RESUMO
To better understand the genetic basis of heart disease, we identified a variant in the Flightless-I homolog (FLII) gene that generates a R1243H missense change and predisposes to cardiac remodeling across multiple previous human genome-wide association studies (GWAS). Since this gene is of unknown function in the mammalian heart we generated gain- and loss-of-function genetically altered mice, as well as knock-in mice with the syntenic R1245H amino acid substitution, which showed that Flii protein binds the sarcomeric actin thin filament and influences its length. Deletion of Flii from the heart, or mice with the R1245H amino acid substitution, show cardiomyopathy due to shortening of the actin thin filaments. Mechanistically, Flii is a known actin binding protein that we show associates with tropomodulin-1 (TMOD1) to regulate sarcomere thin filament length. Indeed, overexpression of leiomodin-2 in the heart, which lengthens the actin-containing thin filaments, partially rescued disease due to heart-specific deletion of Flii. Collectively, the identified FLII human variant likely increases cardiomyopathy risk through an alteration in sarcomere structure and associated contractile dynamics, like other sarcomere gene-based familial cardiomyopathies.
Assuntos
Actinas , Cardiomiopatias , Humanos , Animais , Camundongos , Actinas/metabolismo , Sarcômeros/metabolismo , Estudo de Associação Genômica Ampla , Citoesqueleto de Actina/metabolismo , Cardiomiopatias/metabolismo , Mamíferos/genética , Proteínas dos Microfilamentos/metabolismo , Transativadores/metabolismo , Tropomodulina/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Musculares/metabolismoRESUMO
Contractile forces generated by actin and non-muscle myosin II ("actomyosin contractility") are critical for morphological changes of cells and tissues at multiple length scales, such as cell division, cell migration, epithelial folding, and branching morphogenesis. An in-depth understanding of the role of actomyosin contractility in morphogenesis requires approaches that allow the rapid inactivation of actomyosin, which is difficult to achieve using conventional genetic or pharmacological approaches. The presented protocol demonstrates the use of a CRY2-CIBN based optogenetic dimerization system, Opto-Rho1DN, to inhibit actomyosin contractility in Drosophila embryos with precise temporal and spatial controls. In this system, CRY2 is fused to the dominant negative form of Rho1 (Rho1DN), whereas CIBN is anchored to the plasma membrane. Blue light-mediated dimerization of CRY2 and CIBN results in rapid translocation of Rho1DN from the cytoplasm to the plasma membrane, where it inactivates actomyosin by inhibiting endogenous Rho1. In addition, this article presents a detailed protocol for coupling Opto-Rho1DN-mediated inactivation of actomyosin with laser ablation to investigate the role of actomyosin in generating epithelial tension during Drosophila ventral furrow formation. This protocol can be applied to many other morphological processes that involve actomyosin contractility in Drosophila embryos with minimal modifications. Overall, this optogenetic tool is a powerful approach to dissect the function of actomyosin contractility in controlling tissue mechanics during dynamic tissue remodeling.
Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Actomiosina/metabolismo , Optogenética , Embrião não Mamífero , Citoesqueleto de Actina/metabolismo , Proteínas de Drosophila/genética , Morfogênese , Proteínas rho de Ligação ao GTP/metabolismoRESUMO
Uptake of obligate intracellular bacterial pathogens into mammalian epithelial cells is critically dependent on modulation of the host's endocytic machinery. It is an open question how the invading pathogens generate a membrane-bound vesicle appropriate to their size. This requires extensive deformation of the host plasma membrane itself by pathogen-derived membrane-binding proteins, accompanied by substantial F-actin-based forces to further expand and finally pinch off the vesicle. Here we show that upon adhesion to the host cell, the human pathogenic bacterium Chlamydia pneumoniae secretes the scaffolding effector protein CPn0677, which binds to the inner leaflet of the invaginating host's PM, induces inwardly directed, negative membrane curvature, and forms a recruiting platform for the membrane-deforming BAR-domain containing proteins Pacsin and SNX9. In addition, while bound to the membrane, CPn0677 recruits monomeric G-actin, and its C-terminal region binds and activates N-WASP, which initiates branching actin polymerization via the Arp2/3 complex. Together, these membrane-bound processes enable the developing endocytic vesicle to engulf the infectious elementary body, while the associated actin network generates the forces required to reshape and detach the nascent vesicle from the PM. Thus, Cpn0677 (now renamed SemD) acts as recruiting platform for central components of the endocytic machinery during uptake of chlamydia.
Assuntos
Actinas , Chlamydia , Animais , Humanos , Actinas/metabolismo , Chlamydia/metabolismo , Membrana Celular/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , MamíferosRESUMO
Eukaryotic cell migration requires continuous supply of actin polymers at the leading edges to make and extend lamellipodia or pseudopodia. Linear and branched filamentous actin polymers fuel cell migration. Branching of actin polymers in the lamellipodia/pseudopodia is facilitated by the actin-related protein (Arp) 2/3 complex, whose function is essentially controlled by the Scar/WAVE complex. In cells, the Scar/WAVE complex remains inactive, and its activation is a highly regulated and complex process. In response to signalling cues, GTP-bound Rac1 associates with Scar/WAVE and causes activation of the complex. Rac1 is essential but not sufficient for the activation of the Scar/ WAVE complex, and it requires multiple regulators, such as protein interactors and modifications (phosphorylation, ubiquitylation, etc.). Although our understanding of the regulation of the Scar/WAVE complex has improved over the last decade, it remains enigmatic. In this review, we have provided an overview of actin polymerization and discussed the importance of various regulators of Scar/WAVE activation.
Assuntos
Actinas , Cicatriz , Humanos , Actinas/genética , Actinas/metabolismo , Cicatriz/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Movimento Celular/fisiologia , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismoRESUMO
Cell migration is crucial for physiological and pathological processes such as morphogenesis, wound repair, immune response and cancer invasion/metastasis. There are many factors affecting cell migration, and the regulatory mechanisms are complex. Rac1 is a GTP-binding protein with small molecular weight belonging to the Rac subfamily of the Rho GTPase family. As a key molecule in regulating cell migration, Rac1 participates in signal transduction from the external cell to the actin cytoskeleton and promotes the establishment of cell polarity which plays an important role in cancer cell invasion/metastasis. In this review, we firstly introduce the molecular structure and activity regulation of Rac1, and then summarize the role of Rac1 in cancer invasion/metastasis and other physiological processes. We also discuss the regulatory mechanisms of Rac1 in cell migration and highlight it as a potential target in cancer therapy. Finally, the current state as well as the future challenges in this area are considered. Understanding the role and the regulatory mechanism of Rac1 in cell migration can provide fundamental insights into Rac1-related cancer progression and further help us to develop novel intervention strategies for cancer therapy in clinic.
Assuntos
Neoplasias , Proteínas rac1 de Ligação ao GTP , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Movimento Celular , Transdução de Sinais , Citoesqueleto de Actina/metabolismo , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismoRESUMO
Actin cytoskeleton dynamics have been found to regulate myogenesis in various progenitor cells, and twinfilin-1 (TWF1), an actin-depolymerizing factor, plays a vital role in actin dynamics and myoblast differentiation. Nevertheless, the molecular mechanisms underlying the epigenetic regulation and biological significance of TWF1 in obesity and muscle wasting have not been explored. Here, we investigated the roles of miR-302a in TWF1 expression, actin filament modulation, proliferation, and myogenic differentiation in C2C12 progenitor cells. Palmitic acid, the most prevalent saturated fatty acid (SFA) in the diet, decreased the expression of TWF1 and impeded myogenic differentiation while increasing the miR-302a levels in C2C12 myoblasts. Interestingly, miR-302a inhibited TWF1 expression directly by targeting its 3'UTR. Furthermore, ectopic expression of miR-302a promoted cell cycle progression and proliferation by increasing the filamentous actin (F-actin) accumulation, which facilitated the nuclear translocation of Yes-associated protein 1 (YAP1). Consequently, by suppressing the expressions of myogenic factors, i.e., MyoD, MyoG, and MyHC, miR-302a impaired myoblast differentiation. Hence, this study demonstrated that SFA-inducible miR-302a suppresses TWF1 expression epigenetically and impairs myogenic differentiation by facilitating myoblast proliferation via F-actin-mediated YAP1 activation.
Assuntos
Actinas , MicroRNAs , Citoesqueleto de Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Diferenciação Celular/genética , Proliferação de Células/genética , Epigênese Genética , MicroRNAs/metabolismo , Desenvolvimento Muscular/genética , Mioblastos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
The satisfactory visualization of cytoskeletal components in the brain is challenging. The ubiquitous distribution of the networks of microtubules, microfilaments, and intermediate filaments in all the neural tissues, together with the variability in the outcomes of fluorescent protein fusion strategies and their limited applicability to dynamic studies of antibodies and drugs as chromophore vehicles, make classical optical approaches not as effective as for other proteins. When tubulin needs to be studied, the label-free generation of second harmonics is a very suitable option due to the non-centrosymmetric organization of the molecule. This technique, when conjugated to microscopy, can qualitatively describe the volumetric distribution of parallel bundles of microtubules in biological samples, with the additional advantage of working with fresh tissues that are unfixed and unpermeabilized. This work describes how to image tubulin with a commercial second harmonic generation microscopy setup to highlight microtubules in the tubulin-enriched structures of the oligodendrocytes, as in hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC) tubulinopathy, a recently described myelin disorder.
Assuntos
Bainha de Mielina , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Bainha de Mielina/metabolismo , Microtúbulos/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto de Actina/metabolismoRESUMO
As the stimulus-responsive mediator of actin dynamics, actin-depolymerizing factor (ADF)/cofilin is subject to tight regulation. It is well known that kinase-mediated phosphorylation inactivates ADF/cofilin. Here, however, we found that the activity of Arabidopsis ADF7 is enhanced by CDPK16-mediated phosphorylation. We found that CDPK16 interacts with ADF7 both in vitro and in vivo, and it enhances ADF7-mediated actin depolymerization and severing in vitro in a calcium-dependent manner. Accordingly, the rate of actin turnover is reduced in cdpk16 pollen and the amount of actin filaments increases significantly at the tip of cdpk16 pollen tubes. CDPK16 phosphorylates ADF7 at Serine128 both in vitro and in vivo, and the phospho-mimetic mutant ADF7S128D has enhanced actin-depolymerizing activity compared to ADF7. Strikingly, we found that failure in the phosphorylation of ADF7 at Ser128 impairs its function in promoting actin turnover in vivo, which suggests that this phospho-regulation mechanism is biologically significant. Thus, we reveal that CDPK16-mediated phosphorylation up-regulates ADF7 to promote actin turnover in pollen.
Assuntos
Actinas , Arabidopsis , Citoesqueleto de Actina/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Destrina/metabolismo , Fosforilação , Tubo Polínico/metabolismo , Proteínas de Arabidopsis/metabolismoRESUMO
A fundamental understanding of cell shaping with confined flexible filaments, including microtubules, actin filaments, and engineered nanotubes, has been limited by the complex interplay between the cell membrane and encapsulated filaments. Here, combining theoretical modeling and molecular dynamics simulations, we investigate the packing of an open or closed filament inside a vesicle. Depending on the relative stiffness and size of the filament to the vesicle as well as the osmotic pressure, the vesicle could evolve from an axisymmetric configuration to a general configuration with a maximum of three reflection planes, and the filament could bend in or out of plane or even coil up. A plethora of system morphologies are determined. Morphological phase diagrams predicting conditions of shape and symmetry transitions are established. Organization of actin filaments or bundles, microtubules, and nanotube rings inside vesicles, liposomes, or cells are discussed. Our results provide a theoretical basis to understand cell shaping and cellular stability and to help guide the development and design of artificial cells and biohybrid microrobots.
Assuntos
Citoesqueleto de Actina , Simulação de Dinâmica Molecular , Citoesqueleto de Actina/metabolismo , Membrana Celular , Lipossomos/metabolismo , MicrotúbulosRESUMO
The phylum of Apicomplexa groups intracellular parasites that employ substrate-dependent gliding motility to invade host cells, egress from the infected cells, and cross biological barriers. The glideosome-associated connector (GAC) is a conserved protein essential to this process. GAC facilitates the association of actin filaments with surface transmembrane adhesins and the efficient transmission of the force generated by myosin translocation of actin to the cell surface substrate. Here, we present the crystal structure of Toxoplasma gondii GAC and reveal a unique, supercoiled armadillo repeat region that adopts a closed ring conformation. Characterisation of the solution properties together with membrane and F-actin binding interfaces suggests that GAC adopts several conformations from closed to open and extended. A multi-conformational model for assembly and regulation of GAC within the glideosome is proposed.
Assuntos
Toxoplasma , Toxoplasma/metabolismo , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Miosinas/metabolismo , Proteínas de Protozoários/metabolismoRESUMO
Cellular fusion e.g. between cancer cells and normal cells represents a stepwise process that is tightly regulated. During a pre-hybrid preparation program somatic cells and/or cancer cells are promoted to a pro-fusogenic state as a prerequisite to prepare a fusion process. A pro-fusogenic state requires significant changes including restructure of the cytoskeleton, e.g., by the formation of F-actin. Moreover, distinct plasma membrane lipids such as phosphatidylserine play an important role during cell fusion. In addition, the expression of distinct fusogenic factors such as syncytins and corresponding receptors are of fundamental importance to enable cellular mergers. Subsequent hybrid formation and fusion are followed by a post-hybrid selection process. Fusion among normal cells is important and often required during organismal development. Cancer cells fusion appears more rarely and is associated with the generation of new cancer hybrid cell populations. These cancer hybrid cells contribute to an elevated tumour plasticity by altered metastatic behaviour, changes in therapeutic and apoptotic responses, and even in the formation of cancer stem/ initiating cells. While many parts within this multi-step cascade are still poorly understood, this review article predominantly focusses on the intracellular necessities for fusion among cancer cells or with other cell populations of the tumour microenvironment. Video Abstract.
Assuntos
Neoplasias , Transdução de Sinais , Humanos , Fusão Celular , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Neoplasias/metabolismo , Microambiente TumoralRESUMO
Dendritic morphology underlies the source and processing of neuronal signal inputs. Morphology can be broadly described by two types of geometric characteristics. The first is dendrogram topology, defined by the length and frequency of the arbor branches; the second is spatial embedding, mainly determined by branch angles and straightness. We have previously demonstrated that microtubules and actin filaments are associated with arbor elongation and branching, fully constraining dendrogram topology. Here, we relate the local distribution of these two primary cytoskeletal components with dendritic spatial embedding. We first reconstruct and analyze 167 sensory neurons from the Drosophila larva encompassing multiple cell classes and genotypes. We observe that branches with a higher microtubule concentration tend to deviate less from the direction of their parent branch across all neuron types. Higher microtubule branches are also overall straighter. F-actin displays a similar effect on angular deviation and branch straightness, but not as consistently across all neuron types as microtubule. These observations raise the question as to whether the associations between cytoskeletal distributions and arbor geometry are sufficient constraints to reproduce type-specific dendritic architecture. Therefore, we create a computational model of dendritic morphology purely constrained by the cytoskeletal composition measured from real neurons. The model quantitatively captures both spatial embedding and dendrogram topology across all tested neuron groups. These results suggest a common developmental mechanism regulating diverse morphologies, where the local cytoskeletal distribution can fully specify the overall emergent geometry of dendritic arbors.
Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Actinas/metabolismo , Proteínas de Drosophila/metabolismo , Dendritos/metabolismo , Microtúbulos/metabolismo , Células Receptoras Sensoriais/metabolismo , Citoesqueleto de Actina/metabolismoRESUMO
The actin cytoskeleton is tightly controlled by RhoGTPases, actin binding-proteins and nucleation-promoting factors to perform fundamental cellular functions. We have previously shown that ERK3, an atypical MAPK, controls IL-8 production and chemotaxis (Bogueka et al., 2020). Here, we show in human cells that ERK3 directly acts as a guanine nucleotide exchange factor for CDC42 and phosphorylates the ARP3 subunit of the ARP2/3 complex at S418 to promote filopodia formation and actin polymerization, respectively. Consistently, depletion of ERK3 prevented both basal and EGF-dependent RAC1 and CDC42 activation, maintenance of F-actin content, filopodia formation, and epithelial cell migration. Further, ERK3 protein bound directly to the purified ARP2/3 complex and augmented polymerization of actin in vitro. ERK3 kinase activity was required for the formation of actin-rich protrusions in mammalian cells. These findings unveil a fundamentally unique pathway employed by cells to control actin-dependent cellular functions.
Assuntos
Actinas , Proteína Quinase 6 Ativada por Mitógeno , Animais , Humanos , Actinas/metabolismo , Proteína Quinase 6 Ativada por Mitógeno/metabolismo , Polimerização , Movimento Celular , Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Mamíferos/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismoRESUMO
This review focuses on receptor for advanced glycation endproducts/diaphonous related formin 1 (RAGE/Diaph1) interaction as a modulator of actin cytoskeleton dynamics in peripheral nervous system (PNS) in diabetes. Deciphering the complex molecular interactions between RAGE and Diaph1 is crucial in expanding our understanding of diabetic length dependent neuropathy (DLDN). DLDN is a common neurological disorder in patients with diabetes. It is well known that actin cytoskeletal homeostasis is disturbed during DLDN. Thus, we review the current status of knowledge about RAGE/Diaph1 impact on actin cytoskeletal malfunctions in PNS and DLDN progression in diabetes. We also survey studies about small molecules that may block RAGE/Diaph1 axis and thus inhibit the progression of DLDN. Finally, we explore examples of cytoskeletal long-non coding RNAs (lncRNAs) currently unrelated to DLDN, to discuss their potential role in this disease. Most recent studies indicated that lncRNAs have a great potential in many research areas, including RAGE/Diaph1 axis as well as DLDN. Altogether, this review is aimed at giving us an insight into the involvement of cytoskeletal lncRNAs in DLDN.
Assuntos
Hiperglicemia , RNA Longo não Codificante , Humanos , Transdução de Sinais , Actinas , Receptor para Produtos Finais de Glicação Avançada , Citoesqueleto de Actina/metabolismo , Sistema Nervoso Periférico/metabolismo , Forminas/metabolismoRESUMO
The spectrin-based membrane skeleton is a ubiquitous membrane-associated two-dimensional cytoskeleton underneath the lipid membrane of metazoan cells. Mutations of skeleton proteins impair the mechanical strength and functions of the membrane, leading to several different types of human diseases. Here, we report the cryo-EM structures of the native spectrin-actin junctional complex (from porcine erythrocytes), which is a specialized short F-actin acting as the central organizational unit of the membrane skeleton. While an α-/ß-adducin hetero-tetramer binds to the barbed end of F-actin as a flexible cap, tropomodulin and SH3BGRL2 together create an absolute cap at the pointed end. The junctional complex is strengthened by ring-like structures of dematin in the middle actin layers and by patterned periodic interactions with tropomyosin over its entire length. This work serves as a structural framework for understanding the assembly and dynamics of membrane skeleton and offers insights into mechanisms of various ubiquitous F-actin-binding factors in other F-actin systems.
Assuntos
Citoesqueleto , Eritrócitos , Animais , Humanos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Citoesqueleto/metabolismo , Eritrócitos/citologia , Eritrócitos/metabolismo , Espectrina/análise , Espectrina/metabolismo , SuínosRESUMO
Astrocytes and neurons extensively interact in the brain. Identifying astrocyte and neuron proteomes is essential for elucidating the protein networks that dictate their respective contributions to physiology and disease. Here we used cell-specific and subcompartment-specific proximity-dependent biotinylation1 to study the proteomes of striatal astrocytes and neurons in vivo. We evaluated cytosolic and plasma membrane compartments for astrocytes and neurons to discover how these cells differ at the protein level in their signalling machinery. We also assessed subcellular compartments of astrocytes, including end feet and fine processes, to reveal their subproteomes and the molecular basis of essential astrocyte signalling and homeostatic functions. Notably, SAPAP3 (encoded by Dlgap3), which is associated with obsessive-compulsive disorder (OCD) and repetitive behaviours2-8, was detected at high levels in striatal astrocytes and was enriched within specific astrocyte subcompartments where it regulated actin cytoskeleton organization. Furthermore, genetic rescue experiments combined with behavioural analyses and molecular assessments in a mouse model of OCD4 lacking SAPAP3 revealed distinct contributions of astrocytic and neuronal SAPAP3 to repetitive and anxiety-related OCD-like phenotypes. Our data define how astrocytes and neurons differ at the protein level and in their major signalling pathways. Moreover, they reveal how astrocyte subproteomes vary between physiological subcompartments and how both astrocyte and neuronal SAPAP3 mechanisms contribute to OCD phenotypes in mice. Our data indicate that therapeutic strategies that target both astrocytes and neurons may be useful to explore in OCD and potentially other brain disorders.
Assuntos
Astrócitos , Neurônios , Transtorno Obsessivo-Compulsivo , Proteoma , Animais , Camundongos , Astrócitos/metabolismo , Neurônios/metabolismo , Transtorno Obsessivo-Compulsivo/metabolismo , Transtorno Obsessivo-Compulsivo/fisiopatologia , Proteoma/metabolismo , Biotinilação , Membrana Celular/metabolismo , Transdução de Sinais , Citosol/metabolismo , Homeostase , Fenótipo , Citoesqueleto de Actina/metabolismoRESUMO
Spotted fever group Rickettsia undergo actin-based motility inside infected eukaryotic cells using Sca2 (surface cell antigen 2): an â¼ 1800 amino-acid monomeric autotransporter protein that is surface-attached to the bacterium and responsible for the assembly of long unbranched actin tails. Sca2 is the only known functional mimic of eukaryotic formins, yet it shares no sequence similarities to the latter. Using structural and biochemical approaches we have previously shown that Sca2 uses a novel actin assembly mechanism. The first â¼ 400 amino acids fold into helix-loop-helix repeats that form a crescent shape reminiscent of a formin FH2 monomer. Additionally, the N- and C- terminal halves of Sca2 display intramolecular interaction in an end-to-end manner and cooperate for actin assembly, mimicking a formin FH2 dimer. Towards a better structural understanding of this mechanism, we performed single-particle cryo-electron microscopy analysis of Sca2. While high-resolution structural details remain elusive, our model confirms the presence of a formin-like core: Sca2 indeed forms a doughnut shape, similar in diameter to a formin FH2 dimer and can accommodate two actin subunits. Extra electron density, thought to be contributed by the C-terminal repeat domain (CRD), covering one side is also observed. This structural analysis allows us to propose an updated model where nucleation proceeds by encircling two actin subunits, and elongation proceeds either by a formin-like mechanism that necessitates conformational changes in the observed Sca2 model, or via an insertional mechanism akin to that observed in the ParMRC system.
Assuntos
Actinas , Rickettsia conorii , Actinas/metabolismo , Forminas/metabolismo , Rickettsia conorii/metabolismo , Microscopia Crioeletrônica , Estrutura Terciária de Proteína , Citoesqueleto de Actina/metabolismoRESUMO
Golgi-derived PI4P-containing vesicles play important roles in mitochondrial division, which is essential for maintaining cellular homeostasis. However, the mechanism of the PI4P-containing vesicle effect on mitochondrial division is unclear. Here, we found that actin appeared to polymerize at the contact site between PI4P-containing vesicles and mitochondria, causing mitochondrial division. Increasing the content of PI4P derived from the Golgi apparatus increased actin polymerization and reduced the length of the mitochondria, suggesting that actin polymerization through PI4P-containing vesicles is involved in PI4P vesicle-related mitochondrial division. Collectively, our results support a model in which PI4P-containing vesicles derived from the Golgi apparatus cooperate with actin filaments to participate in mitochondrial division by contributing to actin polymerization, which regulates mitochondrial dynamics. This study enriches the understanding of the pathways that regulate mitochondrial division and provides new insight into mitochondrial dynamics.
Assuntos
Actinas , Dinâmica Mitocondrial , Actinas/metabolismo , Complexo de Golgi/metabolismo , Citoesqueleto de Actina/metabolismo , Organelas/metabolismoRESUMO
Many cytoskeletal systems are now sufficiently well known to permit their precise quantitative modeling. Microtubule and actin filaments are well characterized, and the associated proteins are often known, as well as their abundance and the interactions between these elements. Thus, computer simulations can be used to investigate the collective behavior of the system precisely, in a way that is complementary to experiments. Cytosim is an Open Source cytoskeleton simulation suite designed to handle large systems of flexible filaments with associated proteins such as molecular motors. It also offers the possibility to simulate passive crosslinkers, diffusible crosslinkers, nucleators, cutters, and discrete versions of the motors that only step on unoccupied lattice sites on a filament. Other objects complement the filaments by offering spherical or more complicated geometry that can be used to represent chromosomes, the nucleus, or vesicles in the cell. Cytosim offers simple command-line tools for running a simulation and displaying its results, which are versatile and do not require programming skills. In this workflow, step-by-step instructions are given to i) install the necessary environment on a new computer, ii) configure Cytosim to simulate the contraction of a 2D actomyosin network, and iii) produce a visual representation of the system. Next, the system is probed by systematically varying a key parameter: the number of crosslinkers. Finally, the visual representation of the system is complemented by the numerical quantification of contractility to view, in a graph, how contractility depends on the composition of the system. Overall, these different steps constitute a typical workflow that can be applied with few modifications to tackle many other problems in the cytoskeletal field.
Assuntos
Citoesqueleto , Microtúbulos , Fluxo de Trabalho , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Actinas/metabolismoRESUMO
The photoreceptor outer segment (OS) is the phototransductive organelle in the vertebrate retina. OS tips are regularly ingested and degraded by the adjacent retinal pigment epithelium (RPE), offsetting the addition of new disk membrane at the base of the OS. This catabolic role of the RPE is essential for photoreceptor health, with defects in ingestion or degradation underlying different forms of retinal degeneration and blindness. Although proteins required for OS tip ingestion have been identified, spatiotemporal analysis of the ingestion process in live RPE cells is lacking; hence, the literature reflects no common understanding of the cellular mechanisms that affect ingestion. We imaged live RPE cells from mice (both sexes) to elucidate the ingestion events in real time. Our imaging revealed roles for f-actin dynamics and specific dynamic localizations of two BAR (Bin-Amphiphysin-Rvs) proteins, FBP17 and AMPH1-BAR, in shaping the RPE apical membrane as it surrounds the OS tip. Completion of ingestion was observed to occur by scission of the OS tip from the remainder of the OS, with a transient concentration of f-actin forming around the site of imminent scission. Actin dynamics were also required for regulating the size of the ingested OS tip, and the time course of the overall ingestion process. The size of the ingested tip is consistent with the term "phagocytosis." However, phagocytosis usually refers to engulfment of an entire particle or cell, whereas our observations of OS tip scission indicate a process that is more specifically described as "trogocytosis," in which one cell "nibbles" another cell.SIGNIFICANCE STATEMENT The ingestion of the photoreceptor outer segment (OS) tips by the retinal pigment epithelium (RPE) is a dynamic cellular process that has fascinated scientists for 60 years. Yet its molecular mechanisms had not been addressed in living cells. We developed a live-cell imaging approach to investigate OS tip ingestion, and focused on the dynamic participation of actin filaments and membrane-shaping BAR proteins. We observed scission of OS tips for the first time, and were able to monitor local changes in protein concentration preceding, during, and following scission. Our approach revealed that actin filaments were concentrated at the site of OS scission and were required for regulating the size of the ingested OS tip and the time course of the ingestion process.