Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.772
Filtrar
1.
Zhongguo Zhen Jiu ; 40(7): 749-55, 2020 Jul 12.
Artigo em Chinês | MEDLINE | ID: mdl-32648400

RESUMO

OBJECTIVE: To observe the impacts of electroacupuncture (EA) on neurological function, the pathological morphology in brain tissue, apoptosis level and the protein expressions of apoptosis-related cytochrome C (Cyt-C) and cysteine aspartic acid protease-9 (Caspase-9) in the rats with traumatic brain injury (TBI) and explore the potential mechanism of EA in treatment of TBI. METHODS: A total of 70 clean-grade SD mice were randomized into a blank group (8 rats), a sham-operation group (8 rats), a model group (27 rats) and an EA group (27 rats). In terms of interventions of 3, 7 and 14 days, 3 subgroups were divided in the model group and the EA group successively, 9 rats in each subgroup. The modified Feeney free-fall percussion method was adopted to establish TBI models of rats. In the sham-operation group, only the skull was exposed and drilled and no free-fall percussion was exerted. One day after modeling, EA was given in the rats of EA group at "Shuigou" (GV 26), "Baihui" (GV 20) and "Neiguan" (PC 6) and "Zusanli" (ST 36) on the affected side, with intermittent wave, 2 Hz in frequency, once daily, 10 min each time, for 3, 7 and 14 days successively. Separately, on the day 3, 7 and 14 of intervention, the modified neurological severity scale (mNSS) was used to evaluate the degree of neurological function injury in the rats, HE staining and Nissl staining were to observe the pathological and morphological changes in brain tissue, TUNEL method was to observe the level of apoptosis in brain tissue and immunohistochemistry (IHC) method and Western blot were to determine the protein expressions of Cyt-C and Caspase-9 in brain tissue. RESULTS: Compared with the sham-operation group, on the day 3, 7 and 14 of intervention, mNSS scores were increased obviously in the rats of the model group respectively (P<0.01). Compared with the model group, on the day 3, 7 and 14 of intervention, mNSS scores were reduced in the rats of the EA group respectively (P<0.05). On day 3 of intervention, in brain injury region of the rats in the model group and the EA group, gross tissue necrosis, nuclear fragmentation, consolidation and obvious vacuolar changes, reduced Nissl bodies and scattered arrangement were found. On day 7 and 14 of intervention, in the model group and the EA group, the new connective tissue filling and normal cells were visible and Nissl bodies increased. The overall repair and Nissl body quantity in the EA group were better than the model group. Compared with the sham-operation group, on day 3, 7 and 14 of intervention, the numbers of apoptotic cells were increased obviously in the model group (P<0.01) and they were reduced in the EA group as compared with the model group (P<0.05). Compared with the sham-operation group, on day 3, 7 and 14 of intervention, the protein expressions of Cyt-C and Caspase-9 in damaged brain tissue were all increased obviously in the model group (P<0.01) and they were all reduced in the EA group as compared with the model group successively (P<0.05). CONCLUSION: Electroacupuncture remarkably improves the condition in the neurological function injury and reduces apoptosis degree in TBI model rats, which is likely related to the down-regulation of the protein expressions of Cyt-C and Caspase-9 in damaged brain tissue and further to bring the impacts on mitochondria mediated apoptosis process.


Assuntos
Apoptose , Lesões Encefálicas Traumáticas/terapia , Eletroacupuntura , Animais , Caspase 9/metabolismo , Citocromos c/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
2.
Nat Commun ; 11(1): 3067, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546794

RESUMO

Lipid transport and ATP synthesis are critical for the progression of non-alcoholic fatty liver disease (NAFLD), but the underlying mechanisms are largely unknown. Here, we report that the RNA-binding protein HuR (ELAVL1) forms complexes with NAFLD-relevant transcripts. It associates with intron 24 of Apob pre-mRNA, with the 3'UTR of Uqcrb, and with the 5'UTR of Ndufb6 mRNA, thereby regulating the splicing of Apob mRNA and the translation of UQCRB and NDUFB6. Hepatocyte-specific HuR knockout reduces the expression of APOB, UQCRB, and NDUFB6 in mice, reducing liver lipid transport and ATP synthesis, and aggravating high-fat diet (HFD)-induced NAFLD. Adenovirus-mediated re-expression of HuR in hepatocytes rescues the effect of HuR knockout in HFD-induced NAFLD. Our findings highlight a critical role of HuR in regulating lipid transport and ATP synthesis.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Proteína Semelhante a ELAV 1/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Trifosfato de Adenosina/biossíntese , Animais , Apolipoproteína B-100/genética , Apolipoproteína B-100/metabolismo , Citocromos c/genética , Citocromos c/metabolismo , Proteína Semelhante a ELAV 1/genética , Homeostase , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Precursores de RNA
3.
Food Chem ; 328: 127174, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32492604

RESUMO

This study investigated the effect of lysosomal iron involvement in the mechanism of mitochondrial apoptosis on bovine muscle protein degradation during postmortem aging. Six crossbred cattle were studied to evaluate intracellular reactive oxygen species (ROS), antioxidant enzyme activity, lysosomal membrane stability, mitochondrial dysfunction-induced apoptosis, desmin and troponin-T degradation in both control and iron chelator desferrioxamine (DFO) groups. Results showed that lysosomal iron induced ROS accumulation and lysosomal membrane destabilization by decreasing the antioxidant enzyme activity (P < 0.05). Subsequently, lysosomal dysfunction mediated by iron increased mitochondrial membrane permeability and decreased mitochondrial membrane potential, thereby enhancing Bid and cytochrome c release and caspase-9/-3 activation (P < 0.05). Ultimately, lysosomal iron mediated lysosomal-mitochondrial apoptosis increased the postmortem bovine muscle desmin and troponin-T degradation (P < 0.05). The results indicated that lysosomal iron contributes to postmortem meat tenderization through the lysosomal-mitochondrial dysfunction-induced apoptosis pathway.


Assuntos
Ferro/metabolismo , Lisossomos/metabolismo , Proteínas de Carne/metabolismo , Mitocôndrias Musculares/patologia , Membranas Mitocondriais/patologia , Animais , Apoptose/efeitos dos fármacos , Autopsia , Bovinos , Permeabilidade da Membrana Celular , Citocromos c/metabolismo , Masculino , Mitocôndrias/metabolismo , Mitocôndrias Musculares/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Musculares/metabolismo , Proteólise , Espécies Reativas de Oxigênio/metabolismo
4.
Chem Biol Interact ; 327: 109180, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32569592

RESUMO

Testicular damage contributes to cyclosporine A (CsA) induced male infertility. However, the exact underlying molecular mediators involved in CsA-induced testis disorder remains unclear. The present study aimed to characterize the role of mir-34a/sirt-1 in CsA induced testicular injury alone or in combination with curcumin. A total of twenty-eight male Wistar rats were subdivided into four groups: control (Con), sham, cyclosporine A (CsA), cyclosporineA + curcumin (CsA + cur). The animals received cyclosporine A (30 mg/kg) and curcumin (40 mg/kg) for 28 days by oral gavage. At the end of the experiment, CsA administration significantly resulted in a decrease in testis weight and testis coefficient. The molecular analysis demonstrated that CsA exposure increased 8-OHdg and Nox4 protein contents in the testis tissue. TUNEL staining indicated that CsA caused the number of apoptotic cells to increase in the testes of male rats. In addition, exposure to CsA resulted in an increased expression of Bax, and a decreased expresion in that of Bcl-2, with a concomitant up-regulation of the Bax/Bcl-2, c-Caspase-3/p-Caspase-3 ratio and cytochrome c level. Meanwhile, exposure to CsA increased the expression of mir-34a and decreased sirt-1 protein level in the testis tissue samples compared to the control group. Taken together, our findings suggested that CsA can cause damage to testicular germ cells via oxidative stress and mitochondrial apoptotic pathway, and probably mir-34a/sirt-1 play a crucial role in this process. It also demonstrates that these negative effects of CsA can be reduced by using curcumin as an antioxidant and anti-inflammatory agent.


Assuntos
Apoptose/efeitos dos fármacos , Curcumina/uso terapêutico , Ciclosporina/toxicidade , MicroRNAs/metabolismo , Sirtuína 1/metabolismo , Doenças Testiculares/tratamento farmacológico , 8-Hidroxi-2'-Desoxiguanosina/metabolismo , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Antioxidantes/uso terapêutico , Citocromos c/metabolismo , Expressão Gênica/efeitos dos fármacos , Masculino , Tamanho do Órgão/efeitos dos fármacos , Estresse Oxidativo , Ratos Wistar , Doenças Testiculares/induzido quimicamente , Testículo/efeitos dos fármacos , Testículo/patologia
5.
Chem Biol Interact ; 327: 109184, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32590070

RESUMO

Scoulerine, an isoquinoline alkaloid isolated from Corydalis plants, has been reported to possess potent anti-proliferative and pro-apoptotic function in cancer cells. However, the effects and underlying mechanisms of scoulerine on colorectal cancer (CRC) progression remain elusive. CCK-8 and LDH assays were used to evaluate cell viability. Apoptosis was assessed by flow cytometry analysis, caspase-3/7 activity assay, and Western blot analysis of Bax, Bcl-2 and cytochrome c (Cyt C) expression. Oxidative stress level was examined by measuring reactive oxygen species (ROS) and glutathione (GSH) contents and superoxide dismutase (SOD) activity. Endoplasmic reticulum (ER) stress activation was detected by Western blot analysis of glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP) expression. Results showed that scoulerine dose-dependently suppressed CRC cell viability. Scoulerine induced apoptosis and increased caspase-3/7 activity in CRC cells. Bax and cytosolic Cyt C expression was enhanced while Bcl-2 and mitochondrial Cyt C expression was reduced in scoulerine-treated CRC cells. Additionally, scoulerine induced oxidative damage in CRC cells by increasing ROS generation and reducing GSH content and SOD activity. Scoulerine activated ER stress, as evidenced by the increased GRP78 and CHOP expression in CRC cells. Interestingly, blocking ROS production by ROS scavenger N-acetyl-cysteine (NAC) attenuated scoulerine-induced ER stress. Inhibition of ER stress by 4-phenyl butyric acid (4-PBA) abolished scoulerine-induced ROS generation in CRC cells. Blockage of ROS and ER stress attenuated scoulerine-induced cell viability reduction and apoptosis in CRC cells. In conclusion, scoulerine promoted cell viability reduction and apoptosis by activating ROS-dependent ER stress in CRC cells.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Alcaloides de Berberina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Citocromos c/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo
6.
PLoS One ; 15(4): e0232408, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32353034

RESUMO

Mitochondria are quantitatively the most important sources of reactive oxygen species (ROS) which are formed as by-products during cellular respiration. ROS generation occurs when single electrons are transferred to molecular oxygen. This leads to a number of different ROS types, among them superoxide. Although most studies focus on ROS generation in the mitochondrial matrix, the intermembrane space (IMS) is also important in this regard. The main scavengers for the detoxification of superoxide in the IMS are Cu, Zn superoxide dismutase (SOD1) and cytochrome-c. Similar to ROS, certain reactive carbonyl species are known for their high reactivity. The consequences are deleterious modifications to essential components compromising cellular functions and contributing to the etiology of severe pathological conditions like cancer, diabetes and neurodegeneration. In this study, we investigated the susceptibility of SOD1 and cytochrome-c to in vitro glycation by the dicarbonyl methylglyoxal (MGO) and the resulting effects on their structure. We utilized experimental techniques like immunodetection of the MGO-mediated modification 5-hydro-5-methylimidazolone, differential scanning calorimetry, fluorescence emission and circular dichroism measurements. We found that glycation of cytochrome-c leads to monomer aggregation, an altered secondary structure (increase in alpha helical content) and slightly more compact folding. In addition to structural changes, glycated cytochrome-c displays an altered thermal unfolding behavior. Subjecting SOD1 to MGO does not influence its secondary structure. However, similar to cytochrome-c, subunit aggregation is observed under denaturating conditions. Furthermore, the appearance of a second peak in the calorimetry diagram indirectly suggests de-metallation of SOD1 when high MGO levels are used. In conclusion, our data demonstrate that MGO has the potential to alter several structural parameters in important proteins of energy metabolism (cytochrome-c) and antioxidant defense (cytochrome-c, SOD1).


Assuntos
Citocromos c/química , Mitocôndrias/metabolismo , Aldeído Pirúvico/farmacologia , Superóxido Dismutase-1/química , Animais , Citocromos c/metabolismo , Cavalos , Mitocôndrias/efeitos dos fármacos , Dobramento de Proteína , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase-1/metabolismo
7.
Environ Toxicol ; 35(9): 911-921, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32270916

RESUMO

Leukemia is one of the major diseases causing cancer-related deaths in the young population, and its cure rate is unsatisfying with side effects on patients. Fluorouracil (5-FU) is currently used as an anticancer drug for leukemia patients. Casticin, a natural polymethoxyflavone, exerts anticancer activity against many human cancer cell lines in vitro, but no other reports show 5-FU combined with casticin increased the mouse leukemia cell apoptosis in vitro. Herein, the antileukemia activity of 5-FU combined with casticin in WEHI-3 mouse leukemia cells was investigated in vitro. Treatment of two-drug combination had a higher decrease in cell viability and a higher increase in apoptotic cell death, the level of DNA condensation, and the length of comet tail than that of 5-FU or casticin treatment alone in WEHI-3 cells. In addition, the two-drug combination has a greater production rate of reactive oxygen species but a lower level of Ca2+ release and mitochondrial membrane potential (ΔΨm ) than that of 5-FU alone. Combined drugs also induced higher caspase-3 and caspase-8 activities than that of casticin alone and higher caspase-9 activity than that of 5-FU or casticin alone at 48 hours treatment. Furthermore, 5-FU combined with casticin has a higher expression of Cu/Zn superoxide dismutase (SOD [Cu/Zn]) and lower catalase than that of 5-FU or casticin treatment alone. The combined treatment has higher levels of Bax, Endo G, and cytochrome C of proapoptotic proteins than that of casticin alone and induced lower levels of B-cell lymphoma 2 (BCL-2) and BCL-X of antiapoptotic proteins than that of 5-FU or casticin only. Furthermore, the combined treatment had a higher expression of cleaved poly (ADP-ribose) polymerase (PARP) than that of casticin only. Based on these findings, we may suggest that 5-FU combined with casticin treatment increased apoptotic cell death in WEHI-3 mouse leukemia cells that may undergo mitochondria and caspases signaling pathways in vitro.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Flavonoides/farmacologia , Fluoruracila/farmacologia , Animais , Antineoplásicos/administração & dosagem , Caspases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Sinergismo Farmacológico , Flavonoides/administração & dosagem , Fluoruracila/administração & dosagem , Humanos , Leucemia/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Ecotoxicol Environ Saf ; 193: 110348, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32114240

RESUMO

Due to rapid advances in the era of electronic technologies, indium has played the important material for the production of liquid crystal display screens in the semiconductor and optoelectronic industries. The present study focuses on evaluating the toxic effects and related mechanisms of indium chloride (InCl3) on RAW264.7 macrophages. Cytotoxicity was induced by InCl3 in a concentration- and time-dependent manner. InCl3 had the ability to induce macrophage death through apoptosis rather than through necrosis. According to the cytokinesis-block micronucleus assay and alkaline single-cell gel electrophoresis assay, InCl3 induced DNA damage, also called genotoxicity, in a concentration-dependent manner. Cysteine-dependent aspartate-directed protease (caspase)-3, -8, and -9 were activated by InCl3 in a concentration-dependent manner. Mitochondria dysfunction and cytochrome c release from the mitochondria were induced by InCl3 in a concentration-dependent manner. Downregulation of BCL2 and upregulation of BAD were induced by InCl3 in a concentration-dependent manner. More, we proposed that InCl3 treatment generated reactive oxygen species (ROS) in a concentration-dependent manner. In conclusion, the current study revealed that InCl3 induced macrophage cytotoxicity, apoptosis, and genotoxicity via a mitochondria-dependent apoptotic pathway and ROS generation.


Assuntos
Dano ao DNA , Índio/toxicidade , Macrófagos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Citotoxinas/toxicidade , Macrófagos/metabolismo , Camundongos , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Proteína de Morte Celular Associada a bcl/metabolismo
9.
Chemistry ; 26(26): 5903-5910, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32142179

RESUMO

First-in-class CuII and AuIII metaled phosphorus dendrons were synthesized and showed significant antiproliferative activity against several aggressive breast cancer cell lines. The data suggest that the cytotoxicity increases with reducing length of the alkyl chains, whereas the replacement of CuII with AuIII considerably increases the antiproliferative activity of metaled phosphorus dendrons. Very interestingly, we found that the cell death pathway is related to the nature of the metal complexed by the plain dendrons. CuII metaled dendrons showed a potent caspase-independent cell death pathway, whereas AuIII metaled dendrons displayed a caspase-dependent apoptotic pathway. The complexation of plain dendrons with AuIII increased the cellular lethality versus dendrons with CuII and promoted the translocation of Bax into the mitochondria and the release of Cytochrome C (Cyto C).


Assuntos
Citocromos c/metabolismo , Dendrímeros/metabolismo , Metais/química , Mitocôndrias/química , Fósforo/química , Apoptose , Morte Celular , Citocromos c/química , Dendrímeros/química , Humanos , Células MCF-7 , Metais/metabolismo , Mitocôndrias/metabolismo , Estrutura Molecular , Fósforo/metabolismo
10.
PLoS One ; 15(3): e0230691, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32214385

RESUMO

BACKGROUND: Neuromyelitis Optica (NMO) is an inflammatory demyelinating disease that mainly affects optic nerves and spinal cord. Besides, loss of motor and cognitive function has been reported as important symptoms of disease. OBJECTIVE: Here we investigated the mitochondrial dysfunction and metabolic alterations in NMO patients and evaluate their correlation with disease progress, disability and cognitive impairment. METHODS: The individuals (12 controls and 12 NMO) were assessed for disease severity by expanded disease status scale (EDSS), cognitive function via symbol digit modalities test (SDMT) and fine motor disability by 9-hole peg test (9-HPT). We have measured Sirtuin 1 (SIRT1), SIRT3, mitochondrial complex I, complex IV, aconitase and α-ketoglutarate dehydrogenase (α-KGD) activity in peripheral blood mononuclear cells (PBMCs). Furthermore, SIRT1, pyruvate, lactate and cytochrome c (Cyt c) were determined in plasma. RESULTS: Our results exhibited increased 9-HPT time in NMO patients. 9-HPT results correlated with EDSS; and SDMT negatively correlated with disease duration and number of attacks in patients. Investigation of PBMCs of NMO patients exhibited a decrease of mitochondrial complex I and IV activity that was significant for complex IV. Besides, complex I activity was negatively correlated with 9-HPT time in NMO group. In the plasma samples, a correlation between pyruvate to lactate ratio and EDSS in NMO patients was found and a negative correlation between Cyt c concentration and SDMT was detected. CONCLUSION: Our data support the hypothesis that mitochondrial dysfunction occurred in the CNS and the peripheral blood may contribute to disease progress, disability level and the cognitive impairment in NMO patients.


Assuntos
Transtornos Cognitivos/etiologia , Mitocôndrias/metabolismo , Neuromielite Óptica/patologia , Adulto , Estudos de Casos e Controles , Transtornos Cognitivos/diagnóstico , Citocromos c/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Humanos , Ácido Láctico/sangue , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Neuromielite Óptica/complicações , Neuromielite Óptica/metabolismo , Ácido Pirúvico/sangue , Índice de Gravidade de Doença , Sirtuína 1/metabolismo , Sirtuína 3/metabolismo
11.
Am J Physiol Renal Physiol ; 318(4): F1041-F1052, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32150448

RESUMO

Cisplatin is a widely used chemotherapy drug with notorious nephrotoxicity. Na+-glucose cotransporter 2 inhibitors are a class of novel antidiabetic agents that may have other effects in the kidneys besides blood glucose control. In the present study, we demonstrated that canagliflozin significantly attenuates cisplatin-induced nephropathy in C57BL/6 mice and suppresses cisplatin induced renal proximal tubular cell apoptosis in vitro. The protective effect of canagliflozin was associated with inhibition of p53, p38 and JNK activation. Mechanistically, canagliflozin partially reduced cisplatin uptake by kidney tissues in mice and renal tubular cells in culture. In addition, canagliflozin enhanced the activation of Akt and inhibited the mitochondrial pathway of apoptosis during cisplatin treatment. The protective effect of canagliflozin was diminished by the phosphatidylinositol 3-kinase/Akt inhibitor LY294002. Notably, canagliflozin did not affect the chemotherapeutic efficacy of cisplatin in A549 and HCT116 cancer cell lines. These results suggest a new application of canagliflozin for renoprotection in cisplatin chemotherapy. Canagliflozin may protect kidneys by reducing cisplatin uptake and activating cell survival pathways.


Assuntos
Apoptose/efeitos dos fármacos , Canagliflozina/farmacologia , Cisplatino , Nefropatias/prevenção & controle , Rim/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Células Cultivadas , Citocromos c/metabolismo , Citoproteção , Modelos Animais de Doenças , Ativação Enzimática , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Rim/enzimologia , Rim/patologia , Nefropatias/induzido quimicamente , Nefropatias/enzimologia , Nefropatias/patologia , Masculino , Camundongos Endogâmicos C57BL , Fosforilação , Ratos , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
Int J Nanomedicine ; 15: 263-273, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32021179

RESUMO

Purpose: Combined superoxide dismutase (SOD)/catalase mimetics have attracted much attention because of their efficacy against reactive oxygen species-associated diseases; however, their application is often limited owing to their poor stability and the absence of favorable grafting sites. To address this, we developed a new class of SOD/catalase mimetics based on hybrid nanoflowers, which exhibit superior stability and possess the desired grafting sites for drugs and endogenous molecules. Methods: In this work, for the first time, we used polynitroxylated human serum albumin (PNA) to mediate the formation of hybrid copper-based nanoflowers. H2O2 depletion and O2 evolution assays were first performed to determine the catalase-like activity of the hybrid nanoflowers. Next, the xanthine oxidase/cytochrome c method was used to assay the SOD-like activity of the nanoflowers. Further characteristics of the nanoflowers were evaluated using scanning electron microscopy (SEM), electron paramagnetic resonance (EPR), and Fourier-transform infrared spectroscopy (FTIR). Operational stability was assessed via the reusability assay. Results: The H2O2 depletion and O2 evolution assays indicated that PNA-incorporated nanoflowers have genuine catalase-like activity. Kinetic analysis revealed that the reactions of the incorporated nanoflowers with H2O2 not only obey Michaelis-Menton kinetics, but that the nanoflowers also possess a higher affinity for H2O2 than that of native catalase. The FTIR spectra corroborated the presence of PNA in the hybrid nanoflowers, while the EPR spectra confirmed the intermolecular interaction of nitroxides bound to the human serum albumin incorporated into the nanoflowers. The remarkable operational reproducibility of the hybrid nanoflowers in catalase-like and SOD-like reactions was verified across successive batches. Conclusion: Herein, a comparison of Michaelis constants showed that the hybrid nanoflower, a catalase mimetics, outperforms the native catalase. Acting as a "better-than-nature" enzyme mimetics, the hybrid nanoflower with superior stability and desired ligand grafting sites will find widespread utilization in the medical sciences.


Assuntos
Catalase/metabolismo , Nanoestruturas/química , Superóxido Dismutase/metabolismo , Catalase/química , Cobre/química , Citocromos c/química , Citocromos c/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Cinética , Microscopia Eletrônica de Varredura , Mimetismo Molecular , Óxidos de Nitrogênio/química , Oxigênio/química , Oxigênio/metabolismo , Reprodutibilidade dos Testes , Albumina Sérica Humana/química , Espectroscopia de Infravermelho com Transformada de Fourier , Superóxido Dismutase/química , Xantina Oxidase/química , Xantina Oxidase/metabolismo
13.
PLoS Pathog ; 16(2): e1008297, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32032391

RESUMO

Hantaviruses, zoonotic RNA viruses belonging to the order Bunyavirales, cause two severe acute diseases in humans, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). Hantavirus-infected patients show strong cytotoxic lymphocyte responses and hyperinflammation; however, infected cells remain mostly intact. Hantaviruses were recently shown to inhibit apoptosis in infected cells. By inhibiting granzyme B- and TRAIL-mediated apoptosis, hantaviruses specifically and efficiently inhibit cytotoxic lymphocyte-mediated killing of infected cells. Hantaviruses also strongly inhibit apoptosis triggered intrinsically; i.e., initiated through intracellular activation pathways different from those used by cytotoxic lymphocytes. However, insights into the latter mechanisms are currently largely unknown. Here, we dissected the mechanism behind how hantavirus infection, represented by the HFRS-causing Hantaan virus and the HPS-causing Andes virus, results in resistance to staurosporine-induced apoptosis. Less active caspase-8 and caspase-9, and consequently less active caspase-3, was observed in infected compared to uninfected staurosporine-exposed cells. While staurosporine-exposed uninfected cells showed massive release of pro-apoptotic cytochrome C into the cytosol, this was not observed in infected cells. Further, hantaviruses prevented activation of BAX and mitochondrial outer membrane permeabilization (MOMP). In parallel, a significant increase in levels of the pro-survival factor BCL-2 was observed in hantavirus-infected cells. Importantly, direct inhibition of BCL-2 by the inhibitor ABT-737, as well as silencing of BCL-2 by siRNA, resulted in apoptosis in staurosporine-exposed hantavirus-infected cells. Overall, we here provide a tentative mechanism by which hantaviruses protect infected cells from intrinsic apoptosis at the mitochondrial level by inducing an increased expression of the pro-survival factor BCL-2, thereby preventing MOMPs and subsequent activation of caspases. The variety of mechanisms used by hantaviruses to ensure survival of infected cells likely contribute to the persistent infection in natural hosts and may play a role in immunopathogenesis of HFRS and HPS in humans.


Assuntos
Apoptose , Febre Hemorrágica com Síndrome Renal/metabolismo , Potencial da Membrana Mitocondrial , Membranas Mitocondriais/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Regulação para Cima , Células A549 , Caspases/genética , Caspases/metabolismo , Citocromos c/genética , Citocromos c/metabolismo , Febre Hemorrágica com Síndrome Renal/patologia , Humanos , Membranas Mitocondriais/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
14.
Oxid Med Cell Longev ; 2020: 7468738, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32064028

RESUMO

Cardiac arrest (CA) yields poor neurological outcomes. Salubrinal (Sal), an endoplasmic reticulum (ER) stress inhibitor, has been shown to have neuroprotective effects in both in vivo and in vitro brain injury models. This study investigated the neuroprotective mechanisms of Sal in postresuscitation brain damage in a rodent model of CA. In the present study, rats were subjected to 6 min of CA and then successfully resuscitated. Either Sal (1 mg/kg) or vehicle (DMSO) was injected blindly 30 min before the induction of CA. Neurological status was assessed 24 h after CA, and the cortex was collected for analysis. As a result, we observed that, compared with the vehicle-treated animals, the rats pretreated with Sal exhibited markedly improved neurological performance and cortical mitochondrial morphology 24 h after CA. Moreover, Sal pretreatment was associated with the following: (1) upregulation of superoxide dismutase activity and a reduction in maleic dialdehyde content; (2) preserved mitochondrial membrane potential; (3) amelioration of the abnormal distribution of cytochrome C; and (4) an increased Bcl-2/Bax ratio, decreased cleaved caspase 3 upregulation, and enhanced HIF-1α expression. Our findings suggested that Sal treatment improved neurological dysfunction 24 h after CPR (cardiopulmonary resuscitation), possibly through mitochondrial preservation and stabilizing the structure of HIF-1α.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Córtex Cerebelar/efeitos dos fármacos , Cinamatos/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Parada Cardíaca/fisiopatologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Tioureia/análogos & derivados , Aldeídos/metabolismo , Animais , Apoptose/efeitos dos fármacos , Lesões Encefálicas/complicações , Lesões Encefálicas/metabolismo , Lesões Encefálicas/fisiopatologia , Reanimação Cardiopulmonar , Caspase 3/metabolismo , Córtex Cerebelar/metabolismo , Córtex Cerebelar/fisiopatologia , Córtex Cerebelar/ultraestrutura , Citocromos c/metabolismo , Parada Cardíaca/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Microscopia Eletrônica de Transmissão , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase-1/metabolismo , Tioureia/farmacologia
15.
Food Chem Toxicol ; 137: 111134, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32006631

RESUMO

Tebuconazole is an effective systemic fungicide that belongs to the triazoles family. It has been widely used in both agricultural and medical sectors for the control of fungal diseases. Although TEB poses serious threats to mammals health, studies regarding its cardiotoxicity are very limited. Thus, we aimed to evaluate the effects of TEB on some biochemical parameters, the induction of apoptosis and DNA damage in the heart tissue. Male Wistar rats were treated with TEB at varied oral doses for 28 consecutive days. This study demonstrates that TEB decreased cardiac acetylcholinesterase, increased serum marker enzymes such as creatinine phosphokinase (CPK) and lactate dehydrogenase (LDH), and altered the lipid profile by increasing serum levels of total cholesterol (T-CHOL), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and reduced high-density lipoprotein cholesterol (HDL-C) levels. Furthermore, TEB increased levels of p53 and Bax/Bcl2 ratio, released the cytochrome c into the cytosol and activated caspase-9 and caspase-3. Besides, our results showed that TEB induced genotoxic effects. TEB induced DNA fragmentation and increased the frequency of micronucleated bone marrow cells. Moreover, TEB treatment developed fibrosis in the myocardium. Our results suggest that TEB exposure may affect myocardial cells normal functioning and triggers apoptosis.


Assuntos
Cardiotoxicidade/etiologia , Fungicidas Industriais/toxicidade , Triazóis/toxicidade , Animais , Apoptose/efeitos dos fármacos , Cardiotoxicidade/genética , Cardiotoxicidade/metabolismo , Cardiotoxicidade/fisiopatologia , LDL-Colesterol/metabolismo , Citocromos c/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Humanos , Masculino , Ratos , Ratos Wistar , Triglicerídeos/metabolismo
16.
Sci Rep ; 10(1): 1191, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31988394

RESUMO

Despite the rise of new Candida species, Candida albicans tops the list with high morbidity and mortality rates. To tackle this problem there is a need to explore new antifungals that could replace or augment the current treatment options. We previously reported that tosylation of eugenol on hydroxyl group resulted in molecules with enhanced antifungal potency. In line with that work, we synthesized new eugenol tosylate congeners (ETC-1-ETC-7) with different substituents on pendent sulfonyl group and tested their susceptibility against different fluconazole susceptible and resistant C. albicans strains. We evaluated physiology and mode of cell death in response to the most active derivatives by analyzing major apoptotic markers in yeast such as phosphatidylserine externalization, DNA fragmentation, mitochondrial depolarization and decrease in cytochrome c oxidase activity. The results demonstrated that all C. albicans strains were variably susceptible to the test compounds with MIC ranging from 0.125-512 µg/ml, and the most active compounds (ETC-5, ETC-6 and ETC-7) actuate apoptosis and necrosis in Candida cells in a dose-dependent manner via metacaspase-dependent pathway. Furthermore haemolytic assay showed low cytotoxicity effect of these ETCs. Overall the results indicated that ETCs exhibit potential antifungal activity against C. albicans by activating apoptotic and necrotic pathways.


Assuntos
Antifúngicos/farmacologia , Apoptose/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Eugenol/análogos & derivados , Eugenol/farmacologia , Animais , Antifúngicos/uso terapêutico , Candida albicans/classificação , Candida albicans/isolamento & purificação , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Citocromos c/metabolismo , Dano ao DNA/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Eugenol/uso terapêutico , Hemólise/efeitos dos fármacos , Cavalos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Necrose
17.
Anal Chim Acta ; 1097: 161-168, 2020 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-31910956

RESUMO

A new adsorbent based on pH-responsive polymer assisted aptamer functionalized magnetic nanoparticles was developed for specific recognition and efficient adsorption of proteins. Arising from the synergistic effect of specific affinity of apatamer on protein and tunable hydrophobic/hydrophilic property of pH-responsive polymer, the adsorbent exhibited excellent adsorption capacity for target protein. Notably, because of the pH-responsive property of the polymer, the adsorption and desorption process could be regulated through varying environmental pH. The resultant adsorbent that immobilized with lysozyme binding aptamer was successfully applied in specific recognition and efficient adsorption of lysozyme in egg white samples and good recovery results in the range of 95.2-103.2% were obtained. Moreover, the adsorbent immobilized with cytochrome C binding aptamer also exhibited satisfactory adsorption to cytochrome C. The synergistic effect of pH-responsive polymer and aptamer promoted the recognition selectivity and adsorption capacity to target protein, illustrating a facile way for construction of more specific protein adsorbents.


Assuntos
Aptâmeros de Nucleotídeos/química , Nanopartículas de Magnetita/química , Polímeros/química , Adsorção , Conalbumina/análise , Citocromos c/análise , Citocromos c/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Muramidase/análise , Muramidase/metabolismo , Pepsina A/análise , Pepsina A/metabolismo , Albumina Sérica Humana/análise , Tripsina/análise , Tripsina/metabolismo
18.
FASEB J ; 34(1): 1859-1871, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914602

RESUMO

The respiratory chain (RC) transports electrons to form a proton motive force that is required for ATP synthesis in the mitochondria. RC disorders cause mitochondrial diseases that have few effective treatments; therefore, novel therapeutic strategies are critically needed. We previously identified Higd1a as a positive regulator of cytochrome c oxidase (CcO) in the RC. Here, we test that Higd1a has a beneficial effect by increasing CcO activity in the models of mitochondrial dysfunction. We first demonstrated the tissue-protective effects of Higd1a via in situ measurement of mitochondrial ATP concentrations ([ATP]mito) in a zebrafish hypoxia model. Heart-specific Higd1a overexpression mitigated the decline in [ATP]mito under hypoxia and preserved cardiac function in zebrafish. Based on the in vivo results, we examined the effects of exogenous HIGD1A on three cellular models of mitochondrial disease; notably, HIGD1A improved respiratory function that was coupled with increased ATP synthesis and demonstrated cellular protection in all three models. Finally, enzyme kinetic analysis revealed that Higd1a significantly increased the maximal velocity of the reaction between CcO and cytochrome c without changing the affinity between them, indicating that Higd1a is a positive modulator of CcO. These results corroborate that Higd1a, or its mimic, provides therapeutic options for the treatment of mitochondrial diseases.


Assuntos
Transporte de Elétrons/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Animais Geneticamente Modificados , Transporte Biológico/fisiologia , Linhagem Celular , Citocromos c/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Células HEK293 , Humanos , Hipóxia/metabolismo , Cinética , Oxirredução , Respiração , Peixe-Zebra/metabolismo
19.
Biochim Biophys Acta Mol Cell Res ; 1867(5): 118661, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31987792

RESUMO

Artemisinin and its derivatives kill malaria parasites and inhibit the proliferation of cancer cells. In both processes, heme was shown to play a key role in artemisinin bioactivation. We found that artemisinin and clinical artemisinin derivatives are able to compensate for a mutation in the yeast Bcs1 protein, a key chaperon involved in biogenesis of the mitochondrial respiratory complex III. The equivalent Bcs1 variant causes an encephalopathy in human by affecting complex III assembly. We show that artemisinin derivatives decrease the content of mitochondrial cytochromes and disturb the maturation of the complex III cytochrome c1. This last effect is likely responsible for the compensation by decreasing the detrimental over-accumulation of the inactive pre-complex III observed in the bcs1 mutant. We further show that a fluorescent dihydroartemisinin probe rapidly accumulates in the mitochondrial network and targets cytochromes c and c1 in yeast, human cells and isolated mitochondria. In vitro this probe interacts with purified cytochrome c only under reducing conditions and we detect cytochrome c-dihydroartemisinin covalent adducts by mass spectrometry analyses. We propose that reduced mitochondrial c-type cytochromes act as both targets and mediators of artemisinin bioactivation in yeast and human cells.


Assuntos
Artemisininas/farmacologia , Citocromos c/metabolismo , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Artemisininas/química , Regulação para Baixo , Complexo III da Cadeia de Transporte de Elétrons/genética , Células HEK293 , Humanos , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/genética , Chaperonas Moleculares/genética , Mutação , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Chin Med J (Engl) ; 133(1): 49-60, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31923104

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PH) is a progressive disease with limited therapeutic options, ultimately leading to right heart failure and death. Recent findings indicate the role of the Warburg effect (aerobic glycolysis) in the development of PH. However, the effect of the glycolysis inhibitor 3-bromopyruvate (3-BrPA) on the pathogenesis of PH has not been well investigated. This study aimed to determine whether 3-BrPA inhibits PH and its possible mechanism. METHODS: PH was induced in adult Sprague-Dawley rats by a single intraperitoneal injection of monocrotaline (MCT). 3-BrPA, or phosphate-buffered saline (PBS) was administered via intraperitoneal injection every other day from the first day of MCT-injection to 4 weeks of follow-up, and indices such as right ventricular systolic pressure (RVSP), right ventricular hypertrophy index (RVHI), pulmonary arteriolar remodeling indicated by percent media thickness (% MT), lactate levels and glucose consumption, were evaluated. Pulmonary arteriolar remodeling and right ventricular hypertrophy were observed in hematoxylin-eosin-stained lung sections. Western blotting, immunohistochemistry, and/or immunofluorescence analyses were used to measure the expression of relevant proteins. A cytochrome C release apoptosis assay and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling staining were used to measure cell apoptosis. RESULTS: MCT-induced PH showed a significant increase in glucose consumption (0 vs. 4 weeks: 0.87 ±â€Š0.23 vs. 2.94 ±â€Š0.47, P = 0.0042) and lactate production (0 vs. 4 weeks: 4.19 ±â€Š0.34 vs. 8.06 ±â€Š0.67, P = 0.0004). Treatment with 3-BrPA resulted in a concomitant reduction in glucose consumption (1.10 ±â€Š0.35 vs. 3.25 ±â€Š0.47, P = 0.0063), lactate production (5.09 ±â€Š0.55 vs. 8.06 ±â€Š0.67, P = 0.0065), MCT-induced increase in RVSP (39.70 ±â€Š2.94 vs. 58.85 ±â€Š2.32, P = 0.0004), pulmonary vascular remodeling (% MT, 43.45% ±â€Š1.41% vs. 63.66% ±â€Š1.78%, P < 0.0001), and right ventricular hypertrophy (RVHI, 38.57% ±â€Š2.69% vs. 62.61% ±â€Š1.57%, P < 0.0001) when compared with those of the PBS-treated group. 3-BrPA, a hexokinase 2 inhibitor, exerted its beneficial effect on PH by decreasing aerobic glycolysis and was also associated with inhibiting the expression of glucose transporter protein-1, inducing apoptosis, and suppressing inflammation. CONCLUSIONS: 3-BrPA might have a potential beneficial effect on the PH treatment.


Assuntos
Monocrotalina/toxicidade , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/tratamento farmacológico , Piruvatos/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Western Blotting , Citocromos c/metabolismo , Imunofluorescência , Glicólise/efeitos dos fármacos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Hipertensão Arterial Pulmonar/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA