RESUMO
With few exceptions-such as myxobacteria, filamentous cyanobacteria, and actinomycetes (Rokas, Annu Rev Genet 42:235-251, 2008)-bacteria are defined as unicellular prokaryotes or single, self-sufficient cells containing all the genetic material necessary for their physiology and reproduction, while maintaining none or a minimum of intracellular organelles for pathway compartmentalization. The latter is therefore primarily achieved through the assembly of macromolecular complexes that can secure spatiotemporal control of a plethora of physiological processes, such as precise midcell division, assembly of diverse motility organelles and chemotaxis sensory arrays, metabolic channeling of substrates and toxic intermediates, localized signal transduction via soluble intracellular second messengers or the secretion of signaling molecules, competition effectors, and extracellular matrix components (Cornejo et al., Curr Opin Cell Biol 26:132-138, 2014; de Lorenzo et al., FEMS Microbiol Rev 39:96-119, 2015; Krasteva and Sondermann, Nat Chem Biol 13:350-359, 2017; Abidi et al., FEMS Microbiol Rev 46(2):fuab051, 2022; Altinoglu et al., PLoS Genet 18:e1009991, 2022). Oftentimes, pathway-specific components are encoded by clusters of co-regulated genes (Lawrence, Annu Rev Microbiol 57:419-440, 2003), which not only allows for facilitated macrocomplex assembly and rapid physiological adaptation in cellulo but can also be harnessed for the recombinant coexpression and purification of intact multicomponent nanomachines for structure-function studies of medical or biotechnological relevance. Important examples are synthase-dependent exopolysaccharide secretion systems that provide key biofilm matrix components in a vast variety of free-living or pathogenic species and at the molecular level secure the physical conduit, protection, chemical modifications and energetics for the processive extrusion of hydrophilic biopolymers through the complex bacterial envelope (Abidi et al., FEMS Microbiol Rev 46(2):fuab051, 2022). Here, we present cloning, expression, and purification strategies for the structure-function studies of macromolecular assemblies involved in bacterial cellulose secretion (Bcs) (Krasteva et al. Nat Commun 8:2065, 2017; Abidi et al. Sci Adv 7:eabd8049, 2021) that can be adapted to a variety of multicomponent cytosolic or membrane-embedded assemblies.
Assuntos
Actinobacteria , Adaptação Fisiológica , Biotecnologia , Celulose , Clonagem MolecularRESUMO
The cell wall plays an important structural role for bacteria and is intimately tied to a variety of critical processes ranging from growth and differentiation to pathogenesis. Our understanding of cell wall biogenesis is primarily derived from a relatively small number of heavily studied model organisms. Consequently, these processes can only be inferred for the vast majority of prokaryotes, especially among groups of uncharacterized and/or genetically intractable organisms. Recently, we developed the first tractable genetic system for Parvimonas micra, which is a ubiquitous Gram-positive pathobiont of the human microbiome involved in numerous types of inflammatory infections as well as a variety of malignant tumors. P. micra is also the first, and currently only, member of the entire Tissierellia class of the Bacillota phylum in which targeted genetic manipulation has been demonstrated. Thus, it is now possible to study cell wall biogenesis mechanisms within a member of the Tissierellia, which may also reveal novel aspects of P. micra pathobiology. Herein, we describe a procedure for cloning-independent genetic manipulation of P. micra, including allelic replacement mutagenesis and genetic complementation. The described techniques are also similarly applicable for the study of other aspects of P. micra pathobiology and physiology.
Assuntos
Firmicutes , Microbiota , Humanos , Firmicutes/genética , Mutagênese , Clonagem MolecularRESUMO
The rabbitfish Siganus canaliculatus was the first marine teleost reported to possess long-chain polyunsaturated fatty acid (LC-PUFA) biosynthetic ability, and the related molecular mechanisms have been well clarified. Here, we investigated the LC-PUFA biosynthesis capability of the congeneric rabbitfish S. guttatus. First, cDNAs of genes for four key enzymes related to LC-PUFA biosynthesis, namely Δ6Δ5 fatty acyl desaturase (fads2) (1335 bp; 445 aa), Δ4 fads2 (1335 bp; 445 aa), and elongation of very long chain fatty acid proteins (elovl5) (873 bp; 291 aa) and elovl4 (906 bp; 302 aa) were cloned from the liver of S. guttatus. The Δ6Δ5 fads2, Δ4 fads2 and elovl5 genes showed high expression in brain, liver, spleen, gallbladder, and intestine but relatively low expression in eye, whereas the elovl4 gene showed specific and high expression in eye. During embryogenesis, mRNA expression of Δ4 fads2 and elovl4 was detected from 8 h post-fertilization (hpf) and then maintained a high level to 24 hpf, while mRNA expression of Δ6Δ5 fads2 and elovl5 reached a peak at 14 hpf but then declined. In addition, ambient salinity (32 ppt and 20 ppt) exerted some regulatory influence on the expression of the four genes during embryogenesis. The levels of C18 PUFA precursors and, especially, PUFA and DHA of the embryos, decreased from 17 hpf to 24 hpf. These results suggested that S. guttatus, similar to the congeneric S. canaliculatus, would have capability for LC-PUFA biosynthesis, which is still not activated at the fertilized egg stage.
Assuntos
Peixes , Salinidade , Animais , Especificidade de Órgãos , Peixes/genética , Peixes/metabolismo , Ácidos Graxos Insaturados/metabolismo , Clonagem Molecular , Desenvolvimento Embrionário/genética , RNA Mensageiro/metabolismoRESUMO
The human meiotic recombination 11 (MRE11) protein has been recognized as a cytosolic double-stranded DNA sensor that plays a critical role in the induction of type I interferon (IFN). However, the properties and functions of avian MRE11 in the innate immune response are not well understood. In this study, we cloned and characterized the full-length sequence of duck MRE11 (duMRE11) from duck embryo fibroblasts (DEFs) for the first time. The duMRE11 gene encoded a protein of 703 amino acid residues and showed the highest sequence similarity to goose MRE11. Quantitative real-time PCR analysis showed that duMRE11 was ubiquitously expressed in all tissues examined, with particularly high expression levels in the bursa of Fabricius, thymus and spleen. Overexpression of duMRE11 in DEFs led to the activation of IRF1 and NF-κB and the production of IFN-ß. Furthermore, knockdown of duMRE11 significantly reduced the activity of the IFN-ß promoter in poly(dA:dT)-stimulated or duck enteritis virus (DEV)-infected DEFs. Antiviral analysis showed that duMRE11 effectively suppressed the replication of DEV at different time points after infection. These results indicate that duMRE11 plays an important role in the induction of innate immune responses in ducks.
Assuntos
Patos , Interferon beta , Animais , Humanos , Interferon beta/metabolismo , Imunidade Inata/genética , NF-kappa B/metabolismo , Clonagem Molecular , FibroblastosRESUMO
The dysregulation of glucose-G6P (glucose-6-phosphate) interconversion is thought to be one of the main reasons for the low glucose disposal of carnivorous fish, but is not yet well understood in largemouth bass Micropterus salmoides (LMB). In this study, the full length cDNA sequences of genes encoding glucokinase (Gck, catalyzing glucose phosphorylation) and glucose-6-phosphatase catalytic subunit (G6pc, catalyzing glucose dephosphorylation) were cloned by the RACE method from the liver of LMB. Subsequently, the distribution of g6pc and gck as well as their transcriptional regulation by dietary starch levels and a glucose load were investigated. Only one gck gene was identified, while the tandem duplication of g6pca.1 gene was named as g6pca.2 in LMB. The full cDNA sequences of g6pca.1, g6pca.2 and gck in LMB were 1585, 1813 and 2115 bp in length, encoding 478, 352 and 359 amino acids, respectively. Gck was predicted to contain two hexokinase domains, an ATP-binding domain and multiple functional sites, while G6pca.1 and G6pca.2 contained nine transmembrane helices, a PAP2 (type-2 phosphatidic acid phosphatase) domain and multiple functional amino acid sites. Both g6pca.1 and g6pca.2 were predominantly distributed in the liver and to some extent in the intraperitoneal fat, intestine and pyloric caeca, while gck was mainly transcribed in the liver and to some extent in the heart, intestine and brain. Both feeding a high starch diet and a glucose load stimulated the mRNA expression of gck in the liver of LMB. An increase of dietary starch from 9% to 14% down-regulated the transcription of g6pca.1 in the liver of LMB. However, both the mRNA levels of hepatic g6pca.1 and g6pca.2 were sharply up-regulated in LMB during 1-3 h after a glucose load. Overall, the results of this study suggested that the functions of G6pc (G6pca.1 and G6pca.2) and Gck in LMB were highly conserved in evolution. Though hepatic glucose-G6P interconversion was well regulated at the transcript level in LMB fed high starch diets, a futile cycle between glucose and G6P was induced in the liver after a glucose load.
Assuntos
Bass , Glucoquinase , Animais , Glucoquinase/genética , Glucoquinase/metabolismo , Glucose/metabolismo , Bass/fisiologia , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Distribuição Tecidual , DNA Complementar/genética , DNA Complementar/metabolismo , Domínio Catalítico , Carboidratos da Dieta/metabolismo , Amido/metabolismo , RNA Mensageiro/metabolismo , Clonagem MolecularRESUMO
Preparation of expression vectors using conventional cloning strategies is laborious and not suitable for the design of metabolic pathways or enzyme cascades, which usually requires the preparation of a vector library to identify productive clones. Recently, Modular Cloning as a novel cloning technique in synthetic biology has been developed. Modular Cloning relies on Golden Gate assembly and supports preparation of individual expression vectors in one-step and one-pot reactions, thus allowing rapid generation of vector libraries. A number of Modular Cloning toolkits for specific applications has been established, providing a collection of distinct genetic elements such as promoters, ribosome binding sites and tags, that can be combined individually in one-step using defined fusion sites. Modular Cloning has been successfully applied to generate various strains for producing value-added compounds. This was achieved by orchestrating complex pathways involving up to 20 enzymes. Due to the novelty of the genetic approach, industrial applications are still rare. In addition, some applications are limited due to the lack of high-throughput screening methods. This shifts the bottleneck from library preparation to screening capacity and needs to be addressed by future developments to pave the path for the establishment of Modular Cloning in industrial applications.
Assuntos
Ensaios de Triagem em Larga Escala , Biologia Sintética , Sítios de Ligação , Regiões Promotoras Genéticas , Clonagem MolecularRESUMO
Understanding the structure and function of key proteins located within biological membranes is essential for fundamental knowledge and therapeutic applications. Robust cell systems allowing their actual overexpression are required, among which stands the methylotrophic yeast Pichia pastoris. This system proves highly efficient in producing many eukaryotic membrane proteins of various functions and structures at levels and quality compatible with their subsequent isolation and molecular investigation. This article describes a set of basic guidelines and directions to clone and select recombinant P. pastoris clones overexpressing eukaryotic membrane proteins. Illustrative results obtained for a panel of mammalian membrane proteins are presented, and hints are given on a series of experimental parameters that may substantially improve the amount and/or the functionality of the expressed proteins. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Designing and cloning a P. pastoris expression vector Basic Protocol 2: Integrative transformation of P. pastoris and selection of recombinant clones Basic Protocol 3: Culturing transformed P. pastoris for membrane protein expression Basic Protocol 4: Yeast cell lysis and membrane preparation Basic Protocol 5: Immunodetection of expressed membrane proteins: western blot Alternate Protocol 1: Immunodetection of expressed membrane proteins: dot blot Alternate Protocol 2: Immunodetection of expressed membrane proteins: yeastern blot Basic Protocol 6: Activity assay: ligand-binding analysis of an expressed GPCR.
Assuntos
Proteínas de Membrana , Pichia , Animais , Pichia/genética , Pichia/metabolismo , Clonagem Molecular , Mamíferos/metabolismoRESUMO
The cloning and characterization of the complete coding sequence of the Clarias magur SRD5A1 (CmSRD5A1) gene, which encodes an enzyme responsible for regulating steroid levels by converting testosterone into 5α-dihydrotestosterone (DHT), have been successfully achieved. DHT plays a vital role in enabling the complete expression of testosterone's actions in neuroendocrine tissues. The ORF of the full-length cDNA sequence of SRD5A1 was 795 bp, translating into 265 amino acids, with a total length of 836 bp including UTRs. Like other vertebrates, the signal peptide analysis revealed that SRD5A1 is a non-secretory protein, and hydropathy profiles indicated that it is hydrophobic in nature. The 3D structure of CmSRD5A1 sequence generated above was predicted using highly accurate AlphaFold 2 in Google Colab online platform. CmSRD5A1 contains seven transmembrane helices connected by six loops, with the N-termini located on the periplasmic side and C-termini on the cytosolic side. Structural superimposition with known bacterial and human SRD5As showed very high structural similarity. The electrostatic potential calculation and surface analysis of CmSRD5A1 revealed the presence of a large cavity with two openings one highly electropositive towards the cytosolic side and another relatively neutral towards the transmembrane region. The structural comparison revealed that the electropositive side of the cavity should bind to NADPH and the steroid hormone in the hydrophobic environment. Polar residues binding to NADPH are highly conserved and the same as known strictures. The conserved residues involved in hydrogen bonding with the ketone group at C-3 in the steroids hence fevering Δ4 double-bond reduction are identified as E66 and Y101. Our findings showed that SRD5A1 expression was lower during the spawning phase than the preparatory phase in female fish, while the administration of Ovatide (a GnRH analogue) resulted in up-regulation of expression after 6 h of injection in the ovary. In males, the lowest expression was observed during the preparatory phase and peaked at 16 h post- Ovatide injection in the testis. The expression of SRD5A1 in the brain of female fish was slightly higher during the Ovatide stimulation phase than the spawning phase. This study represents the first report on the cloning and characterization of the full-length cDNA of SRD5A1 in Indian catfish.
Assuntos
Peixes-Gato , Colestenona 5 alfa-Redutase , Masculino , Animais , Feminino , Humanos , Colestenona 5 alfa-Redutase/metabolismo , Peixes-Gato/genética , Peixes-Gato/metabolismo , DNA Complementar/genética , NADP/metabolismo , Sequência de Aminoácidos , Testosterona/metabolismo , Di-Hidrotestosterona/metabolismo , Esteroides/metabolismo , Clonagem Molecular , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismoRESUMO
Diterpenoid alkaloids (DAs) are major pharmacologically active ingredients of Aconitum vilmorinianum, an important medicinal plant. Cytochrome P450 monooxygenases (P450s) are involved in the DA biosynthetic pathway, and the electron transfer reaction of NADPH-cytochrome P450 reductase (CPR) with P450 is the rate-limiting step of the P450 redox reaction. Here, we identified and characterized two homologs of CPR from Aconitum vilmorinianum. The open reading frames of AvCPR1 and AvCPR2 were found to be 2103 and 2100 bp, encoding 700 and 699 amino acid residues, respectively. Phylogenetic analysis characterized both AvCPR1 and AvCPR2 as class II CPRs. Cytochrome c and ferricyanide could be reduced with the recombinant proteins of AvCPR1 and AvCPR2. Both AvCPR1 and AvCPR2 were expressed in the roots, stems, leaves, and flowers of A. vilmorinianum. The expression levels of AvCPR1 and AvCPR2 were significantly increased in response to methyl jasmonate (MeJA) treatment. The yeasts co-expressing AvCPR1/AvCPR2/SmCPR1 and CYP76AH1 all produced ferruginol, indicating that AvCPR1 and AvCPR2 can transfer electrons to CYP76AH1 in the same manner as SmCPR1. Docking analysis confirmed the experimentally deduced functional activities of AvCPR1 and AvCPR2 for FMN, FAD, and NADPH. The functional characterization of AvCPRs will be helpful in disclosing molecular mechanisms relating to the biosynthesis of diterpene alkaloids in A. vilmorinianum.
Assuntos
Aconitum , Clonagem Molecular , Sequência de Aminoácidos , NADP , Filogenia , Sistema Enzimático do Citocromo P-450RESUMO
We summarize how skeletal muscle and lung developmental biology fields have been bridged to benefit from mouse genetic engineering technologies and to explore the role of fetal breathing-like movements (FBMs) in lung development, by using skeletal muscle-specific mutant mice. It has been known for a long time that FBMs are essential for the lung to develop properly. However, the cellular and molecular mechanisms transducing the mechanical forces of muscular activity into specific genetic programs that propel lung morphogenesis (development of the shape, form and size of the lung, its airways, and gas exchange surface) as well as its differentiation (acquisition of specialized cell structural and functional features from their progenitor cells) are only starting to be revealed. This chapter is a brief synopsis of the cumulative findings from that ongoing quest. An update on and the rationale for our recent International Mouse Phenotyping Consortium (IMPC) search is also provided.
Assuntos
Engenharia , Engenharia Genética , Animais , Camundongos , Diferenciação Celular , Clonagem Molecular , PulmãoRESUMO
Bacterial cytochromes P450 (P450s) have been recognized as attractive targets for biocatalysis and protein engineering. They are soluble cytosolic enzymes that demonstrate higher stability and activity than their membrane-associated eukaryotic counterparts. Many bacterial P450s possess broad substrate spectra and can be produced in well-known expression hosts like Escherichia coli at high levels, which enables quick and convenient mutant libraries construction. However, the majority of bacterial P450s interacts with two auxiliary redox partner proteins, which significantly increase screening efforts. We have established recombinant E. coli cells for screening of P450 variants that rely on two separate redox partners. In this chapter, a case study on construction of a selective P450 to synthesize a precursor of several chemotherapeutics, (-)-podophyllotoxin, is described. The procedure includes co-expression of P450 and redox partner genes in E. coli with subsequent whole-cell conversion of the substrate (-)-deoxypodophyllotoxin in 96-deep-well plates. By omitting the chromatographic separation while measuring mass-to-charge ratios specific for the substrate and product via MS in so-called multiple injections in a single experimental run (MISER) LC/MS, the analysis time could be drastically reduced to roughly 1 min per sample. Screening results were verified by using isolated P450 variants and purified redox partners.
Assuntos
Sistema Enzimático do Citocromo P-450 , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Clonagem Molecular , Oxirredução , Proteínas Recombinantes/metabolismoRESUMO
This study addresses the environmental risks associated with the accumulation of keratin waste from poultry, which is resistant to conventional protein degradation methods. To tackle this issue, microbial keratinases have emerged as promising tools for transforming resilient keratin materials into valuable products. We focus on the Metalloprotease (MetPr) gene isolated from novel Pichia kudriavzevii YK46, sequenced, and deposited in the NCBI GenBank database with the accession number OQ511281. The MetPr gene encodes a protein consisting of 557 amino acids and demonstrates a keratinase activity of 164.04 U/ml. The 3D structure of the protein was validated using Ramachandran's plot, revealing that 93% and 97.26% of the 557 residues were situated within the most favoured region for the MetPr proteins of template Pichia kudriavzevii strain 129 and Pichia kudriavzevii YK46, respectively. Computational analyses were employed to determine the binding affinities between the deduced protein and beta keratin. Molecular docking studies elucidated the optimal binding affinities between the metalloprotease (MetPr) and beta-keratin, yielding values of - 260.75 kcal/mol and - 257.02 kcal/mol for the template strains Pichia kudriavzevii strain 129 and Pichia kudriavzevii YK46, respectively. Subsequent molecular cloning and expression of the MetPr gene in E. coli DH5α led to a significantly higher keratinase activity of 281 ± 12.34 U/ml. These findings provide valuable insights into the potential of the MetPr gene and its encoded protein for keratin waste biotransformation, with implications for addressing environmental concerns related to keratinous waste accumulation.
Assuntos
Escherichia coli , Plumas , Animais , Plumas/metabolismo , Escherichia coli/genética , Simulação de Acoplamento Molecular , Pichia/metabolismo , Metaloproteases/metabolismo , Queratinas/genética , Queratinas/metabolismo , Clonagem MolecularRESUMO
BACKGROUND: The Notch signaling pathway plays a significant role in the gene regulatory network of development of vertebrate and invertebrate. However, as a ligand for the Notch signaling pathway, the mechanism of Delta in the development of Exopalaemon carinicauda is still unclear. METHODS AND RESULTS: The Delta's molecular characteristics, tissue distribution and their association with development in E. carinicauda were studied by RACE (rapid amplification of cDNA end), qRT-PCR (quantitative Real-time PCR) and SNP (single nucleotide polymorphism), respectively. The delta in E. carinicauda had a full-length cDNA of 2807 bp and its Delta of 808 amino-acid residue had the highest identity with the Delta of Homarus americanus (identity = 76.63%). Delta had the highest expression in the ovary, and its expression varied with different stages of embryonic, larval, and ovarian development. After delta RNA interference (with a highest interference efficiency of 66% at 24 h), the expression of Notch signaling pathway genes and developmental related genes was significantly reduced, and the ovarian development was significantly delayed. Further study found that there were 4 SNPs (ds1-4) in delta cDNA, of which two (ds2 T1521G caused a mutation Asn422Lys and ds3 G1674A caused a mutation Tyr473Cys in the EGF-like domain) were associated with the development of E. carinicauda. The Gonadosomatic Index (GSI) of the ds2 TT genotypes was 37.28% and 134.60% higher than E. carinicauda of GT and GG genotype respectively (P < 0.05). CONCLUSION: Our research indicated that delta was involved in the development of E. carinicauda and provided new insights for molecular breeding with SNP markers in E. carinicauda.
Assuntos
Palaemonidae , Polimorfismo de Nucleotídeo Único , Animais , Feminino , Sequência de Bases , Sequência de Aminoácidos , Polimorfismo de Nucleotídeo Único/genética , Clonagem Molecular , DNA Complementar/genética , Reação em Cadeia da Polimerase em Tempo Real , Palaemonidae/genética , FilogeniaRESUMO
NAC transcription factors play a significant role in plant stress responses. In this study, an NAC transcription factor, with a CDS of 792 bp encoding 263 amino acids, was cloned from Fagopyrum tataricum (L.) Gaertn. (F. tataricum), a minor cereal crop, which is rich in flavonoids and highly stress resistant. The transcription factor was named FtNAC10 (NCBI accession number: MK614506.1) and characterized as a member of the NAP subgroup of NAC transcriptions factors. The gene exhibited a highly conserved N-terminal, encoding about 150 amino acids, and a highly specific C-terminal. The resulting protein was revealed to be hydrophilic, with strong transcriptional activation activity. FtNAC10 expression occurred in various F. tataricum tissues, most noticeably in the root, and was regulated differently under various stress treatments. The over-expression of FtNAC10 in transgenic Arabidopsis thaliana (A. thaliana) seeds inhibited germination, and the presence of FtNAC10 enhanced root elongation under saline and drought stress. According to phylogenetic analysis and previous reports, our experiments indicate that FtNAC10 may regulate the stress response or development of F. tataricum through ABA-signaling pathway, although the mechanism is not yet known. This study provides a reference for further analysis of the regulatory function of FtNAC10 and the mechanism that underlies stress responses in Tartary buckwheat.
Assuntos
Fagopyrum , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Fagopyrum/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Clonagem Molecular , Aminoácidos/metabolismoRESUMO
Glycosidases are essential for the industrial production of functional oligosaccharides and many biotech applications. A novel ß-galactosidase/α-L-arabinopyranosidase (PpBGal42A) of the glycoside hydrolase family 42 (GH42) from Paenibacillus polymyxa KF-1 was identified and functionally characterized. Using pNPG as a substrate, the recombinant PpBGal42A (77.16 kD) was shown to have an optimal temperature and pH of 30 °C and 6.0. Using pNPαArap as a substrate, the optimal temperature and pH were 40 °C and 7.0. PpBGal42A has good temperature and pH stability. Furthermore, Na+, K+, Li+, and Ca2+ (5 mmol/L) enhanced the enzymatic activity, whereas Mn2+, Cu2+, Zn2+, and Hg2+ significantly reduced the enzymatic activity. PpBGal42A hydrolyzed pNP-ß-D-galactoside and pNP-α-L-arabinopyranoside. PpBGal42A liberated galactose from ß-1,3/4/6-galactobiose and galactan. PpBGal42A hydrolyzed arabinopyranose at C20 of ginsenoside Rb2, but could not cleave arabinofuranose at C20 of ginsenoside Rc. Meanwhile, the molecular docking results revealed that PpBGal42A efficiently recognized and catalyzed lactose. PpBGal42A hydrolyzes lactose to galactose and glucose. PpBGal42A exhibits significant degradative activity towards citrus pectin when combined with pectinase. Our findings suggest that PpBGal42A is a novel bifunctional enzyme that is active as a ß-galactosidase and α-L-arabinopyranosidase. This study expands on the diversity of bifunctional enzymes and provides a potentially effective tool for the food industry.
Assuntos
Paenibacillus polymyxa , Paenibacillus , Paenibacillus polymyxa/metabolismo , Lactose , Simulação de Acoplamento Molecular , Galactose , Glicosídeo Hidrolases/metabolismo , Clonagem Molecular , beta-Galactosidase/metabolismo , Concentração de Íons de Hidrogênio , Especificidade por Substrato , Paenibacillus/genética , Paenibacillus/metabolismoRESUMO
Peroxinectin, which has both peroxidase and cell adhesion activities, is crucial for invertebrate innate immune responses. In this study, we first cloned the full-length cDNA of Procambarus clarkii Peroxinectin (denoted as Pc-Px) and evaluated its immune roles. The Pc-Px cDNA had 2460 base pairs (bp) and 819 amino acid residues, including peroxidase domain and a putative integrin-binding motif. Pc-Px tissue expression was found to be ubiquitous in all examined tissues under normal physiological conditions. Pc-Px mRNA levels were highest in hemocytes, followed by gills and heart, and were lowest in the gut. The LPS, PGN, and Poly I:C treatment significantly up-regulated the transcript level of Pc-Px gene, but the expression trends were different after the microbials component treatments. Pc-Px knockdown using double-stranded RNA altered the transcription profiles of various immune-related genes in hepatopancreas of P. clarkii. Taken together, Pc-Px is an important component of immune system that likely to modulate immune function of P. clarkii via regulating immune-associated genes.
Assuntos
Astacoidea , Imunidade Inata , Animais , Astacoidea/genética , Sequência de Aminoácidos , DNA Complementar/genética , Imunidade Inata/genética , Clonagem Molecular , Peroxidases , Proteínas de ArtrópodesRESUMO
Marine lectins are a group of proteins that possess specific carbohydrate recognition and binding domains. They exhibit various activities, including antimicrobial, antitumor, antiviral, and immunomodulatory effects. In this study, a novel galectin-binding lectin gene named PFL-96 (GenBank: OQ561753.1) was cloned from Pinctada fucata. The PFL-96 gene has an open reading frame of 324 base pairs (bp) and encodes a protein comprising 107 amino acids. The protein has a molecular weight of 11.95 kDa and an isoelectric point of 9.27. It contains an N-terminal signal peptide and a galactose-binding lectin domain. The sequence identity to lectin proteins from fish, echinoderms, coelenterates, and shellfish ranges from 31.90 to 40.00 %. In the phylogenetic analysis, it was found that the PFL-96 protein is closely related to the lectin from Pteria penguin. The PFL-96 recombinant protein exhibited coagulation activity on 2 % rabbit red blood cells at a concentration of ≥8 µg/mL. Additionally, it showed significant hemolytic activity at a concentration of ≥32 µg/mL. The PFL-96 recombinant protein exhibited significant antibacterial activity against Bacillus subtilis, Staphylococcus aureus, Candida albicans, and Vibrio alginolyticus, with minimum inhibitory concentrations (MIC) of 4, 8, 16, and 16 µg/mL, respectively. The minimum bactericidal concentrations (MBC) were determined to be 8, 16, 32, and 32 µg/mL, respectively. Furthermore, the PFL-96 recombinant protein exhibited inhibitory effects on the proliferation of Hela tumor cells, HepG2 tumor cells, and C666-1 tumor cells, with IC50 values of 7.962, 8.007, and 9.502 µg/mL, respectively. These findings suggest that the recombinant protein PFL-96 exhibits significant bioactivity in vitro, contributing to a better understanding of the active compounds found in P. fucata. The present study establishes a fundamental basis for further investigation into the mechanism of action and structural optimization of the recombinant protein PFL-96. The aim is to develop potential candidates for antibacterial and anti-tumor agents.
Assuntos
Pinctada , Animais , Coelhos , Pinctada/metabolismo , Sequência de Aminoácidos , Filogenia , Clonagem Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/metabolismo , Galectinas/genética , Galectinas/metabolismo , Antibacterianos/metabolismoRESUMO
BACKGROUND: Chitin is the second largest carbon source on the earth, and chitosan oligosaccharides produced by its degradation have good application prospects in medicine, cosmetics, and agricultural production. OBJECTIVE: The discovery of a chitinase with high efficiency, high stability and clear degradation mechanism is of great help to promote the research of chitin derivatives and the development of the industrial chain. MATERIALS AND METHODS: In this experiment, a low-temperature chitinase-producing strain Photobacterium sp. LG-29 was isolated from deep-sea mud in the Bohai Sea, and studied by means of molecular biology, biochemistry and bioinformatics. RESULTS: Purification of chitinase yielded an enzyme solution with a concentration of 0.918 mg per mL and a specific activity of 21.036 U per mg. The optimum action temperature is 35 degree C, and it is still active at 4 degree C, showing low-temperature enzymatic activity, and also has certain thermal stability. The optimum pH is 8.0, and it maintains more than 70% of the enzyme activity at pH 11, which is very stable in an alkaline environment. Mn2+, Ca2+, and Mg2+ are the main activators of enzymes, while Fe2+, Zn2+, etc. have extremely significant inhibitory effects on enzymes. The Km and Kcat of chitinase were determined to be 269.05 µmol/L and 0.49 min-1, respectively. Chitinase PbCHI5 has both endonuclease and exonuclease activity. The theoretical pI of the enzyme is 4.16, which is a stable hydrophilic protein. CONCLUSION: This experiment laid a theoretical foundation for the development and utilization of new low-temperature chitinases. Doi.org/10.54680/fr23510110212.
Assuntos
Quitinases , Quitinases/genética , Temperatura , Photobacterium , Criopreservação , Quitina , Clonagem MolecularRESUMO
Fat deposition is a quantitative trait controlled by multiple genes in pigs. Using transcriptome sequencing, we previously reported that AACS is differentially expressed in the subcutaneous fat tissue of Dingyuan pigs with divergent backfat thickness. Therefore, with the aim of further characterizing this gene and its protein, we cloned the entire 3286-bp mRNA sequence of the porcine AACS, and the encoded AACS protein is a hydrophilic protein without a signal peptide or transmembrane sequence. Our findings suggested that among various tissues and pig breeds, AACS was highly expressed in subcutaneous fat. We have identified three completely linked SNP loci in the AACS gene: A-1759C, C-1683T, and A-1664G. The double luciferase activity test in the 5' flanking region indicated that the flanking region of AACS contained several active regulatory elements. The three linked SNPs that were identified in one of the critical active elements, and might serve as important molecular markers regulating backfat thickness. Finally, we observed that AACS overexpression inhibited the proliferation and differentiation of subcutaneous preadipocytes. Collectively, our results suggest that AACS inhibits subcutaneous fat deposition in pigs. This study provides a new molecular marker for understanding the mechanism of porcine fat deposition.
Assuntos
Gordura Subcutânea , Suínos/genética , Animais , Fenótipo , Clonagem MolecularRESUMO
Adiponectin (AdipoQ) is an adipokine involved in glucose homeostasis and lipid metabolism. In mammals, its role in appetite control is highly controversial. To shed light on the comparative aspects of AdipoQ in lower vertebrates, goldfish was used as a model to study feeding regulation by AdipoQ in fish species. As a first step, goldfish AdipoQ was cloned and found to be ubiquitously expressed at the tissue level. Using sequence alignment, protein modeling, phylogenetic analysis and comparative synteny, goldfish AdipoQ was shown to be evolutionarily related to its fish counterparts and structurally comparable with AdipoQ in higher vertebrates. In our study, recombinant goldfish AdipoQ was expressed in E. coli, purified by IMAC, and confirmed to be bioactive via activation of AdipoQ receptors expressed in HepG2 cells. Feeding in goldfish revealed that plasma levels of AdipoQ and its transcript expression in the liver and brain areas involved in appetite control including the telencephalon, optic tectum, and hypothalamus could be elevated by food intake. In parallel studies, IP and ICV injection of recombinant goldfish AdipoQ in goldfish was effective in reducing foraging behaviors and food consumption. Meanwhile, transcript expression of orexigenic factors (NPY, AgRP, orexin, and apelin) was suppressed with parallel rises in anorexigenic factors (POMC, CART, CCK, and MCH) in the telencephalon, optic tectum and/or hypothalamus. In these brain areas, transcript signals for leptin receptor were upregulated with concurrent drops in the NPY receptor and ghrelin receptors. In the experiment with IP injection of AdipoQ, transcript expression of leptin was also elevated with a parallel drop in ghrelin mRNA in the liver. These findings suggest that AdipoQ can act as a novel satiety factor in goldfish. In this case, AdipoQ signals (both central and peripheral) can be induced by feeding and act within the brain to inhibit feeding behaviors and food intake via differential regulation of orexigenic/anorexigenic factors and their receptors. The feeding inhibition observed may also involve the hepatic action of AdipoQ by modulation of feeding regulators expressed in the liver.