Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.562
Filtrar
1.
Toxicol Lett ; 316: 73-84, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31513886

RESUMO

In the liver microenvironment, interactions among diverse types of hepatic cells are involved in liver fibrosis. In fibrotic tissues, exosomes act as transporters in intercellular communication. Long non-coding RNAs (lncRNAs) are involved in the activation of hepatic stellate cells (HSCs), which are participants in liver fibrosis. However, the functions of exosomal lncRNAs in liver fibrosis induced by arsenite are undefined. The purposes of the present study were (a) to determine if lncRNAs secreted from human hepatic (L-02) cells exposed to arsenite are shuttled to hepatic stellate LX-2 cells and (b) to establish their effects on LX-2 cells. In mice, MALAT1 was overexpressed in the progression of liver fibrosis induced by arsenite as well as in L-02 cells exposed to arsenite. Co-cultures with arsenite-treated L-02 cells induced the activation of LX-2 cells and overexpression of MALAT1. Arsenite-treated L-02 cells transported MALAT1 into LX-2 cells. Downregulation of MALAT1, which reduced the MALAT1 levels in exosomes derived from arsenite-treated L-02 cells, inhibited the activation of LX-2 cells. Additionally, exosomal MALAT1 derived from arsenite-treated L-02 cells promoted the activation of LX-2 cells via microRNA-26b regulation of COL1A2. Furthermore, circulating exosomal MALAT1 was up-regulated in people exposed to arsenite. In sum, exosomes derived from arsenite-treated hepatic cells transferred MALAT1 to HSCs, which induced their activation. These findings support the concept that, during liver fibrosis induced by arsenite, exosomal lncRNAs are involved in cell-cell communication.


Assuntos
Arsenitos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Exossomos/metabolismo , Células Estreladas do Fígado/metabolismo , Cirrose Hepática Experimental/metabolismo , Fígado/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Compostos de Sódio , Animais , Linhagem Celular , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Técnicas de Cocultura , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Exossomos/genética , Exossomos/ultraestrutura , Regulação da Expressão Gênica , Células Estreladas do Fígado/ultraestrutura , Humanos , Fígado/ultraestrutura , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/patologia , Masculino , Camundongos , MicroRNAs/genética , RNA Longo não Codificante/genética , Transdução de Sinais
2.
Nat Commun ; 10(1): 2993, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31278269

RESUMO

Activated hepatic stellate cell (aHSC)-mediated liver fibrosis is essential to the development of liver metastasis. Here, we discover intra-hepatic scale-up of relaxin (RLN, an anti-fibrotic peptide) in response to fibrosis along with the upregulation of its primary receptor (RXFP1) on aHSCs. The elevated expression of RLN serves as a natural regulator to deactivate aHSCs and resolve liver fibrosis. Therefore, we hypothesize this endogenous liver fibrosis repair mechanism can be leveraged for liver metastasis treatment via enforced RLN expression. To validate the therapeutic potential, we utilize aminoethyl anisamide-conjugated lipid-calcium-phosphate nanoparticles to deliver plasmid DNA encoding RLN. The nanoparticles preferentially target metastatic tumor cells and aHSCs within the metastatic lesion and convert them as an in situ RLN depot. Expressed RLN reverses the stromal microenvironment, which makes it unfavorable for established liver metastasis to grow. In colorectal, pancreatic, and breast cancer liver metastasis models, we confirm the RLN gene therapy results in significant inhibition of metastatic progression and prolongs survival. In addition, enforced RLN expression reactivates intra-metastasis immune milieu. The combination of the RLN gene therapy with PD-L1 blockade immunotherapy further produces a synergistic anti-metastatic efficacy. Collectively, the targeted RLN gene therapy represents a highly efficient, safe, and versatile anti-metastatic modality, and is promising for clinical translation.


Assuntos
Terapia Genética/métodos , Cirrose Hepática Experimental/terapia , Neoplasias Hepáticas/terapia , Hepatopatia Gordurosa não Alcoólica/terapia , Relaxina/genética , Animais , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Tetracloreto de Carbono/administração & dosagem , Tetracloreto de Carbono/toxicidade , Linhagem Celular Tumoral/transplante , Progressão da Doença , Feminino , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/secundário , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/química , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Plasmídeos/genética , Receptores Acoplados a Proteínas-G/metabolismo , Relaxina/metabolismo , Resultado do Tratamento , Microambiente Tumoral/genética , Regulação para Cima
3.
Cell Physiol Biochem ; 53(2): 301-322, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31343125

RESUMO

BACKGROUND/AIMS: Propolis is one of the most promising natural products, exhibiting not only therapeutic but also prophylactic actions. Propolis has several biological and pharmacological properties, including hepatoprotective activities. The present study aimed to investigate the underlying molecular mechanisms of propolis against CCl4-mediated liver fibrosis. METHODS: Three groups of male BALB/c mice (n=15/ group) were used: group 1 comprised control mice; groups 2 and 3 were injected with CCl4 for the induction of liver fibrosis. Group 3 was then orally supplemented with propolis (100 mg/kg body weight) for four weeks. Different techniques were used to monitor the antifibrotic effects of propolis, including histopathological investigations using H&E, Masson's trichrome and Sirius red staining; Western blotting; flow cytometry; and ELISA. RESULTS: We found that the induction of liver fibrosis by CCl4 was associated with a significant increase in hepatic collagen and α-smooth muscle actin (α-SMA) expression. Moreover, CCl4-treated mice also exhibited histopathological alterations in the liver architecture. Additionally, the liver of CCl4-treated mice exhibited a marked increase in proinflammatory signals, such as increased expression of HSP70 and increased levels of proinflammatory cytokines and ROS. Mechanistically, the liver of CCl4-treated mice exhibited a significant increase in the phosphorylation of AKT and mTOR; upregulation of the expression of BAX and cytochrome C; downregulation of the expression of Bcl2; a significant elevation in the levels of TGF-ß followed by increased phosphorylation of SMAD2; and a marked increase in the expression of P53 and iNOS. Interestingly, oral supplementation of CCl4-treated mice with propolis significantly abolished hepatic collagen deposition, abrogated inflammatory signals and oxidative stress, restored CCl4-mediated alterations in the signaling cascades, and hence repaired the hepatic architecture nearly to the normal architecture observed in the control mice. CONCLUSION: Our findings revealed the therapeutic potential and the underlying mechanisms of propolis against liver fibrosis.


Assuntos
Apoptose/efeitos dos fármacos , Cirrose Hepática Experimental/patologia , Própole/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Tetracloreto de Carbono/toxicidade , Citocinas/metabolismo , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico Sintase Tipo II/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Smad2/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo
4.
Gastroenterology ; 157(3): 793-806.e14, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31170413

RESUMO

BACKGROUND & AIMS: The role of aryl hydrocarbon receptor (AhR) in liver fibrosis is controversial because loss and gain of AhR activity both lead to liver fibrosis. The goal of this study was to investigate how the expression of AhR by different liver cell types, hepatic stellate cells (HSCs) in particular, affects liver fibrosis in mice. METHODS: We studied the effects of AhR on primary mouse and human HSCs, measuring their activation and stimulation of fibrogenesis using RNA-sequencing analysis. C57BL/6J mice were given the AhR agonists 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE); were given carbon tetrachloride (CCl4); or underwent bile duct ligation. We also performed studies in mice with disruption of Ahr specifically in HSCs, hepatocytes, or Kupffer cells. Liver tissues were collected from mice and analyzed by histology, immunohistochemistry, and immunoblotting. RESULTS: AhR was expressed at high levels in quiescent HSCs, but the expression decreased with HSC activation. Activation of HSCs from AhR-knockout mice was accelerated compared with HSCs from wild-type mice. In contrast, TCDD or ITE inhibited spontaneous and transforming growth factor ß-induced activation of HSCs. Mice with disruption of Ahr in HSCs, but not hepatocytes or Kupffer cells, developed more severe fibrosis after administration of CCl4 or bile duct ligation. C57BL/6J mice given ITE did not develop CCl4-induced liver fibrosis, whereas mice without HSC AhR given ITE did develop CCl4-induced liver fibrosis. In studies of mouse and human HSCs, we found that AhR prevents transforming growth factor ß-induced fibrogenesis by disrupting the interaction of Smad3 with ß-catenin, which prevents the expression of genes that mediate fibrogenesis. CONCLUSIONS: In studies of human and mouse HSCs, we found that AhR prevents HSC activation and expression of genes required for liver fibrogenesis. Development of nontoxic AhR agonists or strategies to activate AhR signaling in HSCs might be developed to prevent or treat liver fibrosis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Senescência Celular , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Células Estreladas do Fígado/metabolismo , Cirrose Hepática Experimental/prevenção & controle , Fígado/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/agonistas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proliferação de Células , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Regulação da Expressão Gênica , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/patologia , Indóis/farmacologia , Fígado/efeitos dos fármacos , Fígado/patologia , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/metabolismo , Cirrose Hepática Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/deficiência , Receptores de Hidrocarboneto Arílico/genética , Transdução de Sinais , Proteína Smad3/metabolismo , Tiazóis/farmacologia , beta Catenina/metabolismo
5.
Gastroenterology ; 157(3): 777-792.e14, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31078624

RESUMO

BACKGROUND & AIMS: We studied the role of interleukin 11 (IL11) signaling in the pathogenesis of nonalcoholic steatohepatitis (NASH) using hepatic stellate cells (HSCs), hepatocytes, and mouse models of NASH. METHODS: We stimulated mouse and human fibroblasts, HSCs, or hepatocytes with IL11 and other cytokines and analyzed them by imaging, immunoblot, and functional assays and enzyme-linked immunosorbent assays. Mice were given injections of IL11. Mice with disruption of the interleukin 11 receptor subunit alpha1 gene (Il11ra1-/-) mice and Il11ra1+/+ mice were fed a high-fat methionine- and choline-deficient diet (HFMCD) or a Western diet with liquid fructose (WDF) to induce steatohepatitis; control mice were fed normal chow. db/db mice were fed with methionine- and choline-deficient diet for 12 weeks and C57BL/6 NTac were fed with HFMCD for 10 weeks or WDF for 16 weeks. Some mice were given intraperitoneal injections of anti-IL11 (X203), anti-IL11RA (X209), or a control antibody at different timepoints on the diets. Livers and blood were collected; blood samples were analyzed by biochemistry and liver tissues were analyzed by histology, RNA sequencing, immunoblots, immunohistochemistry, hydroxyproline, and mass cytometry time of flight assays. RESULTS: HSCs incubated with cytokines produced IL11, resulting in activation (phosphorylation) of ERK and expression of markers of fibrosis. Livers of mice given injections of IL11 became damaged, with increased markers of fibrosis, hepatocyte cell death and inflammation. Following the HFMCD or WDF, livers from Il11ra1-/- mice had reduced steatosis, fibrosis, expression of markers of inflammation and steatohepatitis, compared to and Il11ra1+/+ mice on the same diets. Depending on the time of administration of anti-IL11 or anti-IL11RA antibodies to wild-type mice on the HFMCD or WDF, or to db/db mice on the methionine and choline-deficient diet, the antibodies prevented, stopped, or reversed development of fibrosis and steatosis. Blood samples from Il11ra1+/+ mice fed the WDF and given injections of anti-IL11 or anti-IL11RA, as well as from Il11ra1-/- mice fed WDF, had lower serum levels of lipids and glucose than mice not injected with antibody or with disruption of Il11ra1. CONCLUSIONS: Neutralizing antibodies that block IL11 signaling reduce fibrosis, steatosis, hepatocyte death, inflammation and hyperglycemia in mice with diet-induced steatohepatitis. These antibodies also improve the cardiometabolic profile of mice and might be developed for the treatment of NASH.


Assuntos
Anticorpos Neutralizantes/farmacologia , Hepatite/prevenção & controle , Subunidade alfa de Receptor de Interleucina-11/metabolismo , Interleucina-11/antagonistas & inibidores , Cirrose Hepática Experimental/prevenção & controle , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Animais , Morte Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Hepatite/genética , Hepatite/metabolismo , Hepatite/patologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-11/metabolismo , Subunidade alfa de Receptor de Interleucina-11/deficiência , Subunidade alfa de Receptor de Interleucina-11/genética , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/metabolismo , Cirrose Hepática Experimental/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Transdução de Sinais/efeitos dos fármacos , Células THP-1
6.
Chem Biol Interact ; 302: 53-60, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30703375

RESUMO

The current study was designed to assess the antifibrotic effect of dimethylfumarate (DMF) on CCl4-induced hepatic injury in rats. Hepatic injury was induced by intraperitoneal twice weekly injection of CCl4 for 2 and 3 months. DMF was administered orally during the last 4 weeks in each model. Liver injury was estimated using biochemical parameters such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), total serum bilirubin (TSB), total protein, alkaline phosphatase (ALP) and lactate dehydrogenase (LDH). Additionally, oxidative stress parameters such as superoxide dismutase (SOD), reduced glutathione (GSH), nitric oxide (NOx), and malondialdehyde (MDA) were studied. Collagen IV (Col IV), alpha-smooth muscle actin (α-SMA), transforming growth factor beta1 (TGF-ß1) and nuclear factor kappa B (NF-κB) were also assessed as markers of fibrosis and inflammation. Histopathological examination of liver tissues was performed and compared with control. The obtained results showed that DMF ameliorated the elevated markers of liver injury and oxidative stress in addition to hepatic necroinflammation scoring induced by CCl4. Furthermore, DMF ameliorated CCl4-induced fibrosis as evidenced by histopathological scoring and collagen IV content. Besides, we investigated the possible underlying mechanisms for these effects which include: (1) attenuating oxidative stress as designated by decreased MDA and NOx as well as increased GSH and SOD levels; (2) anti-inflammatory effect as evidenced by inhibitory effect on NF-κB; (3) preventing hepatic stellate cells (HSCs) activation as indicated by blunting the expression of α-SMA; and (4) downregulating the fibrogenesis response of HSCs as denoted by inhibiting TGF-ß1 secretion and Col IV deposition. In conclusion, this study clarified the antifibrotic effect of DMF that might serve as a new candidate for management of liver fibrosis.


Assuntos
Tetracloreto de Carbono/toxicidade , Fumarato de Dimetilo/uso terapêutico , Cirrose Hepática Experimental/prevenção & controle , Actinas/metabolismo , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Colágeno Tipo IV/metabolismo , Fumarato de Dimetilo/farmacologia , Glutationa/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/patologia , Masculino , Malondialdeído/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
7.
Braz J Med Biol Res ; 52(3): e7879, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30810620

RESUMO

Bone marrow mesenchymal stem cells (BMSCs) transplantation has attracted attention for the treatment of liver cirrhosis and end-stage liver diseases. Therefore, in this study, we evaluated the effect of different methods of BMSCs transplantation in the treatment of liver cirrhosis in rats. Seventy-two male Sprague-Dawley rats were divided into 7 groups: 10 were used to extract BMSCs, 10 were used as normal group, and the remaining 52 rats were randomly divided into five groups for testing: control group, BMSCs group, BMSCs+granulocyte colony-stimulating factor (G-CSF) group, and BMSCs+Jisheng Shenqi decoction (JSSQ) group. After the end of the intervention course, liver tissue sections of rats were subjected to hematoxylin and eosin (H&E) and Masson staining, and pathological grades were scored. Liver function [aminotransferase (ALT), aspartate aminotransferase (AST), albumin (ALB)] and hepatic fibrosis markers [hyaluronidase (HA), laminin (LN), type III procollagen (PCIII), type IV collagen (CIV)] were measured. BMSCs+JSSQ group had the best effect of reducing ALT and increasing ALB after intervention therapy (P<0.05). The reducing pathological scores and LN, PCIII, CIV of BMSCs+G-CSF group and BMSCs+JSSQ group after intervention therapy were significant, but there was no significant difference between the two groups (P>0.05). The effect of JSSQ on improving stem cell transplantation in rats with liver cirrhosis was confirmed. JSSQ combined with BMSCs could significantly improve liver function and liver pathology scores of rats with liver cirrhosis.


Assuntos
Cirrose Hepática Experimental/cirurgia , Transplante de Células-Tronco Mesenquimais/métodos , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Cirrose Hepática Experimental/patologia , Masculino , Ratos , Ratos Sprague-Dawley
8.
Toxicol Lett ; 304: 21-29, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30625377

RESUMO

There is an inadequacy of relevant animal models to study non-alcoholic steatohepatitis (NASH) and fibrosis. Here, we co-administered thioacetamide (TH) along with fast food diet (FFD) to C57BL/6 J mice for eight weeks. The treatments were: a) standard chow, SC b) FFD c) FFD + TH [75 mg/kg], FTH d) SC + TH [150 mg/kg], STH for 8 weeks. In in-vitro model, Hep3B cells were exposed to palmitic acid (PA) and TH viz. PA (0.25 mM) + TH (25 mM), PA (0.5 mM) alone and TH (50 mM) alone for 12 h, later supernatant media was transferred to LX-2 cells, for another 12 h. Molecular and cellular events related to inflammation, fibrosis, collagen deposition were studied. The FTH mice featured hepatic inflammation, severe diffuse fibrosis, and collagen deposition, which were less severe in FF & STH groups. In FTH group the protein expressions of α-SMA, TGF-ß, Col1 A1, CYP2E1, were up-regulated as compared to the FF group. The in-vivo findings were complemented in the LX-2 and Hep3B cells. The protein expressions of inflammatory and cellular injury markers were significantly higher in PA + TH exposed LX-2 cells. This novel model manifested hepatic inflammation and fibrosis in just eight weeks, which may be exploited for rapid screening of novel anti-NAFLD and liver anti-fibrotic agents.


Assuntos
Colesterol na Dieta , Dieta Hiperlipídica , Cirrose Hepática Experimental/induzido quimicamente , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Tioacetamida , Actinas/metabolismo , Animais , Linhagem Celular Tumoral , Colágeno/metabolismo , Colágeno Tipo I/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Fígado/metabolismo , Cirrose Hepática Experimental/metabolismo , Cirrose Hepática Experimental/patologia , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Fatores de Tempo , Fator de Crescimento Transformador beta/metabolismo
9.
Dig Dis Sci ; 64(6): 1560-1570, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30673982

RESUMO

BACKGROUND: The activation of hepatic stellate cells (HSCs) is involved in hepatic fibrogenesis and is regulated by the decreased expression of peroxisome proliferator-activated receptor γ (PPARγ). Rosiglitazone (RGZ) is a highly potent agonist of PPARγ. AIMS: To clarify molecular regulatory mechanism of RGZ in the activation of HSCs in hepatic fibrosis. METHODS: A mouse model of hepatic fibrosis was established by carbon tetrachloride with or without RGZ intervention. A vector carrying pcDNA-HOTAIR was constructed and injected into a mouse model. HSCs were isolated from liver tissue and activated by transforming growth factor-ß. The expression of miR-124-3p, HOTAIR, Col1A1, α-SMA, and PPARγ mRNAs was measured by quantitative real-time PCR. The level of PPARγ was measured by Western blotting. The interaction between HOTAIR and PPARγ was assessed by RNA immunoprecipitation (RIP) and RNA pull-down. The target gene of miR-124-3p was determined by luciferase reporter assay and RNA interference approaches. RESULTS: The expression of Col1A1 and α-SMA was reduced after RGZ intervention. Different expressions of HOTAIR and miR-124-3p were observed in liver tissue and HSCs. The luciferase reporter assay and RNA interference approaches indicated that miR-124-3p negatively regulated HOTAIR expression. RIP and RNA pull-down results revealed that PPARγ was interacted by HOTAIR. The therapeutic effect of RGZ on hepatic fibrosis was reversed by overexpression of HOTAIR. CONCLUSIONS: RGZ inhibits the activation of HSCs by up-regulating miR-124-3p. The silencing of HOTAIR by miR-124-3p in HSC activation provided the foundation to understand interactions of ncRNAs and potential treatment target in hepatic fibrosis.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática Experimental/prevenção & controle , Fígado/efeitos dos fármacos , MicroRNAs/metabolismo , Rosiglitazona/farmacologia , Animais , Tetracloreto de Carbono , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/metabolismo , Cirrose Hepática Experimental/patologia , Masculino , Camundongos Endogâmicos BALB C , MicroRNAs/genética , PPAR gama/agonistas , PPAR gama/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima
10.
Pharmacology ; 103(3-4): 128-135, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30544104

RESUMO

OBJECTIVES: To measure the expression of matrix metalloproteinase (MMP)-2, tissue inhibitor of matrix metalloproteinase inhibitor (TIMP)-2, and CD147 in mice with chronic liver injury induced by carbon tetrachloride after treatment with the traditional Chinese medicine (TCM) "Compound T11". METHOD: Sixty male ICR mice were divided randomly into 6 groups of 10: control (C), model (M), low-dose treatment (LT; 50 mg/mL of Compound T11), medium-dose treatment (MT, 100 mg/mL), high-dose treatment (HT, 150 mg/mL), and positive drug treatment (YT, 67.5 mg/mL). Each group was modeled for 7 weeks. Groups M, LT, MT, HT, and YT were injected (s.c.) with 20% carbon tetrachloride diluted with olive oil, and group C was given olive oil in the same way twice a week. After modeling, the treatment groups were administered Compound T11 at the concentrations shown above by oral gavage daily for 2 weeks, while group C was given 0.5% carboxymethyl cellulose sodium. After the final treatment, mice were killed and their liver tissues were excised. Immunohistochemical staining was performed to measure the protein expression of MMP-2, TIMP-2, and CD147, and western blotting was used to measure the protein expression of MMP-2, TIMP-2, CD147, and α-smooth muscle actin (SMA). MMP-2, TIMP-2, and CD147 mRNA expression was determined by quantitative fluorescence real-time PCR. RESULTS: Compound T11 increased the protein expression of MMP-2 and CD147 and decreased the protein expression of TIMP-2 and α-SMA. CONCLUSIONS: Treatment of chronic liver injury by TCM Compound T11 may be associated with changes to the expression of MMP-2 and CD147, and the inhibition of TIMP-2 expression.


Assuntos
Basigina/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Medicamentos de Ervas Chinesas/farmacologia , Cirrose Hepática Experimental/prevenção & controle , Fígado/efeitos dos fármacos , Metaloproteinase 2 da Matriz/metabolismo , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Animais , Basigina/genética , Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citoproteção , Relação Dose-Resposta a Droga , Fígado/enzimologia , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/enzimologia , Cirrose Hepática Experimental/patologia , Masculino , Metaloproteinase 2 da Matriz/genética , Camundongos Endogâmicos ICR , Fatores de Tempo , Inibidor Tecidual de Metaloproteinase-2/genética
11.
Drug Des Devel Ther ; 12: 4107-4115, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30584275

RESUMO

Purpose: Liver fibrosis is a worldwide health issue. Development of effective new drugs for treatment of this disease is of great importance. This study investigated the therapeutic effects of ferulic acid on liver fibrosis in vitro and in vivo. Materials and methods: Human hepatic stellate cell line (HSC) LX-2 was used for in vitro assays. Transforming growth factor ß1 (TGF-ß1) was used to induce hepatic fibrosis in LX-2 cells. Western blot was used to detect protein levels of collagen I, fibronectin, α-smooth muscle actin (SMA), p-Smad2, p-Smad3, p-p38, and p-JNK. Gene expression was measured by RT-qPCR. Fluorescence staining was used to determine localization of Smad4. CCl4-induced hepatic fibrosis in SD rats was used as an in vivo model. Histological features were detected by hematoxylin and eosin staining. Levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), hexadecenoic acid (HA), and hydroxyproline (Hyp) were measured by ELISA. Results: TGF-ß1 treatment significantly increased levels of collagen I, fibronectin, α-SMA, p-Smad2, p-Smad3, and Smad4 in LX-2 cells. Ferulic acid improved TGF-ß1-induced hepatic fibrosis via regulation of the TGF-ß1/Smad pathway. Consistent with in vitro data, CCl4 caused severe hepatic fibrosis in SD rats, as determined by ALT, AST, HA, and Hyp upregulation. Protein levels of p-Smad2 and p-Smad3 in liver tissues were significantly increased following treatment with CCl4. All CCL4-induced changes were markedly attenuated by ferulic acid treatment. Conclusion: Ferulic acid potently improved hepatic fibrosis via inhibition of the TGF-ß1/Smad pathway in vitro and in vivo. These findings provided evidence for potential use of ferulic acid to treat or prevent liver fibrosis.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Ácidos Cumáricos/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática Experimental/prevenção & controle , Fígado/efeitos dos fármacos , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Actinas/metabolismo , Animais , Tetracloreto de Carbono , Linhagem Celular , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Colágeno Tipo I/metabolismo , Citoproteção , Fibronectinas/metabolismo , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/metabolismo , Cirrose Hepática Experimental/patologia , Masculino , Fosforilação , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
12.
Toxicol Lett ; 295: 325-334, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30010033

RESUMO

Hepatic stellate cells (HSCs) activation is considered as a pivotal event in liver fibrosis. In HSCs activation and fibrosis, epigenetic events are important. Although HSCs activation alters DNA methylation, it is unknown, whether it also affects other epigenetic processes, including LncRNA and its recognition. The aim of this study was to identify the mechanism of DNA methyltransferase 1 (DNMT1) expression and its role in regulating LncRNA H19 during HSCs activation and fibrosis. Expression of DNMT1 and LncRNA H19 were determined in activated HSCs and CCl4-induced rat liver fibrosis tissue. The relationship between the LncRNA H19 and DNMT1 expression was examined in vitro. LncRNA H19 expression was reduced in activated HSCs and rat liver fibrosis tissue, whereas DNMT1 expression and methylation of the LncRNA H19 promoter were increased. Treatment of HSCs of DNMT1-siRNA blocked cell proliferation. Knockdown of DNMT1 elevated H19 expression in activated HSCs, and over-expression of DNMT1 inhibited H19 expression in activated HSCs. Moreover, we investigated the effect of H19 on ERK signal pathway. Treatment HSCs with H19-siRNA increased the expression of p-ERK1/2 in HSCs. Treatment with 5'-aza-2'-deoxycytidine in activated HSCs model reduced fibrosis gene and DNMT1 expression, enhanced H19 expression, and attenuated HSCs activation. These data connect HSCs activation with a DNMT1-LncRNA H19 epigenetic pathway that is important for liver fibrosis.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/enzimologia , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA , Epigênese Genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Estreladas do Fígado/enzimologia , Cirrose Hepática Experimental/enzimologia , Fígado/enzimologia , RNA Longo não Codificante/metabolismo , Animais , Tetracloreto de Carbono , Linhagem Celular , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , DNA (Citosina-5-)-Metiltransferase 1/genética , Ativação Enzimática , Células Estreladas do Fígado/patologia , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/patologia , Masculino , Regiões Promotoras Genéticas , RNA Longo não Codificante/genética , Ratos Sprague-Dawley , Transdução de Sinais , Fatores de Tempo
13.
BMC Gastroenterol ; 18(1): 34, 2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29486718

RESUMO

BACKGROUND: Geranylgeranylacetone (GGA), an anti-ulcer drug widely used in Japan, has attracted interest because of its various therapeutic effects. Therefore, we investigated the effects of GGA on human hepatic stellate cells (HSCs) in vitro and in a mouse model of liver fibrosis. METHODS: LX2, an immortalized human HSC line, was cultured and treated with GGA at concentrations up to 0.5 mM. After GGA treatment, changes in cellular morphology, apoptosis, and fibrosis-related gene expression were assessed. Male C57BL/6 J mouse model of carbon tetrachloride (CCl4)-induced liver fibrosis was treated with GGA. Liver fibrosis was evaluated using Sirius red staining and immunohistochemistry for α-smooth muscle actin (SMA). RESULTS: GGA decreased the density of LX2 and primary human hepatic stellate cells but not that of HepG2 cells (a human hepatoma cell line), which was employed as control. In addition, GGA decreased the expression of fibrogenic genes and increased that of C/EBP homologous protein (CHOP). It also induced endoplasmic reticulum (ER) stress and increased apoptosis. CHOP knockdown, however, failed to suppress the GGA-induced decrease in LX2 cell density, suggesting the involvement of additional molecules in ER stress-associated apoptosis. Expression of death receptor 5, mitogen-activated protein kinase, heat shock protein 70, and Akt, all of which affect the activity of stellate cells, was unchanged in relation to LX2 cell fibrogenic activity. In the mouse model of liver fibrosis, GGA decreased the extent of Sirius red staining and SMA expression. CONCLUSIONS: GGA attenuated fibrogenic activity and induced apoptosis in cultured human HSCs, and suppressed liver fibrosis in mice, suggesting its potential as an agent for treating liver fibrosis.


Assuntos
Apoptose/efeitos dos fármacos , Diterpenos/farmacologia , Cirrose Hepática Experimental/patologia , Cirrose Hepática Experimental/prevenção & controle , Animais , Tetracloreto de Carbono , Contagem de Células , Linhagem Celular , Modelos Animais de Doenças , Retículo Endoplasmático/patologia , Células Hep G2 , Humanos , Cirrose Hepática Experimental/induzido quimicamente , Masculino , Camundongos Endogâmicos C57BL , Fator de Transcrição CHOP/metabolismo
14.
Gene ; 651: 9-22, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29408309

RESUMO

Impaired glucose homoeostasis due to insulin resistance and decrease sensitivity of pancreatic ß-cells is a feature of liver disease and results into hepatogenous diabetes. Decrease expression of CD39 was linked to inflammation and occurrence of diabetes. Therefore, we performed this study to explore the protective effect of pentoxifylline (PTX) and silymarin administration on the ß-cells of the pancreas in a rat model of thioacetamide induced liver cirrhosis. Biochemical, histological and immunohistochemistry studies of the liver and pancreas were performed and provided an evidence on the protective effect of PTX to pancreatic ß-cells compared to silymarin. Also, silymarin induced a significant improvement of liver cirrhosis compared to PTX. In conclusion, the potential protective effect of PTX against ß-cells deterioration could be attributed to increasing pancreatic CD39 expression and the subsequent increase of adenosine.


Assuntos
Adenosina/metabolismo , Antígenos CD/metabolismo , Apirase/metabolismo , Cirrose Hepática Experimental/tratamento farmacológico , Pâncreas/efeitos dos fármacos , Pentoxifilina/uso terapêutico , Substâncias Protetoras/uso terapêutico , Silimarina/uso terapêutico , Amilases/sangue , Animais , Modelos Animais de Doenças , Células Secretoras de Insulina/efeitos dos fármacos , Fígado/patologia , Cirrose Hepática Experimental/metabolismo , Cirrose Hepática Experimental/patologia , Testes de Função Hepática , Masculino , Pâncreas/patologia , Ratos , Ratos Wistar , Fator de Crescimento Transformador beta1/metabolismo
16.
Gastroenterology ; 154(5): 1465-1479.e13, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29305935

RESUMO

BACKGROUND & AIMS: Cirrhosis results from accumulation of myofibroblasts derived from quiescent hepatic stellate cells (Q-HSCs); it regresses when myofibroblastic HSCs are depleted. Hedgehog signaling promotes transdifferentiation of HSCs by activating Yes-associated protein 1 (YAP1 or YAP) and inducing aerobic glycolysis. However, increased aerobic glycolysis alone cannot meet the high metabolic demands of myofibroblastic HSCs. Determining the metabolic processes of these cells could lead to strategies to prevent progressive liver fibrosis, so we investigated whether glutaminolysis (conversion of glutamine to alpha-ketoglutarate) sustains energy metabolism and permits anabolism when Q-HSCs become myofibroblastic, and whether this is controlled by hedgehog signaling to YAP. METHODS: Primary HSCs were isolated from C57BL/6 or Smoflox/flox mice; we also performed studies with rat and human myofibroblastic HSCs. We measured changes of glutaminolytic genes during culture-induced primary HSC transdifferentiation. Glutaminolysis was disrupted in cells by glutamine deprivation or pathway inhibitors (bis-2-[5-phenylacetamido-1,2,4-thiadiazol-2-yl] ethyl sulfide, CB-839, epigallocatechin gallate, and aminooxyacetic acid), and effects on mitochondrial respiration, cell growth and migration, and fibrogenesis were measured. Hedgehog signaling to YAP was disrupted in cells by adenovirus expression of Cre-recombinase or by small hairpin RNA knockdown of YAP. Hedgehog and YAP activity were inhibited by incubation of cells with cyclopamine or verteporfin, and effects on glutaminolysis were measured. Acute and chronic liver fibrosis were induced in mice by intraperitoneal injection of CCl4 or methionine choline-deficient diet. Some mice were then given injections of bis-2-[5-phenylacetamido-1,2,4-thiadiazol-2-yl] ethyl sulfide to inhibit glutaminolysis, and myofibroblast accumulation was measured. We also performed messenger RNA and immunohistochemical analyses of percutaneous liver biopsies from healthy human and 4 patients with no fibrosis, 6 patients with mild fibrosis, and 3 patients with severe fibrosis. RESULTS: Expression of genes that regulate glutaminolysis increased during transdifferentiation of primary Q-HSCs into myofibroblastic HSCs, and inhibition of glutaminolysis disrupted transdifferentiation. Blocking glutaminolysis in myofibroblastic HSCs suppressed mitochondrial respiration, cell growth and migration, and fibrogenesis; replenishing glutaminolysis metabolites to these cells restored these activities. Knockout of the hedgehog signaling intermediate smoothened or knockdown of YAP inhibited expression of glutaminase, the rate-limiting enzyme in glutaminolysis. Hedgehog and YAP inhibitors blocked glutaminolysis and suppressed myofibroblastic activities in HSCs. In livers of patients and of mice with acute or chronic fibrosis, glutaminolysis was induced in myofibroblastic HSCs. In mice with liver fibrosis, inhibition of glutaminase blocked accumulation of myofibroblasts and fibrosis progression. CONCLUSIONS: Glutaminolysis controls accumulation of myofibroblast HSCs in mice and might be a therapeutic target for cirrhosis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Metabolismo Energético , Glutamina/metabolismo , Proteínas Hedgehog/metabolismo , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/metabolismo , Fígado/metabolismo , Miofibroblastos/metabolismo , Fosfoproteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Estudos de Casos e Controles , Proliferação de Células , Transdiferenciação Celular , Células Cultivadas , Reprogramação Celular , Regulação da Expressão Gênica , Glutaminase/metabolismo , Proteínas Hedgehog/genética , Células Estreladas do Fígado/patologia , Humanos , Ácidos Cetoglutáricos/metabolismo , Fígado/patologia , Cirrose Hepática/genética , Cirrose Hepática/patologia , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/metabolismo , Cirrose Hepática Experimental/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia , Miofibroblastos/patologia , Fenótipo , Fosfoproteínas/genética , Interferência de RNA , Ratos , Transdução de Sinais , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Fatores de Tempo , Transfecção
17.
World J Gastroenterol ; 24(2): 237-247, 2018 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-29375209

RESUMO

AIM: To explore the effectiveness for treating liver fibrosis by combined transplantation of bone marrow-derived endothelial progenitor cells (BM-EPCs) and bone marrow-derived hepatocyte stem cells (BDHSCs) from the liver fibrosis environment. METHODS: The liver fibrosis rat models were induced with carbon tetrachloride injections for 6 wk. BM-EPCs from rats with liver fibrosis were obtained by different rates of adherence and culture induction. BDHSCs from rats with liver fibrosis were isolated by magnetic bead cell sorting. Tracing analysis was conducted by labeling EPCs with PKH26 in vitro to show EPC location in the liver. Finally, BM-EPCs and/or BDHSCs transplantation into rats with liver fibrosis were performed to evaluate the effectiveness of BM-EPCs and/or BDHSCs on liver fibrosis. RESULTS: Normal functional BM-EPCs from liver fibrosis rats were successfully obtained. The co-expression level of CD133 and VEGFR2 was 63.9% ± 2.15%. Transplanted BM-EPCs were located primarily in/near hepatic sinusoids. The combined transplantation of BM-EPCs and BDHSCs promoted hepatic neovascularization, liver regeneration and liver function, and decreased collagen formation and liver fibrosis degree. The VEGF levels were increased in the BM-EPCs (707.10 ± 54.32) and BM-EPCs/BDHSCs group (615.42 ± 42.96), compared with those in the model group and BDHSCs group (P < 0.05). Combination of BM-EPCs/BDHSCs transplantation induced maximal up-regulation of PCNA protein and HGF mRNA levels. The levels of alanine aminotransferase (AST), aspartate aminotransferase, total bilirubin (TBIL), prothrombin time (PT) and activated partial thromboplastin time in the BM-EPCs/BDHSCs group were significantly improved, to be equivalent to normal levels (P > 0.05) compared with those in the BDHSC (AST, TBIL and PT, P < 0.05) and BM-EPCs (TBIL and PT, P < 0.05) groups. Transplantation of BM-EPCs/BDHSCs combination significantly reduced the degree of liver fibrosis (staging score of 1.75 ± 0.25 vs BDHSCs 2.88 ± 0.23 or BM-EPCs 2.75 ± 0.16, P < 0.05). CONCLUSION: The combined transplantation exhibited maximal therapeutic effect compared to that of transplantation of BM-EPCs or BDHSCs alone. Combined transplantation of autogenous BM-EPCs and BDHSCs may represent a promising strategy for the treatment of liver fibrosis, which would eventually prevent cirrhosis and liver cancer.


Assuntos
Transplante de Medula Óssea , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Células Progenitoras Endoteliais/transplante , Hepatócitos/transplante , Cirrose Hepática Experimental/prevenção & controle , Fígado/patologia , Transplante de Células-Tronco , Antígeno AC133/metabolismo , Animais , Tetracloreto de Carbono , Proliferação de Células , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Colágeno/metabolismo , Células Progenitoras Endoteliais/metabolismo , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Hepatócitos/metabolismo , Hepatócitos/patologia , Fígado/metabolismo , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/metabolismo , Cirrose Hepática Experimental/patologia , Regeneração Hepática , Masculino , Neovascularização Patológica , Fagocitose , Fenótipo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ratos Wistar , Fatores de Tempo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
18.
J Cell Physiol ; 233(2): 1202-1212, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28471474

RESUMO

Hepatocellular carcinoma (HCC) has a poor outcome. Most HCCs develop in the context of liver fibrosis and cirrhosis caused by chronic inflammation. Short-term fasting approaches enhance the activity of chemotherapy in preclinical cancer models, other than HCC. Multi-tyrosine kinase inhibitor Sorafenib is the mainstay of treatment in HCC. However, its benefit is frequently short-lived. Whether fasting can alleviate liver fibrosis and whether combining fasting with Sorafenib is beneficial remains unknown. A 24 hr fasting (2% serum, 0.1% glucose)-induced changes on human hepatic stellate cells (HSC) LX-2 proliferation/viability/cell cycle were assessed by MTT and flow cytometry. Expression of lypolysaccharide (LPS)-induced activation markers (vimentin, αSMA) was evaluated by qPCR and immunoblotting. Liver fibrosis and inflammation were evaluated in a mouse model of steatohepatitis exposed to cycles of fasting, by histological and biochemical analyses. A 24 hr fasting-induced changes were also analyzed on the proliferation/viability/glucose uptake of human HCC cells exposed to Sorafenib. An expression panel of genes involved in survival, inflammation, and metabolism was examined by qPCR in HCC cells exposed to fasting and/or Sorafenib. Fasting decreased the proliferation and the activation of HSC. Repeated cycles of short term starvation were safe in mice but did not improve fibrosis. Fasting synergized with Sorafenib in hampering HCC cell growth and glucose uptake. Finally, fasting normalized the expression levels of genes which are commonly altered by Sorafenib in HCC cells. Fasting or fasting-mimicking diet diets should be evaluated in preclinical studies as a mean to potentiate the activity of Sorafenib in clinical use.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Jejum/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Niacinamida/análogos & derivados , Compostos de Fenilureia/farmacologia , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Células Hep G2 , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Lipopolissacarídeos/farmacologia , Cirrose Hepática Experimental/metabolismo , Cirrose Hepática Experimental/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos Endogâmicos C57BL , Niacinamida/farmacologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Sorafenibe , Fatores de Tempo
19.
FASEB J ; 32(1): 500-511, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28970250

RESUMO

Hepatic stellate cells (HSCs) are a major source of fibrogenesis in the liver, contributing to cirrhosis. When activated, HSCs transdifferentiate into myofibroblasts and undergo profound functional alterations paralleling an overhaul of the transcriptome, the mechanism of which remains largely undefined. We investigated the involvement of the class III deacetylase sirtuin [silent information regulator 1 (SIRT1)] in HSC activation and liver fibrosis. SIRT1 levels were down-regulated in the livers in mouse models of liver fibrosis, in patients with cirrhosis, and in activated HSCs as opposed to quiescent HSCs. SIRT1 activation halted, whereas SIRT1 inhibition promoted, HSC transdifferentiation into myofibroblasts. Liver fibrosis was exacerbated in mice with HSC-specific deletion of SIRT1 [conditional knockout (cKO)], receiving CCl4 (1 mg/kg) injection or subjected to bile duct ligation, compared to wild-type littermates. SIRT1 regulated peroxisome proliferator activated receptor γ (PPARγ) transcription by deacetylating enhancer of zeste homolog 2 (EZH2) in quiescent HSCs. Finally, EZH2 inhibition or PPARγ activation ameliorated fibrogenesis in cKO mice. In summary, our data suggest that SIRT1 plays an essential role guiding the transition of HSC phenotypes.-Li, M., Hong, W., Hao, C., Li, L., Wu, D., Shen, A., Lu, J., Zheng, Y., Li, P., Xu, Y. SIRT1 antagonizes liver fibrosis by blocking hepatic stellate cell activation in mice.


Assuntos
Células Estreladas do Fígado/fisiologia , Cirrose Hepática Experimental/prevenção & controle , Sirtuína 1/fisiologia , Animais , Transdiferenciação Celular/genética , Transdiferenciação Celular/fisiologia , Células Cultivadas , Regulação para Baixo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Cirrose Hepática/patologia , Cirrose Hepática/fisiopatologia , Cirrose Hepática/prevenção & controle , Cirrose Hepática Experimental/patologia , Cirrose Hepática Experimental/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Miofibroblastos/patologia , Miofibroblastos/fisiologia , PPAR gama/genética , Fenótipo , Ratos , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/deficiência , Sirtuína 1/genética
20.
Acta Pharmacol Sin ; 39(6): 930-941, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29094729

RESUMO

Liver fibrosis is a consequence of chronic liver disease that can progress to liver cirrhosis or even hepatocarcinoma. Fuzheng Huayu (FZHY), a Chinese herbal formula, has been shown to exert anti-fibrotic effects. To better understand the molecular mechanisms underlying the anti-fibrotic effects of FZHY, we analyzed transcriptomic and proteomic combination profiles in CCl4-induced liver fibrosis in rats, which were treated with extracted FZHY powder (0.35 g·kg-1·d-1, ig) for 3 weeks. We showed that FZHY administration significantly improved liver function, alleviated hepatic inflammatory and fibrotic changes, and decreased the hydroxyproline content in the livers of CCl4-treated rats. When their liver tissues were examined using microarray and iTRAQ, we found 255 differentially expressed genes (fold change ≥1.5, P<0.05) and 499 differentially expressed proteins (fold change ≥1.2, P<0.05) in the FZHY and model groups. Functional annotation with DAVID (The Database for Annotation, Visualization and Integrated Discovery) showed that 15 enriched gene ontology terms, including drug metabolic process, response to extracellular stimulus, response to vitamins, arachidonic acid metabolic process, response to wounding, and oxidation reduction might be involved in the anti-fibrotic effects of FZHY; whereas KEGG pathway analysis revealed that eight enriched pathways, including arachidonic acid metabolism, retinol metabolism, metabolism of xenobiotics by cytochrome P450, and drug metabolism might also be involved. Moreover, the protein-protein interaction network demonstrated that 10 core genes/proteins overlapped, with Ugt2a3, Cyp2b1 and Cyp3a18 in retinol metabolism pathway overlapped to a higher degree. Compared to the model rats, the livers of FZHY-treated rats had significantly higher mRNA and protein expression levels of Ugt2a3, Cyp2b1 and Cyp3a18. Furthermore, the concentration of retinoic acid was significantly higher in the FZHY-treated rats compared with the model rats. The results suggest that the anti-fibrotic effects of FZHY emerge through multiple targets, multiple functions, and multiple pathways, including FZHY-regulated retinol metabolism, xenobiotic metabolism by cytochrome P450, and drug metabolism through up-regulated Ugt2a3, Cyp2b1, and Cyp3a18. These genes may play important anti-fibrotic roles in FZHY-treated rats.


Assuntos
Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Medicamentos de Ervas Chinesas/farmacologia , Perfilação da Expressão Gênica/métodos , Cirrose Hepática Experimental/prevenção & controle , Fígado/efeitos dos fármacos , Proteômica/métodos , Animais , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citocromo P-450 CYP2B1/genética , Citocromo P-450 CYP2B1/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/metabolismo , Cirrose Hepática Experimental/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Proteoma , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA