RESUMO
Human induced pluripotent stem (iPS) cell-derived hepatocyte-like cells (HLCs) are expected to replace primary human hepatocytes as a new source of functional hepatocytes in various medical applications. However, the hepatic functions of HLCs are still low and it takes a long time to differentiate them from human iPS cells. Furthermore, HLCs have very low proliferative capacity and are difficult to be passaged due to loss of hepatic functions after reseeding. To overcome these problems, we attempted to develop a technology to dissociate, cryopreserve, and reseed HLCs in this study. By adding epithelial-mesenchymal transition inhibitors and optimizing the cell dissociation time, we have developed a method for passaging HLCs without loss of their functions. After passage, HLCs showed a hepatocyte-like polygonal cell morphology and expressed major hepatocyte marker proteins such as albumin and cytochrome P450 3A4 (CYP3A4). In addition, the HLCs had low-density lipoprotein uptake and glycogen storage capacity. The HLCs also showed higher CYP3A4 activity and increased gene expression levels of major hepatocyte markers after passage compared to before passage. Finally, they maintained their functions even after their cryopreservation and re-culture. By applying this technology, it will be possible to provide ready-to-use availability of cryopreserved HLCs for drug discovery research.
Assuntos
Citocromo P-450 CYP3A , Células-Tronco Pluripotentes Induzidas , Humanos , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Congelamento , Diferenciação Celular , Hepatócitos/metabolismoRESUMO
BACKGROUND: Management of drug-drug interactions (DDIs) for ensitrelvir, a novel 3-chymotrypsin-like protease inhibitor of SARS-CoV-2 infection is crucial. A previous clinical DDI study of ensitrelvir with midazolam, a clinical index cytochrome P450 (CYP) 3A substrate, demonstrated that ensitrelvir given for 5 days orally with a loading/maintenance dose of 750/250 mg acted as a strong CYP3A inhibitor. OBJECTIVES: The objectives of this study were to investigate the effect of ensitrelvir on the pharmacokinetics of CYP3A substrates, dexamethasone, prednisolone and midazolam, and to assess the pharmacokinetics, safety, and tolerability of ensitrelvir following multiple-dose administration of ensitrelvir. METHODS: This was a Phase 1, multicenter, single-arm, open-label study in healthy Japanese adult participants. The effects of multiple doses of ensitrelvir in the fasted state on the pharmacokinetics of dexamethasone, prednisolone, and midazolam were investigated. Ensitrelvir was administered from Day 1 through Day 5, with a loading/maintenance dose of 750/250 mg for the dexamethasone and prednisolone cohorts whereas 375/125 mg for the midazolam cohort. Either dexamethasone, prednisolone, or midazolam was administered alone (Day - 2) or in combination with ensitrelvir (Day 5) in each of the cohorts. Additionally, dexamethasone or prednisolone was administered on Days 9 and 14. The pharmacokinetic parameters of ensitrelvir, dexamethasone, prednisolone, and midazolam were calculated based on their plasma concentration data with non-compartmental analysis. In safety assessments, the nature, frequency, and severity of treatment-emergent adverse events were evaluated and recorded. RESULTS: The area under the concentration-time curve (AUC) ratio of dexamethasone on Day 5 was 3.47-fold compared with the corresponding values for dexamethasone alone on Day - 2 and the effect diminished over time after the last dose of ensitrelvir. No clinically meaningful effect was observed for prednisolone. The AUC ratio of midazolam was 6.77-fold with ensitrelvir 375/125 mg suggesting ensitrelvir at 375/125 mg strongly inhibits CYP3A similar to that at 750/250 mg. No new safety signals with ensitrelvir were reported during the study. CONCLUSION: The inhibitory effect for CYP3A was confirmed after the last dose of ensitrelvir, and the effect diminished over time. In addition, ensitrelvir at 375/125 mg showed CYP3A inhibitory potential similar to that at 750/250 mg. These findings can be used as a clinical recommendation for prescribing ensitrelvir with regard to concomitant medications. CLINICAL TRIAL REGISTRATION: Japan Registry of Clinical Trials identifier: jRCT2031210202.
Assuntos
COVID-19 , Inibidores do Citocromo P-450 CYP3A , Indazóis , Adulto , Humanos , Área Sob a Curva , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/efeitos adversos , Dexametasona/farmacocinética , Interações Medicamentosas , População do Leste Asiático , Indazóis/efeitos adversos , Midazolam/farmacocinética , Prednisolona/farmacocinética , SARS-CoV-2 , Triazinas/efeitos adversos , Triazóis/efeitos adversosRESUMO
OBJECTIVE: Fuzuloparib is an orally administered poly [ADP-ribose] polymerase 1 (PARP1) inhibitor and has potential anti-tumor effect on ovarian cancer (such as fallopian tube cancer and primary peritoneal cancer) in China. As fuzuloparib is metabolized mainly by CYP3A4, we explored the effect of itraconazole, a strong CYP3A4 inhibitor, on a single oral dose of fuzuloparib in healthy male subjects. METHODS: An open-label, single-arm, fixed sequence study was conducted. Twenty healthy adult males received one single dose of fuzuloparib (20 mg) with one dose administered alone and the other dose coadministered with itraconazole. Subjects received 200 mg QD itraconazole for 6 days during the study. Serials of blood samples were collected pre-dose of each fuzuloparib capsule administration and 48 h post-dose, and were used to analyze the PK parameters of fuzuloparib. RESULTS: Coadministration of repeated 200 mg QD oral doses of itraconazole for 6 days increased fuzuloparib exposure by 1.51-fold and 4.81-fold for peak plasma concentration and area under the plasma concentration-time curve (AUC), respectively. Oral administration of 20 mg fuzuloparib alone or together with itraconazole was safe and tolerable in healthy male subjects. CONCLUSION: The CYP3A4 inhibitor itraconazole has a significant influence on the PK behavior of fuzuloparib, suggesting to avoid using strong CYP3A4 inhibitors simultaneously with fuzuloparib. If it is necessary to use a strong CYP3A4 inhibitor, fuzuloparib would be discontinued and be restored to the original dose and frequency of administration after 5-7 half lives of CYP3A4 inhibitor stopped. TRIAL REGISTRATION: http://www.chinadrugtrials.org.cn/index.html , CTR20191271.
Assuntos
Itraconazol , Neoplasias Ovarianas , Adulto , Feminino , Humanos , Masculino , Itraconazol/farmacologia , Inibidores do Citocromo P-450 CYP3A/farmacologia , Voluntários Saudáveis , Área Sob a Curva , Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas , Estudos Cross-OverRESUMO
BACKGROUND: Non-alcoholic fatty liver disease has been a significant risk factor for hepatocellular carcinoma. In the study, we aimed to identify the key genes associated with the transition from non-alcoholic fatty liver disease to hepatocellular carcinoma through bioinformatics analysis. METHODS: The GSE164760 dataset was used for identifying differentially expressed genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were performed to explore the potential function of the differentially expressed genes. Subsequently, the protein-protein interaction network was constructed to select hub genes, and the immune cell infiltration was analyzed. Finally, the receiver operating characteristic analysis was performed to assess the diagnostic ability of the crucial genes. RESULTS: A total of 156 differentially expressed genes were identified. Gene Ontology enrichment analysis indicated that differentially expressed genes were strongly associated with cellular hormone metabolic process, response to xenobiotic stimulus, collagen-containing extracellular matrix, detoxification, and regulation of growth. In the protein-protein interaction network, ESR1, CAT, CXCL8, CD4, SPP1, CYP2E1, CYP3A4, UGT2B7, GSTA1 and THBS1 were selected as the hub genes. Immune infiltration analysis demonstrated that M0 macrophages, plasma cells, CD8+T cell and M2 macrophages were significantly changed in tumor tissues. Finally, we verified the hub gene expression and selected CD4, UGT2B7, and CYP3A4 as the potential diagnostic biomarkers. CONCLUSION: CD4, UGT2B7, and CYP3A4 were selected as the potential diagnostic biomarkers of non-alcoholic fatty liver disease-hepatocellular carcinoma.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/genética , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Regulação Neoplásica da Expressão Gênica , Biomarcadores/metabolismo , Biologia ComputacionalRESUMO
Atorvastatin (ATV) is a hypolipidemic drug widely detected in the aquatic environment. Nevertheless, limited information is provided about the toxic effects of ATV on estuary or coastal species and the underlying mechanisms. In the present study, the responses of genes expression in pregnane X receptor (PXR) signaling pathway and enzymatic activities in the liver of the estuarine benthic fish (Mugilogobius chulae) were investigated under acute and sub-chronic ATV exposure. Results showed that PXR was significantly inhibited in the highest exposure concentration of ATV for a shorter time (24 h, 500 µg L-1) but induced in a lower concentration (72 h, 5 µg L-1). The downstream genes in PXR signaling pathway such as CYP3A, SULT, UGT, and GST showed similar trends to PXR. P-gp and MRP1 were repressed in most treatments. GCLC associated with GSH synthesis was mostly induced under ATV exposure for a long time (168 h), suggesting that reactive oxygen species (ROS) were generated under ATV exposure. Similarly, GST and SOD enzymatic activities significantly increased in most exposure treatments. Under ATV exposure, SIRT1 and SIRT2 displayed induction to some extent in most treatments, suggesting that SIRTs may affect PXR expression by regulating the acetylation levels of PXR. The investigation demonstrated that ATV exposure affected the expression of the Sirtuin/PXR signaling pathway, thus further interfered adaption of M. chulae to the environment.
Assuntos
Perciformes , Receptores de Esteroides , Sirtuínas , Animais , Receptor de Pregnano X , Atorvastatina/farmacologia , Receptores de Esteroides/genética , Sirtuínas/metabolismo , Sirtuínas/farmacologia , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/farmacologia , Perciformes/metabolismo , Transdução de SinaisRESUMO
The urinary metabolic ratio of 6ß-hydroxydexamethasone to dexamethasone reportedly acts as a noninvasive marker for human cytochrome P450 (P450) 3A4/5, which is induced by rifampicin in humanized-liver mice. In the current study, the pharmacokinetics of dexamethasone in humanized-liver mice after intravenous administration (10 mg/kg) were investigated using azamulin (a time-dependent P450 3A4/5 inhibitor). After intravenous dexamethasone administration, significant differences were observed in the time-dependent plasma and 24-h urinary concentrations of 6ß-hydroxydexamethasone between untreated humanized-liver mice and humanized-liver mice treated with azamulin (daily oral doses of 15 mg/kg for 3 days). The mean ratios of 6ß-hydroxydexamethasone to dexamethasone for the maximum concentrations, the areas under the plasma concentration-versus-time curves, and urinary concentrations were significantly lower in the azamulin-treated group (59%, 58%, and 41% of the untreated values, respectively). 6ß-Hydroxydexamethasone formation was suppressed by 93% by replacing control human liver microsomes with P450 3A4/5-inactivated liver microsomes. These results suggest that the oxidation of dexamethasone in humans is mediated mainly by P450 3A4/5 (which is suppressed by azamulin), and that humanized-liver mice orally treated with azamulin may constitute an in vivo model for metabolically inactivated P450 3A4/5 in human hepatocytes transplanted into chimeric mice.
Assuntos
Sistema Enzimático do Citocromo P-450 , Microssomos Hepáticos , Humanos , Camundongos , Animais , Microssomos Hepáticos/metabolismo , Hidroxilação , Sistema Enzimático do Citocromo P-450/metabolismo , Citocromo P-450 CYP3A/metabolismo , Fígado/metabolismo , Dexametasona/farmacologia , Dexametasona/metabolismoRESUMO
Ritonavir, originally developed as HIV protease inhibitor, is widely used as a booster in several HIV pharmacotherapy regimens and more recently in Covid-19 treatment (e.g., Paxlovid). Its boosting capacity is due to the highly potent irreversible inhibition of the cytochrome P450 (CYP) 3 A enzyme, thereby enhancing the plasma exposure to coadministered drugs metabolized by CYP3A. Typically used booster doses of ritonavir are 100-200 mg once or twice daily. This review aims to address several aspects of this booster drug, including the possibility to use lower ritonavir doses, 20 mg for instance, resulting in partial CYP3A inactivation in patients. If complete CYP3A inhibition is not needed, lower ritonavir doses could be used, thereby reducing unwanted side effects. In this context, there are contradictory reports on the actual recovery time of CYP3A activity after ritonavir discontinuation, but probably this will take at least one day. In addition to ritonavir's CYP3A inhibitory effect, it can also induce and/or inhibit other CYP enzymes and drug transporters, albeit to a lesser extent. Although ritonavir thus exhibits gene induction capacities, with respect to CYP3A activity the inhibition capacity clearly predominates. Another potent CYP3A inhibitor, the ritonavir analog cobicistat, has been reported to lack the ability to induce enzyme and transporter genes. This might result in a more favorable drug-drug interaction profile compared to ritonavir, although the actual benefit appears to be limited. Indeed, ritonavir is still the clinically most used pharmacokinetic enhancer, indicating that its side effects are well manageable, even in chronic administration regimens.
Assuntos
COVID-19 , Inibidores da Protease de HIV , Humanos , Ritonavir/farmacologia , Citocromo P-450 CYP3A/metabolismo , Preparações Farmacêuticas , Tratamento Farmacológico da COVID-19 , Sistema Enzimático do Citocromo P-450/metabolismo , Interações MedicamentosasRESUMO
There is currently great interest in developing oral taxanes due to their lower costs and greater patient friendliness. We here wanted to test whether oral ritonavir, a cytochrome P450 3A (CYP3A) inhibitor, could boost the pharmacokinetics and tissue distribution of orally administered cabazitaxel (10 mg/kg) in male wild-type, Cyp3a-/-, and Cyp3aXAV (transgenic overexpression of human CYP3A4 in liver and intestine) mice. Ritonavir was initially administered at a dose of 25 mg/kg, but lower dosages of 10 and 1 mg/kg were also studied to assess the remaining amount of boosting, aiming to minimize possible side effects. Compared to the respective vehicle groups, plasma exposure of cabazitaxel (AUC0-24h) was enhanced 2.9-, 10.9-, and 13.9-fold in wild-type mice and 1.4-, 10.1-, and 34.3-fold in Cyp3aXAV mice by treatment with 1, 10, and 25 mg/kg ritonavir, respectively. Upon treatment with 1, 10, and 25 mg/kg of ritonavir, the peak plasma concentration (Cmax) was increased by 1.4-, 2.3-, and 2.8-fold in wild-type mice, while it increased by 1.7-, 4.2-, and 8.0-fold in Cyp3aXAV mice, respectively. AUC0-24h and Cmax remained unchanged in Cyp3a-/-. Biotransformation of cabazitaxel to its active metabolites still took place when coadministered with ritonavir, but this process was delayed due to the Cyp3a/CYP3A4 inhibition. These data indicate that CYP3A is the primary limiting factor in the plasma exposure to cabazitaxel and that cabazitaxel oral bioavailability could be dramatically enhanced by coadministration of an effective CYP3A inhibitor such as ritonavir. These findings could be a starting point for the setup of a clinical study, which would be needed to verify the boosting of cabazitaxel by ritonavir in humans.
Assuntos
Citocromo P-450 CYP3A , Ritonavir , Masculino , Humanos , Camundongos , Animais , Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas , Taxoides , Inibidores Enzimáticos/farmacologia , Disponibilidade Biológica , Inibidores do Citocromo P-450 CYP3ARESUMO
Described herein is the first-time disclosure of Linvencorvir (RG7907), a clinical compound and a hepatitis B virus (HBV) core protein allosteric modulator, for the treatment of chronic HBV infection. Built upon the core structure of hetero aryl dihydropyrimidine, RG7907 was rationally designed by combining all the drug-like features of low CYP3A4 induction, potent anti-HBV activity, high metabolic stability, low hERG liability, and favorable animal pharmacokinetic (PK) profiles. In particular, the chemistry strategy to mitigate CYP3A4 induction through introducing a large, rigid, and polar substituent at the position that has less interaction with the therapeutic biological target (HBV core proteins herein) is of general interest to the medicinal chemistry community. RG7907 demonstrated favorable animal PK, pharmacodynamics, and safety profiles with sufficient safety margins supporting its clinical development in healthy volunteers and HBV-infected patients.
Assuntos
Hepatite B Crônica , Hepatite B , Animais , Vírus da Hepatite B/metabolismo , Citocromo P-450 CYP3A/metabolismo , Hepatite B Crônica/tratamento farmacológico , Proteínas do Core Viral/metabolismo , Hepatite B/tratamento farmacológico , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/químicaRESUMO
BACKGROUND AND OBJECTIVE: Cilofexor is a selective farnesoid X receptor (FXR) agonist in development for the treatment of nonalcoholic steatohepatitis and primary sclerosing cholangitis. Our objective was to evaluate potential drug-drug interactions of cilofexor as a victim and as a perpetrator. METHODS: In this Phase 1 study, healthy adult participants (n = 18-24 per each of the 6 cohorts) were administered cilofexor in combination with either perpetrators or substrates of cytochrome P-450 (CYP) enzymes and drug transporters. RESULTS: In total, 131 participants completed the study. As a victim, cilofexor area under the curve (AUC) was 651%, 795%, and 175% when administered following single-dose cyclosporine (600 mg; organic anion transporting polypeptide [OATP]/P-glycoprotein [P-gp]/CYP3A inhibitor), single-dose rifampin (600 mg; OATP1B1/1B3 inhibitor), and multiple-dose gemfibrozil (600 mg twice daily [BID]; CYP2C8 inhibitor), respectively, compared with the administration of cilofexor alone. Cilofexor AUC was 33% when administered following multiple-dose rifampin (600 mg; OATP/CYP/P-gp inducer). Multiple-dose voriconazole (200 mg BID; CYP3A4 inhibitor) and grapefruit juice (16 ounces; intestinal OATP inhibitor) did not affect cilofexor exposure. As a perpetrator, multiple-dose cilofexor did not affect the exposure of midazolam (2 mg; CYP3A substrate), pravastatin (40 mg; OATP substrate), or dabigatran etexilate (75 mg; intestinal P-gp substrate), but atorvastatin (10 mg; OATP/CYP3A4 substrate) AUC was 139% compared with atorvastatin administered alone. CONCLUSION: Cilofexor may be coadministered with inhibitors of P-gp, CYP3A4, or CYP2C8 without the need for dose modification. Cilofexor may be coadministered with OATP, BCRP, P-gp, and/or CYP3A4 substrates-including statins-without dose modification. However, coadministration of cilofexor with strong hepatic OATP inhibitors, or with strong or moderate inducers of OATP/CYP2C8, is not recommended.
Assuntos
Transportadores de Ânions Orgânicos , Rifampina , Adulto , Humanos , Citocromo P-450 CYP2C8 , Citocromo P-450 CYP3A/metabolismo , Atorvastatina , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Proteínas de Neoplasias , Preparações Farmacêuticas , Interações Medicamentosas , Sistema Enzimático do Citocromo P-450 , Proteínas de Membrana Transportadoras , Inibidores do Citocromo P-450 CYP3A/farmacologiaRESUMO
Hepatic drug metabolizing enzymes (DMEs), whose activity may be affected by liver diseases, are major determinants of drug pharmacokinetics. Hepatitis C liver samples in different functional states, i.e., the Child-Pugh class A (n = 30), B (n = 21) and C (n = 7) were analyzed for protein abundances (LC-MS/MS) and mRNA levels (qRT-PCR) of 9 CYPs and 4 UGTs enzymes. The protein levels of CYP1A1, CYP2B6, CYP2C8, CYP2C9, and CYP2D6 were not affected by the disease. In the Child-Pugh class A livers, a significant up-regulation of UGT1A1 (to 163% of the controls) was observed. The Child-Pugh class B was associated with down-regulation of the protein abundance of CYP2C19 (to 38% of the controls), CYP2E1 (to 54%), CYP3A4 (to 33%), UGT1A3 (to 69%), and UGT2B7 (to 56%). In the Child-Pugh class C livers, CYP1A2 was found to be reduced (to 52%). A significant trend in down-regulation of the protein abundance was documented for CYP1A2, CYP2C9, CYP3A4, CYP2E1, UGT2B7, and UGT2B15. The results of the study demonstrate that DMEs protein abundances in the liver are affected by hepatitis C virus infection and depend on the severity of the disease.
Assuntos
Citocromo P-450 CYP1A2 , Hepatite C , Humanos , Citocromo P-450 CYP1A2/metabolismo , Cromatografia Líquida , Hepacivirus/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Microssomos Hepáticos/metabolismo , Espectrometria de Massas em Tandem , Hepatite C/metabolismoRESUMO
The Punica granatum L. (pomegranate) fruit juice contains large amounts of polyphenols, mainly tannins such as ellagitannin, punicalagin, and punicalin, and flavonoids such as anthocyanins, flavan-3-ols, and flavonols. These constituents have high antioxidant, anti-inflammatory, anti-diabetic, anti-obesity, and anticancer activities. Because of these activities, many patients may consume pomegranate juice (PJ) with or without their doctor's knowledge. This may raise any significant medication errors or benefits because of food-drug interactions that modulate the drug's pharmacokinetics or pharmacodynamics. It has been shown that some drugs exhibited no interaction with pomegranate, such as theophylline. On the other hand, observational studies reported that PJ prolonged the pharmacodynamics of warfarin and sildenafil. Furthermore, since it has been shown that pomegranate constituents inhibit cytochrome P450 (CYP450) activities such as CYP3A4 and CYP2C9, PJ may affect intestinal and liver metabolism of CYP3A4 and CYP2C9-mediated drugs. This review summarizes the preclinical and clinical studies that investigated the impact of oral PJ administration on the pharmacokinetics of drugs that are metabolized by CYP3A4 and CYP2C9. Thus, it will serve as a future road map for researchers and policymakers in the fields of drug-herb, drug-food and drug-beverage interactions. Preclinical studies revealed that prolonged administration of PJ increased the absorption, and therefore the bioavailability, of buspirone, nitrendipine, metronidazole, saquinavir, and sildenafil via reducing the intestinal CYP3A4 and CYP2C9. On the other hand, clinical studies are limited to a single dose of PJ administration that needs to be protocoled with prolonged administration to observe a significant interaction.
Assuntos
Lythraceae , Punica granatum , Humanos , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP2C9 , Sucos de Frutas e Vegetais , Antocianinas/análise , Citrato de Sildenafila , Interações Alimento-DrogaRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Cytochrome P3A4 (CYP3A4) is a crucial drug-metabolizing enzyme, and its expression is regulated by the pregnane X receptor (PXR), constitutive androstane receptor (CAR), steroid receptor coactivator 1 (SRC-1), and acetyltransferase P300. Panaxytriol is a naturally derived active substance extracted from the roots of Panax ginseng C. A. Mey. which is widely used clinically. Our previous studies have shown that panaxytriol induces CYP3A4 expression through PXR activation, which is antagonized by high CAR expression. However, the underlying mechanism remains unclear. AIM OF THE STUDY: This study aimed to investigate the mechanism of panaxytriol in inducing CYP3A4 expression via interactions between nuclear regulators and DNA response elements. MATERIALS AND METHODS: Immunoprecipitation technique was used to assess the binding levels of PXR and CAR with the coactivators SRC-1 and P300 in HepG2 and Huh-7 cells. Furthermore, chromatin immunoprecipitation assay was used to investigate the PXR and CAR interaction with the CYP3A4 promoter response element ER-6/DR-3. RESULTS: The binding of PXR to SRC-1, P300, and the response elements ER-6 and DR-3 was improved with an increase in panaxytriol concentration (10-80 µM), and the binding affinity was further enhanced upon CAR silencing. The binding of CAR to SRC-1 and the response elements ER-6 and DR-3 was significantly higher at 80 µM panaxytriol, whereas no significant binding was observed between CAR and P300. CONCLUSION: Panaxytriol promoted the recruitment of PXR to SRC-1 and P300, binding to ER-6 and DR-3, and upregulating CYP3A4 expression. Furthermore, an interactive dialogue regulatory mechanism between PXR and CAR was observed.
Assuntos
Receptores de Esteroides , Humanos , Receptores de Esteroides/genética , Receptores Citoplasmáticos e Nucleares/genética , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Células Hep G2 , Elementos de Resposta , DNARESUMO
As a promiscuous xenobiotic receptor, pregnane X receptor (PXR) has been confirmed to participate in numerous physiological process. In addition to the conventional estrogen/androgen receptor, PXR also serves as an alternative target for environmental chemical contaminants. In this work, the PXR-mediated endocrine disrupting effects of typical food contaminants were explored. Firstly, the time-resolved fluorescence resonance energy transfer assays confirmed the PXR binding affinities of 2,2',4,4',5,5'-hexachlorobiphenyl, bis(2-ethylhexyl) phthalate, dibutyl phthalate, chlorpyrifos, bisphenol A, and zearalenone, with IC50 values ranging from 1.88 to 4284.00 nM. Then their PXR agonist activities were assessed by PXR-mediated CYP3A4 reporter gene assays. Subsequently, the regulation of gene expressions of PXR and its targets CYP3A4, UGT1A1, and MDR1 by these compounds was further investigated. Intriguingly, all the tested compounds interfered with these gene expressions, confirming their endocrine disrupting effects via PXR-mediated signaling. The compound-PXR-LBD binding interactions were explored by molecular docking and molecular dynamics simulations to unravel the structural basis of their PXR binding capacities. The weak intermolecular interactions are key players in stabilizing these compound-PXR-LBD complexes. During the simulation process, 2,2',4,4',5,5'-hexachlorobiphenyl remained stable while the other 5 compounds underwent relatively severe disturbances. In conclusion, these food contaminants might exhibit endocrine disrupting effects via PXR.
Assuntos
Receptores de Esteroides , Receptor de Pregnano X , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Simulação de Acoplamento MolecularRESUMO
Vonoprazan is metabolized extensively through CYP3A and is an in vitro time-dependent inhibitor of CYP3A. A tiered approach was applied to understand the CYP3A victim and perpetrator drug-drug interaction (DDI) potential for vonoprazan. Mechanistic static modeling suggested vonoprazan is a potential clinically relevant CYP3A inhibitor. Thus, a clinical study was conducted to evaluate the impact of vonoprazan on the exposure of oral midazolam, an index substrate for CYP3A. A physiologically-based pharmacokinetic (PBPK) model for vonoprazan was also developed using in vitro data, drug- and system-specific parameters, and clinical data and observations from a [14 C] human absorption, distribution, metabolism, and excretion study. The PBPK model was refined and verified using data from a clinical DDI study with the strong CYP3A inhibitor, clarithromycin, to confirm the fraction metabolized by CYP3A, and the oral midazolam clinical DDI data assessing vonoprazan as a time-dependent inhibitor of CYP3A. The verified PBPK model was applied to simulate the anticipated changes in vonoprazan exposure due to moderate and strong CYP3A inducers (efavirenz and rifampin, respectively). The clinical midazolam DDI study indicated weak inhibition of CYP3A, with a less than twofold increase in midazolam exposure. PBPK simulations projected a 50% to 80% reduction in vonoprazan exposure when administered concomitantly with moderate or strong CYP3A inducers. Based on these results, the vonoprazan label was revised and states that lower doses of sensitive CYP3A substrates with a narrow therapeutic index should be used when administered concomitantly with vonoprazan, and co-administration with moderate and strong CYP3A inducers should be avoided.
Assuntos
Indutores do Citocromo P-450 CYP3A , Inibidores do Citocromo P-450 CYP3A , Humanos , Inibidores do Citocromo P-450 CYP3A/farmacocinética , Indutores do Citocromo P-450 CYP3A/farmacocinética , Midazolam/farmacocinética , Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas , Modelos BiológicosRESUMO
Pyrrolizidine alkaloids (PAs) occur as contaminants in plant-based foods and herbal medicines. Following metabolic activation by cytochrome P450 (CYP) enzymes, PAs induce DNA damage, hepatotoxicity and can cause liver cancer in rodents. There is ample evidence that the chemical structure of PAs determines their toxicity. However, more quantitative genotoxicity data are required, particularly in primary human hepatocytes (PHH). Here, the genotoxicity of eleven structurally different PAs was investigated in human HepG2 liver cells with CYP3A4 overexpression and PHH using an in vitro test battery. Furthermore, the data were subject to benchmark dose (BMD) modeling to derive the genotoxic potency of individual PAs. The cytotoxicity was initially determined in HepG2-CYP3A4 cells, revealing a clear structure-toxicity relationship for the PAs. Importantly, experiments in PHH confirmed the structure-dependent toxicity and cytotoxic potency ranking of the tested PAs. The genotoxicity markers γH2AX and p53 as well as the alkaline Comet assay consistently demonstrated a structure-dependent genotoxicity of PAs in HepG2-CYP3A4 cells, correlating well with their cytotoxic potency. BMD modeling yielded BMD values in the range of 0.1-10 µM for most cyclic and open diesters, followed by the monoesters. While retrorsine showed the highest genotoxic potency, monocrotaline and lycopsamine displayed the lowest genotoxicity. Finally, experiments in PHH corroborated the genotoxic potency ranking, and revealed genotoxic effects even in the absence of detectable cytotoxicity. In conclusion, our findings strongly support the concept of grouping PAs into potency classes and help to pave the way for a broader acceptance of relative potency factors in risk assessment.
Assuntos
Neoplasias Hepáticas , Alcaloides de Pirrolizidina , Humanos , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Alcaloides de Pirrolizidina/metabolismo , Hepatócitos , Testes de Mutagenicidade , Neoplasias Hepáticas/metabolismoRESUMO
INTRODUCTION: Metabolic inducers can expose people with polypharmacy to adverse health outcomes. A limited fraction of potential drug-drug interactions (DDIs) have been or can ethically be studied in clinical trials, leaving the vast majority unexplored. In the present study, an algorithm has been developed to predict the induction DDI magnitude, integrating data related to drug-metabolising enzymes. METHODS: The area under the curve ratio (AUCratio) resulting from the DDI with a victim drug in the presence and absence of an inducer (rifampicin, rifabutin, efavirenz, or carbamazepine) was predicted from various in vitro parameters and then correlated with the clinical AUCratio (N = 319). In vitro data including fraction unbound in plasma, substrate specificity and induction potential for cytochrome P450s, phase II enzymes and uptake, and efflux transporters were integrated. To represent the interaction potential, the in vitro metabolic metric (IVMM) was generated by combining the fraction of substrate metabolised by each hepatic enzyme of interest with the corresponding in vitro fold increase in enzyme activity (E) value for the inducer. RESULTS: Two independent variables were deemed significant and included in the algorithm: IVMM and fraction unbound in plasma. The observed and predicted magnitudes of the DDIs were categorised accordingly: no induction, mild, moderate, and strong induction. DDIs were assumed to be well classified if the predictions were in the same category as the observations, or if the ratio between these two was < 1.5-fold. This algorithm correctly classified 70.5% of the DDIs. CONCLUSION: This research presents a rapid screening tool to identify the magnitude of potential DDIs utilising in vitro data which can be highly advantageous in early drug development.
Assuntos
Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450 , Humanos , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Rifampina , Carbamazepina/farmacologia , Modelos BiológicosRESUMO
Primary human hepatocytes (PHHs) have been the gold standard in vitro model for the human liver and are crucial to predict hepatic drug-drug interactions. The aim of this work was to assess the utility of 3D spheroid PHHs to study induction of important cytochrome P450 (CYP) enzymes and drug transporters. The 3D spheroid PHHs from three different donors were treated for 4 days with rifampicin, dicloxacillin, flucloxacillin, phenobarbital, carbamazepine, efavirenz, omeprazole, or ß-naphthoflavone. Induction of CYP1A1, CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, and transporters P-glycoprotein (P-gp)/ABCB1, multidrug resistance-associated protein 2 (MRP2)/ABCC2, ABCG2, organic cation transporter 1 (OCT1)/SLC22A1, SLC22A7, SLCO1B1, and SLCO1B3 were evaluated at mRNA and protein levels. Enzyme activity of CYP3A4, CYP2B6, CYP2C19, and CYP2D6 were also assessed. Induction of CYP3A4 protein and mRNA correlated well for all donors and compounds and had a maximal induction of five- to sixfold for rifampicin, which closely correlates to induction observed in clinical studies. Rifampicin induced the mRNA of CYP2B6 and CYP2C8 by 9- and 12-fold, whereas the protein levels of these CYPs reached 2- and 3-fold induction, respectively. Rifampicin induced CYP2C9 protein by 1.4-fold, whereas the induction of CYP2C9 mRNA was over 2-fold in all donors. Rifampicin induced ABCB1, ABCC2, and ABCG2 by 2-fold. In conclusion, 3D spheroid PHHs is a valid model to investigate mRNA and protein induction of hepatic drug-metabolizing enzymes and transporters, and this model provides a solid basis to study induction of CYPs and transporters, which translates to clinical relevance.
Assuntos
Citocromo P-450 CYP3A , Rifampina , Humanos , Citocromo P-450 CYP2C8/metabolismo , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP2B6/metabolismo , Rifampina/farmacologia , Rifampina/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Células Cultivadas , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Hepatócitos/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte/metabolismo , RNA Mensageiro/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismoRESUMO
The dual orexin receptor antagonist daridorexant was approved in 2022 in the USA and EU for the treatment of insomnia. The purpose of this study was the identification of its metabolic pathways and the human cytochrome P450 (P450) enzymes involved in its biotransformation. With human liver microsomes, daridorexant underwent hydroxylation at the methyl group of the benzimidazole moiety, oxidative O-demethylation of the anisole to the corresponding phenol, and hydroxylation to a 4-hydroxy piperidinol derivative. While the chemical structures of the benzylic alcohol and the phenol proved to be products of standard P450 reactions, 1D and 2Dâ NMR data of the latter hydroxylation product was incompatible with the initially postulated hydroxylation of the pyrrolidine ring and suggested the disappearance of the pyrrolidine ring and formation of a new 6-membered ring. Its formation is best explained by initial hydroxylation of the pyrrolidine ring in 5-position to yield a cyclic hemiaminal. Hydrolytic ring opening then results in an aldehyde that subsequently cyclizes onto one of the benzimidazole nitrogen atoms to yield the final 4-hydroxy piperidinol. The proposed mechanism was substantiated using an N-methylated analogue, which might hydrolyze to the open-chain aldehyde but cannot undergo the final cyclization step. CYP3A4 was the major P450 enzyme responsible for daridorexant metabolism, accounting for 89 % of metabolic turnover.