonica (Stainton) larvae was evaluated. The MSN surface area decreased from 893.6 to 720 m2 g-1 and the pore volume also decreased from 0.824 to 0.7275 cc/g after loading with cinnamon oil. X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX), and N2 sorption by Brunauer-Emmett-Teller (BET) confirmed the successful formation and evolution of the synthesized MSNs and CESN structures. The surface characteristics of MSNs and CESNs were analyzed by scanning and transmission electron microscopy. Compared with the sub-lethal activity values, the order of toxicity after 6 days of exposure was MSNs Ë CESN Ë cinnamon oil Ë silica gel Ë peppermint oil. The efficacy of CESNs gradually increases its toxicity more than MSN after the 9th day of exposure.
Assuntos
Mariposas , Nanopartículas , Óleos Voláteis , Animais , Cinnamomum zeylanicum , Dióxido de Silício/química , Nanopartículas/químicaRESUMO
Cinnamon (Cinnamomum verum J. Presl) bark and its extracts are popular ingredients added to food and supplement products. It has various health effects, including potentially reducing the risk of coronavirus disease-2019 (COVID-19). In our study, the bioactives in cinnamon water and ethanol extracts were chemically identified, and their potential in suppressing SARS-CoV-2 spike protein-angiotensin-converting enzyme 2 (ACE2) binding, reducing ACE2 availability, and scavenging free radicals was investigated. Twenty-seven and twenty-three compounds were tentatively identified in cinnamon water and ethanol extracts, respectively. Seven compounds, including saccharumoside C, two emodin-glucuronide isomers, two physcion-glucuronide isomers, and two type-A proanthocyanidin hexamers, were first reported in cinnamon. Cinnamon water and ethanol extracts suppressed the binding of SARS-CoV-2 spike protein to ACE2 and inhibited ACE2 activity in a dose-dependent manner. Cinnamon ethanol extract had total phenolic content of 36.67 mg gallic acid equivalents (GAE)/g and free radical scavenging activities against HO⢠and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTSâ¢+) of 1688.85 and 882.88 µmol Trolox equivalents (TE)/g, which were significantly higher than those of the water extract at 24.12 mg GAE/g and 583.12 and 210.36 µmol TE/g. The free radical scavenging activity against 2,2-diphenyl-1-picrylhydrazyl radical (DPPHâ¢) of cinnamon ethanol extract was lower than that of the water extract. The present study provides new evidence that cinnamon reduces the risk of SARS-CoV-2 infection and COVID-19 development.
Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Cinnamomum zeylanicum , Enzima de Conversão de Angiotensina 2 , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Glucuronídeos , SARS-CoV-2 , Radicais Livres , Ácido Gálico , Etanol/química , Água/química , Ligação ProteicaRESUMO
Myocardial ischemia-reperfusion injury (MIRI) is a common complication of acute myocardial infarction that seriously endangers human health. Cinnamon, a traditional Chinese medicine, has been used to counteract MIRI as it has been shown to possess anti-inflammatory and antioxidant properties. To investigate the mechanisms of action of cinnamon in the treatment of MIRI, a deep learning-based network pharmacology method was established to predict potential active compounds and targets. The results of the network pharmacology showed that oleic acid, palmitic acid, beta-sitosterol, eugenol, taxifolin, and cinnamaldehyde were the main active compounds, and phosphatidylinositol-3 kinase (PI3K)/protein kinase B (Akt), mitogen-activated protein kinase (MAPK), interleukin (IL)-7, and hypoxia-inducible factor 1 (HIF-1) are promising signaling pathways. Further molecular docking tests revealed that these active compounds and targets exhibited good binding abilities. Finally, experimental validation using a zebrafish model demonstrated that taxifolin, the active compound of cinnamon, has a potential protective effect against MIRI.
Assuntos
Cinnamomum zeylanicum , Traumatismo por Reperfusão Miocárdica , Humanos , Animais , Simulação de Acoplamento Molecular , Farmacologia em Rede , Peixe-ZebraRESUMO
In this study, amphiphilic chitosan (NPCS-CA) was synthesized by grafting quaternary phosphonium salt and cholic acid onto the chain of chitosan, aiming to develop an active edible film based on NPCS-CA and polyvinyl alcohol (PVA) incorporated with cinnamon essential oil (CEO) by the casting method. The chemical structure of the chitosan derivative was characterized by FT-IR, 1H NMR and XRD. Through the characterization of FT-IR, TGA, mechanical and barrier properties of the composite films, the optimal proportion of NPCS-CA/PVA was determined as 5/5. And, the tensile strength and elongation at break of the NPCS-CA/PVA (5/5) film with 0.4 % CEO were 20.32 MPa and 65.73 %, respectively. The results revealed that the NPCS-CA/PVA-CEO composite films exhibited an excellent ultraviolet barrier property at 200-300 nm and significantly reduced oxygen permeability, carbon dioxide permeability and water vapor permeability. Furthermore, the antibacterial property of film-forming solutions against E. coli, S. aureus, and C. lagenarium was distinctly improved with the increase of NPCS-CA/PVA proportion. And, the multifunctional films effectively extended the shelf-life of mangoes at 25 °C based on the characterization of surface changes and quality indexes. The NPCS-CA/PVA-CEO films could be developed as biocomposite food packaging material.
Assuntos
Quitosana , Óleos Voláteis , Óleos Voláteis/química , Quitosana/química , Álcool de Polivinil/química , Cinnamomum zeylanicum/química , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/química , Embalagem de Alimentos/métodosRESUMO
Alzheimer's disease (AD), one of the most common neurodegenerative diseases, is a major factor contributing to cognitive impairment in older adults. Current therapeutic treatments can only relieve the symptoms of AD, but they cannot stop the progression of the disease because it takes a long time for clinical symptoms to manifest. Therefore, it is essential to develop effective diagnostic strategies for early detection and treatment of AD. As the most common genetic risk factor for AD, apolipoprotein E4 (ApoE4) is present in more than half of patients with AD, and it can be a target protein for AD therapy. We used molecular docking, classical molecular mechanics optimizations, and ab initio fragment molecular orbital (FMO) calculations to investigate the specific interactions between ApoE4 and Cinnamon-derived compounds. Of the 10 compounds, epicatechin was found to have the highest binding affinity to ApoE4 because the hydroxyl groups of epicatechin form strong hydrogen bonds with the Asp130 and Asp12 residues of ApoE4. Therefore, we proposed some epicatechin derivatives by adding a hydroxyl group to epicatechin and studied their interactions with ApoE4. The FMO results indicate that the addition of a hydroxyl group to epicatechin increases its binding affinity to ApoE4. It is also revealed that the Asp130 and Asp12 residues of ApoE4 are important for the binding between ApoE4 and the epicatechin derivatives. These findings will help propose potent inhibitors against ApoE4, leading to a proposal for effective therapeutic candidates for AD.
Assuntos
Doença de Alzheimer , Catequina , Humanos , Idoso , Doença de Alzheimer/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Simulação de Acoplamento Molecular , Cinnamomum zeylanicum/metabolismo , EspeciariasRESUMO
INTRODUCTION: Cinnamon is one of the most common spices that has been studied for its anti-inflammatory, antioxidant, and antibacterial properties in wound healing. The purpose of this study was to evaluate the effectiveness of polycaprolactone nanofiber mats coated with chitosan microcapsules loaded with cinnamon essential oil in wound healing. MATERIAL AND METHODS: For this purpose, chitosan microcapsules containing cinnamon essential oil (µCS-CiZ) were prepared by ion gelation and PCL nanofibers by electrospinning. The size of the µCS-CiZ and the morphology of nanofibers were evaluated by DLS and FESEM methods. In order to evaluate wound healing, 48 rats in 4 groups of Control, µCS-CiZ, PCL, and PCL + µCS-CiZ and were examined on days 7, 14, and 21 in terms of macroscopy (wound closure rate) and histology (edema, inflammation, vascularity, fibrotic tissue, and re-epithelialization). RESULTS: The particle size of the µCS-CiZ and the diameter of the nanofibers were estimated at about 6.33 ± 1.27 µm and 228 ± 33 nm, respectively. On day 21, both µCS-CiZ and PCL groups showed a significant decrease in wound size compared to the control group (P < 0.001). The PCL + µCS-CiZ group also showed a significant decrease compared to the µCS-CiZ (P < 0.05) and PCL groups (P < 0.05). Histological results showed further reduction of edema, inflammation, and vascularity in granulation tissue and appearance of moderate to marked fibrotic tissue in PCL + µCS-CiZ group compared with the other groups. CONCLUSION: The results of the study showed that the combined use of PCL + µCS-CiZ indicates a synergistic effect on improving wound healing.
Assuntos
Quitosana , Nanofibras , Óleos Voláteis , Ratos , Animais , Quitosana/farmacologia , Cinnamomum zeylanicum , Óleos Voláteis/farmacologia , Cápsulas , CicatrizaçãoRESUMO
Cinnamomi ramulus (CR) and Cinnamomi cortex (CC), both sourced from Cinnamomum cassia Presl, are commonly used Chinese medicines in the Chinese Pharmacopeia. However, while CR functions to dissipate cold and to resolve external problems of the body, CC functions to warm the internal organs. To clarify the material basis of these different functions and clinical effects, a simple and reliable UPLC-Orbitrap-Exploris-120-MS/MS method combined with multivariate statistical analyses was established in this study with the aim of exploring the difference in chemical compositions of aqueous extracts of CR and CC. As the results indicated, a total of 58 compounds was identified, including nine flavonoids, 23 phenylpropanoids and phenolic acids, two coumarins, four lignans, four terpenoids, 11 organic acids and five other components. Of these compounds, 26 significant differential compounds were identified statistically including six unique components in CR and four unique components in CC. Additionally, a robust HPLC method combined with hierarchical clustering analysis (HCA) was developed to simultaneously determine the concentrations and differentiating capacities of five major active ingredients in CR and CC: coumarin, cinnamyl alcohol, cinnamic acid, 2-methoxycinnamic acid and cinnamaldehyde. The HCA results showed that these five components could be used as markers for successfully distinguishing CR and CC. Finally, molecular docking analyses were conducted to obtain the affinities between each of the abovementioned 26 differential components, focusing on targets involved in diabetes peripheral neuropathy (DPN). The results indicated that the special and high-concentration components in CR showed high docking scores of affinities with targets such as HbA1c and proteins in the AMPK-PGC1-SIRT3 signaling pathway, suggesting that CR has greater potential than CC for treating DPN.
Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Simulação de Acoplamento Molecular , Medicamentos de Ervas Chinesas/química , Cinnamomum zeylanicumRESUMO
This study aimed to formulate mucoadhesive antimicrobial nanoparticles using natural antimicrobials and biopolymers for oral health and verify their antimicrobial activity in clinical studies. A combination of grapefruit seed extract and cinnamon oil (GCN) and chitosan/carrageenan (CS/CR) were selected as synergistic antimicrobial combinations and mucoadhesive wall materials for nanoparticles, respectively. GCN nanoparticles (NPs; size = 357 nm and polydispersity index = 0.188) prepared by ionic gelation between CS and CR exhibited synergistic antimicrobial activity between grapefruit seed extract and cinnamon oil and significantly higher antimicrobial activity against Streptococcus mutans and sobrinus than free GCN in a time-kill assay. The clinical antibacterial activity of GCN was significantly increased and sustained by nanoencapsulation in the mouth-rinse test and GCN NP-treated drinking yogurt. These results suggest that GCN-loaded CS/CR nanoencapsulation is a promising technique that can inhibit oral bacteria with or without the presence of other food ingredients.
Assuntos
Anti-Infecciosos , Quitosana , Óleos Voláteis , Cinnamomum zeylanicum , Saúde Bucal , Óleos Voláteis/farmacologia , Anti-Infecciosos/farmacologiaRESUMO
Given the known pro-oxidant status of tumour cells, the development of anti-proliferative strategies focuses on products with both anti- and pro-oxidant properties that can enhance antitumour drug cytotoxicity. We used a C. zeylanicum essential oil (CINN-EO) and assessed its effect on a human metastatic melanoma cell line (M14). Human PBMCs and MDMs from healthy donors were used as normal control cells. CINN-EO induced cell growth inhibition, cell cycle perturbation, ROS and Fe(II) increases, and mitochondrial membrane depolarization. To assess whether CINN-EO could affect the stress response, we analysed iron metabolism and stress response gene expression. CINN-EO increased HMOX1, FTH1, SLC7A11, DGKK, and GSR expression but repressed OXR1, SOD3, Tf, and TfR1 expression. HMOX1, Fe(II), and ROS increases are associated with ferroptosis, which can be reversed by SnPPIX, an HMOX1 inhibitor. Indeed, our data demonstrated that SnPPIX significantly attenuated the inhibition of cell proliferation, suggesting that the inhibition of cell proliferation induced by CINN-EO could be related to ferroptosis. Concurrent treatment with CINN-EO enhanced the anti-melanoma effect of two conventional antineoplastic drugs: the mitochondria-targeting tamoxifen and the anti-BRAF dabrafenib. We demonstrate that CINN-EO-mediated induction of an incomplete stress response specifically in cancer cells affects the proliferation of melanoma cells and can enhance drug cytotoxicity.
Assuntos
Melanoma , Óleos Voláteis , Humanos , Óleos Voláteis/farmacologia , Cinnamomum zeylanicum , Espécies Reativas de Oxigênio/farmacologia , Proliferação de Células , Melanoma/tratamento farmacológico , Compostos Ferrosos/farmacologia , Linhagem Celular TumoralRESUMO
Introducción. El síndrome metabólico (SM) aumenta el ingreso hospitalario y el riesgo de desarrollar COVID-19, los fármacos utilizados para su tratamiento ocasionan efectos secundarios por lo que se ha optado por la búsqueda de alternativas terapéuticas a base de compuestos bioactivos contenidos en plantas medicinales. La canela se utiliza como agente terapéutico debido a sus propiedades comprobadas con diversos mecanismos de acción reportados en el tratamiento de varias patologías. Objetivo. Documentar los estudios in vitro, in vivo, estudios clínicos y los mecanismos de acción reportados del efecto de la administración de extractos y polvo de canela en las comorbilidades relacionadas con el SM. Materiales y métodos. Revisión sistemàtica de artículos en bases de datos electrónicas, incluyendo estudios de canela en polvo, extractos acuosos, de acetato de etilo y metanol de la corteza de canela, período de 5 años, excluyendo todo artículo relacionado a su efecto antimicrobiano, antifúngico y aceite de canela. Resultados. Las evidencias de los principales compuestos bioactivos contenidos en la canela validan su potencial en el tratamiento de enfermedades relacionadas al SM, con limitados estudios que indagan en los mecanismos de acción correspondientes a sus actividades biológicas. Conclusiones. Las evidencias de las investigaciones validan su potencial en el tratamiento de estas patologías, debido a sus principales compuestos bioactivos: cinamaldehído, transcinamaldehído, ácido cinámico, eugenol y, antioxidantes del tipo proantocianidinas A y flavonoides, los cuales participan en diversos mecanismos de acción que activan e inhiben enzimas, con efecto hipoglucemiante (quinasa y fosfatasa), antiobesogénico (UPC1), antiinflamatorio (NOS y COX), hipolipemiante (HMG-CoA) y antihipertensivo (ECA)(AU)
Introduction. Metabolic syndrome (MS) increases hospital admission and the risk of developing COVID-19. Due to the side effects caused by the drugs used for its treatment, the search for therapeutic alternatives based on bioactive compounds contained in medicinal plants has been chosen. Cinnamon is used as a therapeutic agent due to its proven properties with various mechanisms of action reported in the treatment of various pathologies. Objective. To document the in vitro and in vivo studies, clinical studies and the mechanisms of action reported on the effect of the administration of cinnamon extracts and powder on comorbidities related to MS. Materials and methods. Systematic review of articles in electronic databases, including studies of cinnamon powder, aqueous extracts, ethyl acetate and methanol from cinnamon bark, over a period of 5 years, excluding all those articles related to its antimicrobial, antifungal and antimicrobial effect. cinnamon oil. Results. The evidence of the main bioactive compounds contained in cinnamon validates its potential in the treatment of diseases related to MS, with limited studies that investigate the mechanisms of action corresponding to its biological activities. Conclusions. Research evidence validates its potential in the treatment of these pathologies, due to its main bioactive compounds: cinnamaldehyde, transcinnamaldehyde, cinnamic acid, eugenol, and antioxidants of the proanthocyanidin A type and flavonoids, which participate in various mechanisms of action that activate and they inhibit enzymes, with hypoglycemic (kinase and phosphatase), antiobesogenic (UPC1), anti-inflammatory (NOS and COX), lipid-lowering (HMG-CoA) and antihypertensive (ACE) effects(AU)
Assuntos
Humanos , Masculino , Feminino , Cinnamomum zeylanicum , Síndrome Metabólica , Diabetes Mellitus , Compostos Fitoquímicos , Obesidade , Peso Corporal , Hipoglicemiantes , Anti-InflamatóriosRESUMO
BACKGROUND: Cinnamomum verum J. Presl (Cinnamon) is widely used in the food and pharmaceutical industries. C. verum exhibits various biological activities. However, it is unclear whether C. verum can inhibit NOX, a major source of ROS generation, and exert anti-inflammatory and antioxidant effects in PMA-stimulated THP-1 cells. PURPOSE: This study investigates the anti-inflammatory and antioxidant effects of C. verum in PMA-stimulated THP-1 cells. METHODS: The MeOH extract of C. verum was analyzed using UPLC-QTOF/MS. Anti-inflammatory and antioxidant effects of C. verum extract were examined by DCF-DA staining, immunofluorescence staining, RT-PCR, and immunoblotting in PMA-stimulated THP-1 cells. RESULTS: C. verum and its components, cinnamic acid and coumarin, significantly attenuated the expression of IL-1ß, IL-8, CCL5, and COX-2 in PMA-stimulated THP-1. C. verum decreased ROS levels via NOX2 downregulation, as well as ameliorated plasma membrane translocation of PKCδ and decreased JNK phosphorylation. Besides, C. verum suppressed the nuclear translocation of AP-1 and NF-κB, which modulates diverse pro-inflammatory genes. CONCLUSION: C. verum effectively inhibits inflammation and oxidative stress during monocyte-macrophage differentiation and downregulates inflammatory mediators via NOX2/ROS and PKCδ/JNK/AP-1/NF-κB signaling.
Assuntos
Monócitos , NF-kappa B , NF-kappa B/metabolismo , Cinnamomum zeylanicum , Transdução de Sinais , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição AP-1/metabolismo , Antioxidantes/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Lipopolissacarídeos/farmacologiaRESUMO
This research developed a novel, efficient and safe antimildew for peanut kernel postharvest storage. The antimildew, cinnamon-Litsea cubeba compound essential oil (CLCEO) microcapsule (CLCEOM), was synthesized with CLCEO as core materials and ß-cyclodextrin as wall materials. Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry analyses indicated that major antifungal compounds of CLCEO were encapsulated in the cavity of ß-cyclodextrin. The inhibition zone experiment showed that CLCEOM retained antifungal effect on Aspergillus spp. strains even after storage for 2 months at 4 â. Besides, CLCEOM reduced total number of fungal colonies, relative abundance of Aspergillus spp., and aflatoxin B1 content of peanut kernels, and had positive effect on slowing down the increase in acid value of peanut oil without causing any adverse effect on the viability and sensory properties during storage process. Overall, CLCEOM presented good preservative effects on peanut kernels, providing evidence for its potential use as antimildew for peanut storage.
Assuntos
Litsea , Óleos Voláteis , Óleos Voláteis/química , Arachis , Litsea/química , Cinnamomum zeylanicum , Antifúngicos/farmacologia , Cápsulas , AspergillusRESUMO
As a major virulence factor of Listeria monocytogenes (L. monocytogenes), listeriolysin O (LLO) can assist in the immune escape of L. monocytogenes, which is critical for the pathogen to evade host immune recognition, leading to various infectious diseases. Cinnamon twig (CT), as a traditional medicine, has been widely used in clinics for multiple functions and it has exhibited excellent safety, efficacy and stability. There are few reports on the effects of the extracts of traditional medicine on bacterial virulence factors. CT has not been reported to be effective in the treatment of L. monocytogenes infection. Therefore, this study aims to explore the preventive effect of CT against L. monocytogenes infection in vivo and in vitro by targeting LLO. Firstly, a hemolysis assay and a cell viability determination are used to detect the effect of CT extract on the inhibition of the cytolytic activity of LLO. The potential mechanism through which CT extract inhibits LLO activity is predicted through network pharmacology, molecular docking assay, real-time polymerase chain reaction (RT-PCR), Western blotting and circular dichroism (CD) analysis. The experimental therapeutic effect of CT extract is examined in a mouse model infected with L. monocytogenes. Then, the ingredients are identified through a high-performance liquid chromatography (HPLC) and thin layer chromatography (TLC) analysis. Here we find that CT extract, containing mainly cinnamic acid, cinnamaldehyde, ß-sitosterol, taxifolin, catechin and epicatechin, shows a potential inhibition of LLO-mediated hemolysis without any antimicrobial activity. The results of the mechanism research show that CT extract treatment can simultaneously inhibit LLO expression and oligomerization. Furthermore, the addition of CT extract led to a remarkable alleviation of LLO-induced cytotoxicity. After treatment with CT extract, the mortality, bacterial load, pathological damage and inflammatory responses of infected mice are significantly reduced when compared with the untreated group. This study suggests that CT extract can be a novel and multicomponent inhibitor of LLO with multiple strategies against L. monocytogenes infection, which could be further developed into a novel treatment for infections caused by L. monocytogenes.