Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.653
Filtrar
1.
Int J Nanomedicine ; 14: 5831-5848, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31534327

RESUMO

Purpose: In order to accelerate the tendon-bone healing processes and achieve the efficient osteointegration between the tendon graft and bone tunnel, we aim to design bioactive electrospun nanofiber membranes combined with tendon stem/progenitor cells (TSPCs) to promote osteogenic regeneration of the tendon and bone interface. Methods: In this study, nanofiber membranes of polycaprolactone (PCL), PCL/collagen I (COL-1) hybrid nanofiber membranes, poly(dopamine) (PDA)-coated PCL nanofiber membranes and PDA-coated PCL/COL-1 hybrid nanofiber membranes were successfully fabricated by electrospinning. The biochemical characteristics and nanofibrous morphology of the membranes, as well as the characterization of rat TSPCs, were defined in vitro. After co-culture with different types of electrospun nanofiber membranes in vitro, cell proliferation, viability, adhesion and osteogenic differentiation of TSPCs were evaluated at different time points. Results: Among all the membranes, the performance of the PCL/COL-1 (volume ratio: 2:1 v/v) group was superior in terms of its ability to support the adhesion, proliferation, and osteogenic differentiation of TSPCs. No benefit was found in this study to include PDA coating on cell adhesion, proliferation and osteogenic differentiation of TSPCs. Conclusion: The PCL/COL-1 hybrid electrospun nanofiber membranes are biocompatible, biomimetic, easily fabricated, and are capable of supporting cell adhesion, proliferation, and osteogenic differentiation of TSPCs. These bioactive electrospun nanofiber membranes may act as a suitable functional biomimetic scaffold in tendon-bone tissue engineering applications to enhance tendon-bone healing abilities.


Assuntos
Materiais Biocompatíveis/farmacologia , Osso e Ossos/fisiologia , Membranas Artificiais , Nanofibras/química , Células-Tronco/citologia , Tendões/citologia , Engenharia Tecidual/métodos , Animais , Osso e Ossos/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno Tipo I/metabolismo , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Nanofibras/ultraestrutura , Osteogênese , Ratos Sprague-Dawley , Células-Tronco/efeitos dos fármacos
2.
Int J Nanomedicine ; 14: 6197-6215, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31496681

RESUMO

Introduction and objective: Degradation of the extracellular matrix (ECM) changes the physicochemical properties and dysregulates ECM-cell interactions, leading to several pathological conditions, such as invasive cancer. Carbon nanofilm, as a biocompatible and easy to functionalize material, could be used to mimic ECM structures, changing cancer cell behavior to perform like normal cells. Methods: Experiments were performed in vitro with HS-5 cells (as a control) and HepG2 and C3A cancer cells. An aqueous solution of fullerene C60 was used to form a nanofilm. The morphological properties of cells cultivated on C60 nanofilms were evaluated with light, confocal, electron and atomic force microscopy. The cell viability and proliferation were measured by XTT and BrdU assays. Immunoblotting and flow cytometry were used to evaluate the expression level of proliferating cell nuclear antigen and determine the number of cells in the G2/M phase. Results: All cell lines were spread on C60 nanofilms, showing a high affinity to the nanofilm surface. We found that C60 nanofilm mimicked the niche/ECM of cells, was biocompatible and non-toxic, but the mechanical signal from C60 nanofilm created an environment that affected the cell cycle and reduced cell proliferation. Conclusion: The results indicate that C60 nanofilms might be a suitable, substitute component for the niche of cancer cells. The incorporation of fullerene C60 in the ECM/niche may be an alternative treatment for hepatocellular carcinoma.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Fulerenos/farmacologia , Fase G2/efeitos dos fármacos , Neoplasias Hepáticas/patologia , Mecanotransdução Celular , Nanopartículas/química , Comunicação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Módulo de Elasticidade , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fulerenos/química , Humanos , Integrina alfa5beta1/metabolismo , Neoplasias Hepáticas/ultraestrutura , Mecanotransdução Celular/efeitos dos fármacos , Nanopartículas/ultraestrutura , Proteínas de Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Int J Nanomedicine ; 14: 3297-3309, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31190794

RESUMO

Background: Cardiovascular disease (CVD) is the leading cause of mortality all over the world. Vascular stents are used to ameliorate vascular stenosis and recover vascular function. The application of nanotubular coatings has been confirmed to promote endothelial cell (EC) proliferation and function. However, the regulatory mechanisms involved in cellular responses to the nanotubular topography have not been defined. In the present study, a microarray analysis was performed to explore the expression patterns of long noncoding RNAs (lncRNAs) in human coronary artery endothelial cells (HCAECs) that were differentially expressed in response to nitinol-based nanotubular coatings. Materials and methods: First, anodization was performed to synthesize nitinol-based nanotubular coatings. Then, HCAECs were cultured on the samples for 24 h to evaluate cell cytoskeleton organization. Next, total RNA was extracted and synthesized into cRNA, which was hybridized onto the microarray. GO analysis and KEGG pathway analysis were performed to investigate the roles of differentially expressed messenger RNAs (mRNAs). Quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR) was performed to validate the expression of randomly selected lncRNAs. Coexpression networks were created to identify the interactions among lncRNAs and the protein-coding genes involved in nanotubular topography-induced biological and molecular pathways. Independent Student's t-test was applied for comparisons between two groups with statistical significance set at p<0.05. Results: 1085 lncRNAs and 227 mRNAs were significantly differentially expressed in the nitinol-based nanotubular coating group. Bioinformatics analysis revealed that extracellular matrix receptor interactions and cell adhesion molecules play critical roles in the sensing of nitinol-based nanotubular coatings by HCAECs. The TATA-binding protein (TBP) and TBP-associated transfactor 1 (TAF1) are important molecules in EC responses to substrate topography. Conclusion: This study suggests that nanotubular substrate topography regulates ECs by differentially expressed lncRNAs involved extracellular matrix receptor interactions and cell adhesion molecules.


Assuntos
Ligas/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Vasos Coronários/citologia , Células Endoteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Nanotubos/química , RNA Longo não Codificante/genética , Proliferação de Células/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Células Endoteliais/efeitos dos fármacos , Perfilação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Análise em Microsséries , Nanotubos/ultraestrutura , Fenótipo , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/metabolismo
4.
Biomed Res Int ; 2019: 3638469, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31058187

RESUMO

Eosinophil asthma is characterized by the infiltration of eosinophils to the bronchial epithelium. The toxic cationic protein released by eosinophils, mainly major basic protein (MBP), is one of the most important causative factors of epithelium damage. Poly-L-Arginine (PLA) is a kind of synthetic cationic polypeptides, which is widely used to mimic the effects of MBP on epithelial cells in vitro. However, little is known about the changes of differentially expressed genes (DEGs) and transcriptome profiles in cationic protein stimulated epithelial cells. In this study, we compared the expression of DEGs and transcriptome profiles between PLA-treated airway epithelial cells NCI-H292 and control. The results showed that there were a total of 230 DEGs, of which 86 were upregulated and 144 were downregulated. These DEGs were further analyzed using gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The results showed that the upregulated DEGs were involved in cholesterol synthesis, protein binding, and composition of cellular membranes, mainly enriched in metabolic and biosynthesis pathways. While downregulated DEGs were implicated in cell adhesion, extracellular matrix (ECM) composition and cytoskeleton and were enriched in ECM pathway. In conclusion, our research provided the mechanism of the cationic polypeptides acting on the airway epithelial cells on the basis of transcriptomic profile, and this could be regarded as important indications in unveiling the pathologic role of natural cationic proteins in the damage to epithelial cells of asthmatics.


Assuntos
Células Epiteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Pulmão/metabolismo , Transcriptoma/genética , Cátions/farmacologia , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Colesterol/genética , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/genética , Redes Reguladoras de Genes/genética , Humanos , Pulmão/efeitos dos fármacos , Peptídeos/farmacologia , Sequenciamento Completo do Exoma
5.
Life Sci ; 230: 121-131, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31125565

RESUMO

AIMS: Cutaneous melanoma is the most aggressive skin cancer, derived from neoplastic transformation of melanocytes. Since several evidences highlighted the importance of a hierarchical model of differentiation among cancer cells, closely related to resistance mechanisms and tumor relapse, we investigated the effects of theophylline (Theo), a methylxanthine commonly used in treatment of respiratory diseases, on melanoma cells with different degree of differentiation, including patient-derived melanoma-initiating cells. MATERIALS AND METHODS: The antiproliferative and antimetastatic effects of Theo was demonstrated by cell counting, adhesion and migration assays on A375 and SK-MEL-30 cells. Further, Theo ability to reduce cell growth was highly significant in A375-derived spheroids and in two patient-derived melanoma-initiating cells (MICs). In order to identify pathways potentially involved in the antineoplastic properties of Theo, a comparative mass spectrometry proteomic analysis was used. Then, melanin content, tyrosinase and tissue transglutaminase activities as differentiation markers and actin re-organization through confocal microscopy were evaluated. Furthermore, a secretome profile of MICs after Theo treatments was performed by multiplex immunoassay. KEY FINDINGS: Obtained results demonstrate inhibitory effects of Theo on melanoma cell proliferation and migration, mainly in MICs, together with the induction of differentiation parameters. Moreover, our data indicate that the known anti-melanoma effect of Theo is due also to its ability to interfere with cytoskeleton dynamics and to induce the secretion of inflammatory molecules involved in recruitment of immunosuppressive cells in tumor microenvironment. SIGNIFICANCE: Data strongly suggest that Theo supplement, either as drug or as dietary supply, may represent a potent additional weapon against melanoma.


Assuntos
Melanoma/tratamento farmacológico , Melanoma/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Teofilina/farmacologia , Apoptose/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citocinas/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Humanos , Melanoma Experimental/patologia , Recidiva Local de Neoplasia , Proteômica , Neoplasias Cutâneas/patologia , Teofilina/metabolismo , Microambiente Tumoral/efeitos dos fármacos
6.
Nanoscale ; 11(18): 8906-8917, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31016299

RESUMO

Biomimetic functional scaffolds for tissue engineering should fulfil specific requirements concerning structural, bio-chemical and electro-mechanical characteristics, depending on the tissue that they are designed to resemble. In bone tissue engineering, piezoelectric materials based on poly(vinylidene fluoride) (PVDF) are on the forefront, due to their inherent ability to generate surface charges under minor mechanical deformations. Nevertheless, PVDF's high hydrophobicity hinders sufficient cell attachment and expansion, which are essential in building biomimetic scaffolds. In this study, PVDF nanofibrous scaffolds were fabricated by electrospinning to achieve high piezoelectricity, which was compared with drop-cast membranes, as it was confirmed by XRD and FTIR measurements. Oxygen plasma treatment of the PVDF surface rendered it hydrophilic, and surface characterization revealed a long-term stability. XPS analysis and contact angle measurements confirmed an unparalleled two-year stability of hydrophilicity. Osteoblast cell culture on the permanently hydrophilic PVDF scaffolds demonstrated better cell spreading over the non-treated ones, as well as integration into the scaffold as indicated by SEM cross-sections. Intracellular calcium imaging confirmed a higher cell activation on the piezoelectric electrospun nanofibrous scaffolds. Combining these findings, and taking advantage of the self-stimulation of the cells due to their attachment on the piezoelectric PVDF nanofibers, a 3D tissue-like functional self-sustainable scaffold for bone tissue engineering was fabricated.


Assuntos
Nanofibras/química , Polivinil/química , Tecidos Suporte/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Cálcio/análise , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Estimulação Elétrica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Microscopia Confocal , Nanofibras/toxicidade , Osteoblastos/citologia , Gases em Plasma/química , Propriedades de Superfície
7.
Toxicol Lett ; 309: 20-32, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30951809

RESUMO

Rotenone is an environmental neurotoxin that induces degeneration of dopaminergic neurons and the most common features of Parkinson's disease in animal models. It acts as a mitochondrial complex I inhibitor that impairs cellular respiration, with consequent increase of reactive oxygen species and oxidative stress. This study evaluates the rotenone-induced oxidative damage in PC12 cells, focusing particularly on protein oxidation. The identification of specific carbonylated proteins highlighted putative alterations of important cellular processes possibly associated with Parkinson's disease. Carbonylation of ATP synthase and of enzymes acting in pyruvate and glucose metabolism suggested a failure of mechanisms ensuring cellular energy supply. Concomitant oxidation of cytoskeletal proteins and of enzymes involved in the synthesis of neuroactive molecules indicated alterations of the neurotransmission system. Carbonylation of chaperon proteins as well as of proteins acting in the autophagy-lysosome pathway and the ubiquitin-proteasome system suggested the possible formation of cytosolic unfolded protein inclusions as result of defective processes assisting recovery/degradation of damaged molecules. In conclusion, this study originally evidences specific protein targets of rotenone-induced oxidative damage, suggesting some possible molecular mechanisms involved in rotenone toxicity.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos , Rotenona/toxicidade , Animais , Citoesqueleto/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurotransmissores/biossíntese , Células PC12 , Proteostase/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismo
8.
Biointerphases ; 14(2): 021002, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30884950

RESUMO

Recent developments in the field of fullerene C60 and its derivatives suggest its suitability in a wide range of applications ranging from photovoltaic instruments, development of solar based cells, cosmetics to enzyme inhibition treatment, and so on. These innovative applications raised possibilities of intentional or oblivious human-particle contact leading to possible deleterious effects on human health. The current study deals with the interaction of dextran functionalized fullerene C60 (Dex-C60) on Chinese Hamster Ovary cells. The results showed that the cell viability was not affected by Dex-C60 treatment even at higher concentrations. Treatment of Dex-C60 did not affect mitochondrial membrane potential and the integrity of lysosomal and cytoskeletal membrane. DNA ladder assay and nuclear staining showed that the DNA remains intact, and no fragmentation or nuclear condensation was visible. From flow cytometry analysis, the viable population of treated cells was seemed to be remaining similar to that of untreated cells. Hence, from the current result, it is concluded that Dex-C60 can be a potential candidate for various biomedical applications.


Assuntos
Células CHO/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Fulerenos/toxicidade , Polímeros/toxicidade , Animais , Cricetulus , DNA/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Membranas Intracelulares/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos
9.
J Physiol Sci ; 69(3): 513-521, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30900190

RESUMO

Voltage-gated potassium channels are expressed in a wide variety of excitable and non-excitable cells and regulate numerous cellular functions. The activity of ion channels can be modulated by direct interaction or/and functional coupling with other proteins including auxiliary subunits, scaffold proteins and the cytoskeleton. Here, we evaluated the influence of the actin-based cytoskeleton on the Kv2.1 channel using pharmacological and electrophysiological methods. We found that disruption of the actin-based cytoskeleton by latrunculin B resulted in the regulation of the Kv2.1 inactivation mechanism; it shifted the voltage of half-maximal inactivation toward negative potentials by approximately 15 mV, accelerated the rate of closed-state inactivation, and delayed the recovery rate from inactivation. The actin cytoskeleton stabilizing agent phalloidin prevented the hyperpolarizing shift in the half-maximal inactivation potential when co-applied with latrunculin B. Additionally, PIP2 depletion (a strategy that regulates Kv2.1 inactivation) after cytoskeleton disruption does not regulate further the inactivation of Kv2.1, which suggests that both factors could be regulating the Kv2.1 channel by a common mechanism. In summary, our results suggest a role for the actin-based cytoskeleton in regulating Kv2.1 channels.


Assuntos
Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canais de Potássio Shab/metabolismo , Actinas/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Potássio/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Tiazolidinas/farmacologia
10.
Nano Lett ; 19(4): 2603-2613, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30907088

RESUMO

Optogenetics provides promising tools for the precise control of receptor-mediated cell behaviors in a spatiotemporal manner. Yet, most photoreceptors require extensive genetic manipulation and respond only to ultraviolet or visible light, which are suboptimal for in vivo applications because they do not penetrate thick tissues. Here we report a novel near-infrared light-activated DNA agonist (NIR-DA) nanodevice for nongenetic manipulation of cell signaling and phenotype in deep tissues. This nanodevice is prepared by conjugating a preinactivated DNA agonist onto the gold nanorods (AuNRs). Upon NIR light treatment, the DNA agonist is released through the localized surface plasmon resonance (LSPR)-based photothermal effect of AuNRs and becomes active. The active DNA agonist dimerizes the DNA-modified chimeric or native receptor tyrosine kinase (RTK) on cell surfaces and activates downstream signal transduction in live cells. Such NIR-DA activation of RTK signaling enables the control of cytoskeletal remodeling, cell polarization, and directional migration. Furthermore, we demonstrate that the NIR-DA system can be used in vivo to mediate RTK signaling and skeletal muscle satellite cell migration and myogenesis, which are critical cellular behaviors in the process of skeletal muscle regeneration. Thus, the NIR-DA system offers a powerful and versatile platform for exogenous modulation of deep tissues for purposes such as regenerative medicine.


Assuntos
Materiais Biocompatíveis/farmacologia , Comunicação Celular/efeitos dos fármacos , DNA/genética , Receptores Proteína Tirosina Quinases/genética , Materiais Biocompatíveis/química , Comunicação Celular/efeitos da radiação , Movimento Celular/efeitos dos fármacos , Movimento Celular/efeitos da radiação , Polaridade Celular/efeitos dos fármacos , Polaridade Celular/efeitos da radiação , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/efeitos da radiação , DNA/agonistas , DNA/química , DNA/efeitos dos fármacos , Ouro/química , Humanos , Raios Infravermelhos , Nanotubos/química , Receptores Proteína Tirosina Quinases/química , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Ressonância de Plasmônio de Superfície
11.
Mater Sci Eng C Mater Biol Appl ; 99: 1257-1273, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30889661

RESUMO

Lithium (Li+) ion due to its excellent bioactivity is one of the most well-studied element in bone-tissue engineering. In this study, we fabricated nanohydroxyapatite (nHAp) doped with Li+ ions (5 mol% Li+:nHAp) and co-doped with lanthanide ions. We investigated the effects of nHAp, 5 mol% Li+:nHAp or Li+ alone, on osteogenic differentiation of human Adipose Tissue-derived Stem Cells (hASCs), their proliferation, mitochondrial dynamics and apoptosis. Moreover, we monitored cell proliferation after treatment with samarium (III) (Sm3+) and europium (III) (Eu3+) ions co-doped 5 mol% Li+:nHAp as well as their luminescent property. The hASCs treated with 5 mol% Li+:nHAp and Li+ ions proliferated more rapidly and differentiated effectively than control cells without undergoing apoptosis. Both, 5 mol% Li+:nHAp and Li+ ions improved osteogenic differentiation of hASCs. Moreover they decreased expression of glycogen synthase kinase 3ß (GSK3ß) while increased ß-catenin mRNA level. In addition, Li+, nHAp and 5 mol% Li+:nHAp improved mitochondrial dynamics and enhanced expression of neural differentiation marker genes. Collectively, the study indicates on pro-osteogenic and anti-apoptotic properties of nHAp doped with Li+ and Li+ alone. Moreover, unique properties of 5 mol% Li+:nHAp and 5 mol% Li+:nHAp co-doped with rare earth ions, such as Sm3+ and Eu3+ have shed a promising light on their potential application in theranostics.


Assuntos
Durapatita/química , Európio/farmacologia , Lítio/farmacologia , Células-Tronco Mesenquimais/metabolismo , Nanopartículas/química , Osteogênese/efeitos dos fármacos , Samário/farmacologia , Nanomedicina Teranóstica , Apoptose , Biomarcadores/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Humanos , Íons , Leptina/genética , Leptina/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Nanopartículas/ultraestrutura , Nestina/genética , Nestina/metabolismo , Proteínas de Neurofilamentos/genética , Proteínas de Neurofilamentos/metabolismo , Osteogênese/genética , Osteopontina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
12.
Mater Sci Eng C Mater Biol Appl ; 99: 552-562, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30889729

RESUMO

In this work, two new α +â€¯ß titanium alloys with low contents of ubiquitous and low-cost alloying elements (i.e., Mo and Fe) were designed on the basis of the electronic parameters and molybdenum equivalent approaches. The designed Ti - 2Mo - 0.5Fe at. % (TMF6) and Ti - 3Mo - 0.5Fe at. % (TMF8) alloys were produced using arc melting process for studying their mechanical, electrochemical and cytotoxicity compatibilities and comparing these compatibilities to those of Ti-6Al-4V ELI alloy. The cost of the used raw materials for producing the TMF6 and TMF8 alloys are almost 1/6 of those for producing the Ti-6Al-4V ELI alloy. The hardness of the two alloys are higher than that of the Ti-6Al-4V ELI alloy, while their Young's moduli (in the range of 85-82 GPa) are lower than that of the Ti-6Al-4V ELI alloy (110 GPa). Increasing the Mo equivalent from 6 (in TMF6 alloy) to 8 (in TMF8 alloy) led to an increase in the plastic strain percent from 4% to 17%, respectively, and a decrease in the ultimate tensile strength from 949 MPa to 800 MPa, respectively. The microstructure of TMF6 alloy consists of α'/α″ phases, while TMF8 alloy substantially consists of α″ phase. The corrosion current densities and the film resistances of the new alloys are in the range of 0.70-1.07 nA/cm2 and on the order of 105â€¯Ω·cm2, respectively. These values are more compatible with biomedical applications than those measured for the Ti-6Al-4V ELI alloy. Furthermore, the cell viabilities of the TMF6 and TMF8 alloys indicate their improved compatibility compared to that of the Ti-6Al-4V ELI alloy. The CCK-8 (Cell Counting Kit-8) assay was conducted to investigate the cytotoxicity, proliferation, and shape index of the cells of the candidate alloys. Overall, the measured compatibility of the new V-free low-cost alloys, particularly TMF8, makes them promising candidates for replacing the Ti-6Al-4V ELI alloy in biomedical applications.


Assuntos
Ligas/farmacologia , Materiais Biocompatíveis/economia , Materiais Biocompatíveis/farmacologia , Custos e Análise de Custo , Ferro/farmacologia , Molibdênio/farmacologia , Implantação de Prótese , Titânio/farmacologia , Ligas/economia , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Forma Celular/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Corrosão , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Espectroscopia Dielétrica , Módulo de Elasticidade , Técnicas Eletroquímicas , Dureza , Camundongos , Estresse Mecânico , Resistência à Tração , Difração de Raios X
13.
Eur J Pharmacol ; 850: 135-140, 2019 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-30771350

RESUMO

Neurofibrillary tangles aggregated from hyperphosphorylated tau protein are the main pathological feature of Alzheimer's disease (AD). Complement C3 (or C3a) is the core component of the complement system and is associated with AD pathological processes. However, it remains unclear whether C3a or the C3a receptor has any effect on tau phosphorylation. In this study, we found that exposure of SH-SY5Y cells to okadaic acid (OA) decreased cell viabilities and induced tau hyperphosphorylation. These effects were alleviated by C3a receptor antagonist SB290157 and were further validated by C3a receptor siRNA in OA-treated SH-SY5Y cells. In addition, our results demonstrated that SB290157 markedly inhibited the activities of glycogen synthase kinase 3ß (GSK3ß), but had no effect on protein phosphatase 2A C subunit (PP2Ac) and cyclin-dependent kinases 5 (CDK5). Our findings here indicate the unique role of the C3a receptor in regulating tau phosphorylation via GSK3ß signaling pathways and suggest that the C3a receptor may be a viable target for treating AD.


Assuntos
Glicogênio Sintase Quinase 3 beta/metabolismo , Receptores de Complemento/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Proteínas tau/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Humanos , Ácido Okadáico/farmacologia , Fosforilação/efeitos dos fármacos
14.
Planta ; 249(5): 1551-1563, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30729290

RESUMO

MAIN CONCLUSION: A novel method for culturing ovules of Gossypium barbadense allowed in vitro comparisons with Gossypium hirsutum and revealed variable roles of microtubules in controlling cotton fiber cell expansion. Cotton fibers undergo extensive elongation and secondary wall thickening as they develop into our most important renewable textile material. These single cells elongate at the apex as well as elongating and expanding in diameter behind the apex. These multiple growth modes represent an interesting difference compared to classical tip-growing cells that needs to be explored further. In vitro ovule culture enables experimental analysis of the controls of cotton fiber development in commonly grown Gossypium hirsutum cotton, but, previously, there was no equivalent system for G. barbadense, which produces higher quality cotton fiber. Here, we describe: (a) how to culture the ovules of G. barbadense successfully, and (b) the results of an in vitro experiment comparing the role of microtubules in controlling cell expansion in different zones near the apex of three types of cotton fiber tips. Adding the common herbicide fluridone, 1-Methyl-3-phenyl-5-[3-(trifluoromethyl)phenyl]-4(1H)-pyridinone, to the medium supported G. barbadense ovule culture, with positive impacts on the number of useful ovules and fiber length. The effect is potentially mediated through inhibited synthesis of abscisic acid, which antagonized the positive effects of fluridone. Fiber development was perturbed by adding colchicine, a microtubule antagonist, to ovules of G. barbadense and G. hirsutum cultured 2 days after flowering. The results supported the zonal control of cell expansion in one type of G. hirsutum fiber tip and highlighted differences in the role of microtubules in modulating cell expansion between three types of cotton fiber tips.


Assuntos
Gossypium/citologia , Gossypium/metabolismo , Microtúbulos/metabolismo , Fibra de Algodão , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Gossypium/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Piridonas/farmacologia
15.
Nano Lett ; 19(4): 2280-2290, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30775927

RESUMO

Cancer cell invasion through physical barriers in the extracellular matrix (ECM) requires a complex synergy of traction force against the ECM, mechanosensitive feedback, and subsequent cytoskeletal rearrangement. PDMS microchannels were used to investigate the transition from mesenchymal to amoeboid invasion in cancer cells. Migration was faster in narrow 3 µm-wide channels than in wider 10 µm channels, even in the absence of cell-binding ECM proteins. Cells permeating narrow channels exhibited blebbing and had smooth leading edge profiles, suggesting an ECM-induced transition from mesenchymal invasion to amoeboid invasion. Live cell labeling revealed a mechanosensing period in which the cell attempts mesenchymal-based migration, reorganizes its cytoskeleton, and proceeds using an amoeboid phenotype. Rho/ROCK (amoeboid) and Rac (mesenchymal) pathway inhibition revealed that amoeboid invasion through confined environments relies on both pathways in a time- and ECM-dependent manner. This demonstrates that cancer cells can dynamically modify their invasion programming to navigate physically confining matrix conditions.


Assuntos
Citoesqueleto/efeitos dos fármacos , Mesoderma/efeitos dos fármacos , Invasividade Neoplásica/genética , Neoplasias/genética , Fenômenos Biomecânicos , Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Citoesqueleto/genética , Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/farmacologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/genética , Humanos , Mesoderma/patologia , Invasividade Neoplásica/patologia , Neoplasias/patologia , Nylons/química , Nylons/farmacologia
16.
Rev Bras Parasitol Vet ; 28(1): 126-133, 2019 Jan-Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30785557

RESUMO

The antitumor properties of ticks salivary gland extracts or recombinant proteins have been reported recently, but little is known about the antitumor properties of the secreted components of saliva. The goal of this study was to investigate the in vitro effect of the saliva of the hard tick Amblyomma sculptum on neuroblastoma cell lines. SK-N-SK, SH-SY5Y, Be(2)-M17, IMR-32, and CHLA-20 cells were susceptible to saliva, with 80% reduction in their viability compared to untreated controls, as demonstrated by the methylene blue assay. Further investigation using CHLA-20 revealed apoptosis, with approximately 30% of annexin-V positive cells, and G0/G1-phase accumulation (>60%) after treatment with saliva. Mitochondrial membrane potential (Δψm) was slightly, but significantly (p < 0.05), reduced and the actin cytoskeleton was disarranged, as indicated by fluorescent microscopy. The viability of human fibroblast (HFF-1 cells) used as a non-tumoral control decreased by approximately 40%. However, no alterations in cell cycle progression, morphology, and Δψm were observed in these cells. The present work provides new perspectives for the characterization of the molecules present in saliva and their antitumor properties.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Artrópodes/farmacologia , Produtos Biológicos/farmacologia , Citoesqueleto/efeitos dos fármacos , Ixodidae/química , Neuroblastoma/patologia , Saliva/química , Animais , Antineoplásicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Proteínas de Artrópodes/isolamento & purificação , Produtos Biológicos/isolamento & purificação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos
17.
Artif Cells Nanomed Biotechnol ; 47(1): 260-267, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30663398

RESUMO

OBJECTIVE: Silver nanoparticles (AgNPs) are widely used in orthopaedic implants because of their excellent antimicrobial properties. However, the effects of AgNPs on bone cells and osteogenic activity are still poorly understood. METHOD: Here, we investigated the effect of AgNPs on the cell viability, uptake, and osteogenic activity of osteoblast-like cells (MG-63 cells) at low concentrations. RESULTS: Our results showed that uptake and retention of AgNPs reduced the cell viability and increased cell membrane penetrability even after termination of exposure of MG-63 cells to AgNPs. In addition, AgNPs induced cell shrinkage, reduced the expressions of ALP, COL-I, OCN and OPG, and enhanced the expressions of Runx2 and RANKL. CONCLUSION: Collectively, our work demonstrated that the cytotoxic effects of low-dose AgNPs on MG-63 cells persisted even after termination of exposure. AgNPs may interfere with bone formation. More attention should be paid to the toxicity of AgNPs during the design of future orthopaedic implants.


Assuntos
Nanopartículas Metálicas/química , Osteoblastos/citologia , Osteogênese/efeitos dos fármacos , Prata/química , Prata/toxicidade , Apoptose/efeitos dos fármacos , Transporte Biológico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Osteoblastos/efeitos dos fármacos , Tamanho da Partícula , Prata/metabolismo
18.
Anal Chim Acta ; 1048: 186-193, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30598149

RESUMO

Panax notoginseng saponins (PNS) have shown to be the biologically active constituents responsible for the therapeutic action of panax notoginseng. PNS could help to restrain the oxidative stress, however, whether biomechanical properties of the single cell involve in the protective effect exerted by PNS against oxidative stress injury remains unclear. In this work, we investigated the protective mechanism of PNS against oxidative stress based on the PeakForce Tapping technology firstly, focusing on the biomechanical properties of single human umbilical vascular endothelium cell (HUVEC). PNS display distinct inhibition on the reduction of the young's modulus of cells caused by oxidative stress damage. Combining with immunofluorescence assay, it indicates that improving the stability of cytoskeleton is a significant way for PNS to play a protective role in HUVEC cells during oxidative damage. This work provides a new idea for exploring the functional mechanism of traditional Chinese medicine at the single cell level, and reveals great potential of the atomic force microscope in studying the drug mechanism.


Assuntos
Módulo de Elasticidade/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Panax notoginseng/química , Substâncias Protetoras/farmacologia , Saponinas/farmacologia , Citoesqueleto/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Humanos
19.
Aquat Toxicol ; 209: 42-48, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30690261

RESUMO

Nowadays, due to the physical, chemical, electrical, thermal and mechanical properties of carbon nanotubes (CNT), its have been currently incorporated into biomedical products and they are employed in drug delivery drug administration, biosensor design, microbial treatments, consumer products, and new products containing CNT are expected in the future. CNT are hydrophobic and have a tendency to accumulate in sediments if they are released into aquatic ecosystems. Vertebrate studies have revealed concerns about the toxicity of carbon nanotubes, but there is very limited data on the toxic effects in aquatic invertebrate species. The aim of the present study is to determine the effects of MWCNT in Chironomus riparius at the molecular level, understanding its mode of action and analyzing the suitability of this species to monitor and assess risk of nanomaterials in aquatic ecosystems. To evaluate possible toxic effects caused by carbon nanotube environmental dispersion with regard to aquatic compartment, we study the mRNA levels of several related genes with DNA repairing mechanisms, cell stress response, cell apoptosis and cytoskeleton by Real-Time PCR and proposed a freshwater invertebrate C. riparius, which is a reference organism in aquatic toxicology. The obtained results show a transcriptional alteration of some genes included in this study, indicating that different cell processes are affected and providing one the first evidences in the mechanisms of action of MWCNT in invertebrates. Moreover, this data reinforces the need for further studies to assess the environmental risk of nanomaterial to prevent future damage to aquatic ecosystems.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Chironomidae/efeitos dos fármacos , Chironomidae/genética , Nanotubos de Carbono/toxicidade , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Organismos Aquáticos/genética , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/genética , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Larva/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Termogravimetria , Poluentes Químicos da Água/toxicidade
20.
Int J Biochem Cell Biol ; 107: 14-26, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30529400

RESUMO

ISG15 (interferon-stimulated gene 15) exists as free ISG15 or conjugated ISG15 modifying its target proteins via ISGylation. Few proteins have been identified and studied as ISGylation targets, and their relevance is not completely clear. Here, we isolated ISG15 from MDA-MB-231 breast cancer cells using immunoprecipitation and identified non-muscle myosin IIA (NMIIA) using mass spectrometry as endogenously associated with ISG15. The identification of NMIIA as an ISG15-interacting protein was important, because levels of NMIIA mRNA were not deregulated in all breast cancers, and because our in silico analysis indicated that NMIIA was the target of different posttranslational modifications and had an interactome associated with cytoskeletal remodeling. Furthermore, our experimental assays of co-immunoprecipitation and immunofluorescence confirmed that ISG15 was covalently associated with NMIIA in the cytoplasm of breast cancer cells and that interferon γ (IFN-γ) increased this association without alterations in the NMIIA levels. Thus, NMIIA ISGylation is regulated by IFN-γ, and this modification may modulate its interactions with proteins that remodel the cytoskeleton, participating in the growth and progression of mammary tumors.


Assuntos
Neoplasias da Mama/patologia , Citocinas/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Processamento de Proteína Pós-Traducional , Ubiquitinas/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA