Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.012
Filtrar
1.
Gene ; 764: 145094, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-32860898

RESUMO

Long chain acyl-CoA synthetases (ACSLs), which drive the conversion of long chain fatty acid into acyl-CoA, an ingredient of lipid synthesis, have been well-acknowledged to exert an indispensable role in many metabolic processes in mammals, especially lipid metabolism. However, in chicken, the evolutionary characteristics, expression profiles and regulatory mechanisms of ACSL gene family are rarely understood. Here, we analyzed the genomic synteny, gene structure, evolutionary event and functional domains of the ACSL gene family members using bioinformatics methods. The spatiotemporal expression profiles of ACSL gene family, and their regulatory mechanism were investigated via bioinformatics analysis incorporated with in vivo and in vitro estrogen-treated experiments. Our results indicated that ACSL2 gene was indeed evolutionarily lost in the genome of chicken. Chicken ACSLs shared an AMP-binding functional domain, as well as highly conversed ATP/AMP and FACS signature motifs, and were clustered into two clades, ACSL1/5/6 and ACSL3/4, based on high sequence similarity, similar gene features and conversed motifs. Chicken ACSLs showed differential tissue expression distributions, wherein the significantly decreased expression level of ACSL1 and the significantly increased expression level of ACSL5 were found, respectively, the expression levels of the other ACSL members remained unchanged in the liver of peak-laying hens versus pre-laying hens. Moreover, the transcription activity of ACSL1, ACSL3 and ACSL4 was silenced and ACSL6 was activated by estrogen, but no response to ACSL5. In conclusion, though having highly conversed functional domains, chicken ACSL gene family is organized into two separate groups, ACSL1/5/6 and ACSL3/4, and exhibits varying expression profiles and estrogen effects. These results not only pave the way for better understanding the specific functions of ACSL genes in avian lipid metabolism, but also provide a valuable evidence for gene family characteristics.


Assuntos
Galinhas/genética , Coenzima A Ligases/genética , Evolução Molecular , Metabolismo dos Lipídeos/genética , Família Multigênica/genética , Acil Coenzima A/metabolismo , Animais , Células Cultivadas , Embrião de Galinha , Galinhas/crescimento & desenvolvimento , Galinhas/metabolismo , Coenzima A Ligases/metabolismo , Biologia Computacional , Estrogênios/metabolismo , Ácidos Graxos/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Hepatócitos , Cultura Primária de Células , Domínios Proteicos/genética , Análise Espaço-Temporal , Sintenia
2.
Nat Commun ; 11(1): 5424, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110073

RESUMO

Tumor necrosis commonly exists and predicts poor prognoses in many cancers. Although it is thought to result from chronic ischemia, the underlying nature and mechanisms driving the involved cell death remain obscure. Here, we show that necrosis in glioblastoma (GBM) involves neutrophil-triggered ferroptosis. In a hyperactivated transcriptional coactivator with PDZ-binding motif-driven GBM mouse model, neutrophils coincide with necrosis temporally and spatially. Neutrophil depletion dampens necrosis. Neutrophils isolated from mouse brain tumors kill cocultured tumor cells. Mechanistically, neutrophils induce iron-dependent accumulation of lipid peroxides within tumor cells by transferring myeloperoxidase-containing granules into tumor cells. Inhibition or depletion of myeloperoxidase suppresses neutrophil-induced tumor cell cytotoxicity. Intratumoral glutathione peroxidase 4 overexpression or acyl-CoA synthetase long chain family member 4 depletion diminishes necrosis and aggressiveness of tumors. Furthermore, analyses of human GBMs support that neutrophils and ferroptosis are associated with necrosis and predict poor survival. Thus, our study identifies ferroptosis as the underlying nature of necrosis in GBMs and reveals a pro-tumorigenic role of ferroptosis. Together, we propose that certain tumor damage(s) occurring during early tumor progression (i.e. ischemia) recruits neutrophils to the site of tissue damage and thereby results in a positive feedback loop, amplifying GBM necrosis development to its fullest extent.


Assuntos
Ferroptose , Glioblastoma/fisiopatologia , Neutrófilos/imunologia , Animais , Linhagem Celular Tumoral , Coenzima A Ligases/genética , Coenzima A Ligases/imunologia , Progressão da Doença , Feminino , Glioblastoma/genética , Glioblastoma/imunologia , Glioblastoma/patologia , Humanos , Ferro/imunologia , Camundongos , Camundongos Nus , Necrose , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/imunologia
3.
Am J Physiol Renal Physiol ; 319(4): F603-F611, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32830538

RESUMO

The acyl-CoA synthetase medium-chain family member 2 (Acsm2) gene was first identified and cloned by our group as a kidney-specific "KS" gene. However, its expression pattern and function remain to be clarified. In the present study, we found that the Acsm2 gene was expressed specifically and at a high level in normal adult kidneys. Expression of Acsm2 in kidneys followed a maturational pattern: it was low in newborn mice and increased with kidney development and maturation. In situ hybridization and immunohistochemistry revealed that Acsm2 was expressed specifically in proximal tubular cells of adult kidneys. Data from the Encyclopedia of DNA Elements database revealed that the Acsm2 gene locus in the mouse has specific histone modifications related to the active transcription of the gene exclusively in kidney cells. Following acute kidney injury, partial unilateral ureteral obstruction, and chronic kidney diseases, expression of Acsm2 in the proximal tubules was significantly decreased. In human samples, the expression pattern of ACSM2A, a homolog of mouse Acsm2, was similar to that in mice, and its expression decreased with several types of renal injuries. These results indicate that the expression of Acsm2 parallels the structural and functional maturation of proximal tubular cells. Downregulation of its expression in several models of kidney disease suggests that Acms2 may serve as a novel marker of proximal tubular injury and/or dysfunction.


Assuntos
Coenzima A Ligases/metabolismo , Células Epiteliais/metabolismo , Túbulos Renais Proximais/metabolismo , Lesão Renal Aguda/enzimologia , Lesão Renal Aguda/genética , Lesão Renal Aguda/patologia , Animais , Coenzima A Ligases/genética , Modelos Animais de Doenças , Células Epiteliais/patologia , Fibrose , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Túbulos Renais Proximais/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Insuficiência Renal Crônica/enzimologia , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Renina/genética , Renina/metabolismo , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia
4.
Plant Mol Biol ; 104(3): 327-337, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32761540

RESUMO

KEY MESSAGE: Psoralen synthase and angelicin synthase responsible for the formation of psoralen and angelicin in Peucedanum praeruptorum Dunn were identified and functionally characterized, respectively. Furanocoumarins were reported to possess several activities such as anticancer, anti-inflammatory and neuroprotective, and function as phytotoxin and allelochemical in plants. Furanocoumarins are the main bioactive ingredient in P. praeruptorum which is a commonly used traditional Chinese medicine. Phenylalanine ammonia lyase (PAL), 4-coumarate: CoA ligase (4CL), p-coumaroyl CoA 2'-hyfroxylase (C2'H) were cloned previously to elucidate the biosynthetic mechanism of coumarin lactone ring. However, the genes involved in complex coumarins in P. praeruptorum have not been explored. Herein, putative psoralen synthase CYP71AJ49 and angelicin synthase CYP71AJ51 were cloned from P. praeruptorum. In vivo and in vitro yeast assays were conducted to confirm their activities. Furthermore, the results of High Performance Liquid Chromatography-Electrospray Ionization Mass Spectrometry (HPLC-ESI-MS) verified that CYP71AJ49 catalyzed the conversion of marmesin to psoralen, and CYP71AJ51 catalyzed columbianetin to angelicin. Subsequently, the expression profile showed that CYP71AJ49 and CYP71AJ51 were easily affected by environmental conditions, especially UV and temperature. The genes tissue-specific expression and compounds tissue-specific distribution pattern indicated the existence of substance transport in P. praeruptorum. Phylogenetic analysis was conducted with 27 CYP71AJs, CYP71AJ49 and CYP71AJ51 were classified in I-4 and I-2, respectively. These results provide further insight to understand the biosynthetic mechanism of complex coumarins.


Assuntos
Apiaceae/enzimologia , Apiaceae/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Furocumarinas/metabolismo , Proteínas de Plantas/metabolismo , Apiaceae/genética , China , Cromatografia Líquida de Alta Pressão/métodos , Coenzima A Ligases/genética , Cumarínicos/metabolismo , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Furocumarinas/química , Furocumarinas/genética , Regulação da Expressão Gênica de Plantas , Cinética , Medicina Tradicional Chinesa , Fenilalanina Amônia-Liase/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray/métodos , Transcriptoma
5.
Nat Commun ; 11(1): 3941, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770005

RESUMO

Anaerobic oxidation of methane (AOM) mediated by anaerobic methanotrophic archaea (ANME) is the primary process that provides energy to cold seep ecosystems by converting methane into inorganic carbon. Notably, cold seep ecosystems are dominated by highly divergent heterotrophic microorganisms. The role of the AOM process in supporting heterotrophic population remains unknown. We investigate the acetogenic capacity of ANME-2a in a simulated cold seep ecosystem using high-pressure biotechnology, where both AOM activity and acetate production are detected. The production of acetate from methane is confirmed by isotope-labeling experiments. A complete archaeal acetogenesis pathway is identified in the ANME-2a genome, and apparent acetogenic activity of the key enzymes ADP-forming acetate-CoA ligase and acetyl-CoA synthetase is demonstrated. Here, we propose a modified model of carbon cycling in cold seeps: during AOM process, methane can be converted into organic carbon, such as acetate, which further fuels the heterotrophic community in the ecosystem.


Assuntos
Acetatos/metabolismo , Archaea/enzimologia , Proteínas de Bactérias/metabolismo , Coenzima A Ligases/metabolismo , Metano/metabolismo , Anaerobiose , Archaea/genética , Proteínas de Bactérias/genética , Ciclo do Carbono/fisiologia , Coenzima A Ligases/genética , Genoma Arqueal , Sedimentos Geológicos/microbiologia , Redes e Vias Metabólicas/genética , Oxirredução , Água do Mar/microbiologia
6.
DNA Cell Biol ; 39(9): 1573-1582, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32678986

RESUMO

Many immune cells participate in the pathogenesis of ulcerative colitis (UC), and fatty acid metabolism (FAM) is reported to supporting their cell-specific functions and proliferation, but the underlying mechanism is unclear. This study aimed to investigate the relationship between FAM and inflammation in colon tissues and identify potential therapeutic targets for regulating immune response. A total of 870 different expression genes (DEGs), 304 immunity-related DEGs, and 11 FAM-related DEGs were obtained, gene ontology analysis results showed that immune DEGs were significantly enriched in neutrophil migration, positive regulation of T cell activation. Fifteen types of immune cells were identified in inflamed colon tissues. Five FAM-related DEGs (ACOX1, ACSL4, ELOVL5, FADS2, and SCD) were highly correlated with immunity-related DEGs, and ACSL4, ELOVL5, and FADS2 were significantly upregulated in immune cells, while SCD is downregulated. Five FAM-related DEGs were highly correlated with immune cells. The study promotes the understanding of the pathogenesis of FAM in UC immune cells.


Assuntos
Colite Ulcerativa/genética , Ácidos Graxos/metabolismo , Redes Reguladoras de Genes , Transcriptoma , Acil-CoA Oxidase/genética , Acil-CoA Oxidase/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Colite Ulcerativa/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Linfócitos/metabolismo , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo
7.
Sheng Wu Gong Cheng Xue Bao ; 36(5): 899-907, 2020 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-32567273

RESUMO

Stearoyl-CoAdesaturase-1 (SCD-1) is a key regulator of monounsaturated fatty acid synthesis. It plays a vital role in lipid synthesis and metabolism. Ca²âº is an important cation in the body and plays an important role in the organism. The aims of this study were to investigate the correlation of SCD-1 gene overexpression with lipid indexes and calcium ion level. The pcDNA3.1 (+) + SCD-1 +Flag eukaryotic expression vector and cultured duck uterine epithelial cells were co-transfected. The overexpression of SCD-1 gene was measured using the Flag Label Detection Kit. Ca ions and lipid contents were detected through Fluo-3/AM Calcium Ion Fluorescence Labeling method and Lipid Measuring Kit, respectively. SCD-1 gene overexpression was negatively correlated with triglyceride (TG) and high-density lipoprotein cholesterol (HDL-C), and positively correlated with Ca ion, total cholesterol (TC), very low-density lipoprotein cholesterol (VLDL-C) and low density lipoprotein cholesterol (LDL-C) levels. Meanwhile, Ca ion was positively correlated with TG, LDL-C and HDL-C contents, and negatively correlated with TC and VLDL-C levels. Overexpression of SCD-1 gene could regulate Ca ion secretion, as well as lipid synthesis and transport in duck uterine epithelial cells.


Assuntos
Cálcio , Coenzima A Ligases , Células Epiteliais , Expressão Gênica , Lipídeos , Animais , Cálcio/metabolismo , Coenzima A Ligases/genética , Patos , Células Epiteliais/química , Células Epiteliais/enzimologia , Íons , Lipídeos/genética , Triglicerídeos/metabolismo
8.
J Hum Genet ; 65(8): 657-665, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32277175

RESUMO

Age-related macular degeneration (AMD) is the leading cause of irreversible blindness among the elderly population. To accelerate the understanding of the genetics of AMD, we conducted a meta-analysis of genome-wide association studies (GWAS) combining data from the International AMD Genomics Consortium AMD-2016 GWAS (16,144 advanced AMD cases and 17,832 controls), AMD-2013 GWAS (17,181 cases and 60,074 controls), and new data on 4017 AMD cases and 14,984 controls from Genetic Epidemiology Research on Aging study. We identified 12 novel AMD loci near or within C4BPA-CD55, ZNF385B, ZBTB38, NFKB1, LINC00461, ADAM19, CPN1, ACSL5, CSK, RLBP1, CLUL1, and LBP. We then replicated the associations of the novel loci in independent cohorts, UK Biobank (5860 cases and 126,726 controls) and FinnGen (1266 cases and 47,560 control). In general, the concordance in effect sizes was very high (correlation in effect size estimates 0.89), 11 of 12 novel loci were in the expected direction, 5 were associated with AMD at a nominal significance level, and rs3825991 (near gene RLBP1) after Bonferroni correction. We identified an additional 21 novel genes using a gene-based test. Most of the novel genes are expressed in retinal tissue and could be involved in the pathogenesis of AMD (i.e., complement, inflammation, and lipid pathways). These findings enhance our understanding of the genetic architecture of AMD and shed light on the biological process underlying AMD pathogenesis.


Assuntos
Degeneração Macular/genética , Proteínas ADAM/genética , Proteínas da Fase Aguda/genética , Antígenos CD55/genética , Proteínas de Transporte/genética , Coenzima A Ligases/genética , Proteína de Ligação ao Complemento C4b/genética , Bases de Dados Genéticas , Proteínas do Olho/genética , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Glicoproteínas de Membrana/genética , Subunidade p50 de NF-kappa B/genética , Proteínas Nucleares/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Proteínas Repressoras/genética , Retina/metabolismo , Retina/patologia
9.
Appl Environ Microbiol ; 86(10)2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32144106

RESUMO

In Lysobacter enzymogenes OH11, RpfB1 and RpfB2 were predicted to encode acyl coenzyme A (CoA) ligases. RpfB1 is located in the Rpf gene cluster. Interestingly, we found an RpfB1 homolog (RpfB2) outside this canonical gene cluster, and nothing is known about its functionality or mechanism. Here, we report that rpfB1 and rpfB2 can functionally replace EcFadD in the Escherichia coli fadD mutant JW1794. RpfB activates long-chain fatty acids (n-C16:0 and n-C18:0) for the corresponding fatty acyl-CoA ligase (FCL) activity in vitro, and Glu-361 plays critical roles in the catalytic mechanism of RpfB1 and RpfB2. Deletion of rpfB1 and rpfB2 resulted in significantly increased heat-stable antifungal factor (HSAF) production, and overexpression of rpfB1 or rpfB2 completely suppressed HSAF production. Deletion of rpfB1 and rpfB2 resulted in increased L. enzymogenes diffusible signaling factor 3 (LeDSF3) synthesis in L. enzymogenes Overall, our results showed that changes in intracellular free fatty acid levels significantly altered HSAF production. Our report shows that intracellular free fatty acids are required for HSAF production and that RpfB affects HSAF production via FCL activity. The global transcriptional regulator Clp directly regulated the expression of rpfB1 and rpfB2 In conclusion, these findings reveal new roles of RpfB in antibiotic biosynthesis in L. enzymogenes IMPORTANCE Understanding the biosynthetic and regulatory mechanisms of heat-stable antifungal factor (HSAF) could improve the yield in Lysobacter enzymogenes Here, we report that RpfB1 and RpfB2 encode acyl coenzyme A (CoA) ligases. Our research shows that RpfB1 and RpfB2 affect free fatty acid metabolism via fatty acyl-CoA ligase (FCL) activity to reduce the substrate for HSAF synthesis and, thereby, block HSAF production in L. enzymogenes Furthermore, these findings reveal new roles for the fatty acyl-CoA ligases RpfB1 and RpfB2 in antibiotic biosynthesis in L. enzymogenes Importantly, the novelty of this work is the finding that RpfB2 lies outside the Rpf gene cluster and plays a key role in HSAF production, which has not been reported in other diffusible signaling factor (DSF)/Rpf-producing bacteria.


Assuntos
Antifúngicos/metabolismo , Proteínas de Bactérias/genética , Coenzima A Ligases/genética , Lysobacter/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Coenzima A Ligases/química , Coenzima A Ligases/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Lysobacter/metabolismo , Oxirredução , Alinhamento de Sequência
10.
Food Chem ; 318: 126483, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32126468

RESUMO

In this study, the antioxidant activity of germinating Chinese wild rice was found to decline initially, after which it increased. The largest difference in antioxidant activity was observed between the 36-h (G36) and the 120-h germination (G120) stage. We further assessed the dynamic changes in metabolites, phenolic acids, flavonoids, and phenolic biosynthetic genes in germinating Chinese wild rice. Ultra-high performance liquid chromatography-triple quadrupole mass spectrometry revealed that 315 metabolites were up-regulated and 28 were down-regulated between G36 and G120. Levels of p-hydroxybenzoic acid, p-hydroxybenzaldehyde, vanillin, p-coumaric acid, ferulic acid, and epigallocatechin increased significantly during germination. Gene expression of four phenylalanine ammonia-lyases, one 4-coumarate-CoA ligase, one cinnamoyl-CoA reductase, two cinnamyl alcohol dehydrogenases, one chalcone synthase, and one chalcone isomerase was significantly higher at G120 than at G36 and promoted phenolics accumulation. This study elucidated the biochemical mechanisms involved in antioxidant activity and phenolic profile changes during Chinese wild rice germination.


Assuntos
Antioxidantes/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Fenóis/metabolismo , Proteínas de Plantas/genética , Poaceae/fisiologia , Aciltransferases/genética , Cromatografia Líquida de Alta Pressão , Coenzima A Ligases/genética , Germinação , Hidroxibenzoatos/metabolismo , Liases Intramoleculares/genética , Espectrometria de Massas , Oxirredutases/genética , Fenilalanina Amônia-Liase/genética , Poaceae/química , Poaceae/genética , Sementes/química , Sementes/genética , Sementes/fisiologia
11.
Mol Cell Biochem ; 468(1-2): 129-142, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32185674

RESUMO

Fibrosis process in the liver is a clinical condition established in response to chronic lesions and may be reversible in many situations. In this process, hepatic stellate cells (HSCs) activate and produce extracellular matrix compounds. During fibrosis, the lipid metabolism is also altered and contributes to the transdifferentiation of the HSCs. Thus, controlling lipid metabolism in HSCs is suggested as a method to control or reverse the fibrotic condition. In the search for therapies that modulate lipid metabolism and treat liver diseases, silymarin has been identified as a relevant natural compound to treat liver pathologies. The present study aimed to evaluate the cellular and molecular effects of silymarin in the transdifferentiation process of HSCs (LX-2) from activated phenotype to a more quiesced-like cells , also focusing on understanding the modulatory effects of silymarin on lipid metabolism of HSCs. In our analyses, 100 µM of silymarin reduced the synthesis of actin filaments in activated cells, the synthesis of the protein level of α-SMA, and other pro-fibrotic factors such as CTGF and PFGF. The concentration of 150 µM silymarin did not reverse the activation aspects of LX-2 cells. However, both evaluated concentrations of the natural compound protected the cells from the negative effects of dimethyl sulfoxide (DMSO). Furthermore, we evaluated lipid-related molecules correlated to the transdifferentiation process of LX-2, and 100 µM of silymarin demonstrated to control molecules associated with lipid metabolism such as FASN, MLYCD, ACSL4, CPTs, among others. In contrast, cellular incubation with 150 µM of silymarin increased the synthesis of long-chain fatty acids and triglycerides, regarding the higher presence of DMSO (v/v) in the solvent. In conclusion, silymarin acts as a hepatoprotective agent and modulates the pro-fibrogenic stimuli of LX-2 cells, whose effects depend on stress levels in the cellular environment.


Assuntos
Transdiferenciação Celular/efeitos dos fármacos , Células Estreladas do Fígado/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Cirrose Hepática/metabolismo , Substâncias Protetoras/farmacologia , Silimarina/farmacologia , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Linhagem Celular , Cromatografia Gasosa , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Dimetil Sulfóxido/toxicidade , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Células Estreladas do Fígado/enzimologia , Células Estreladas do Fígado/metabolismo , Humanos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/genética , Espectrometria de Massas , Triglicerídeos/metabolismo
12.
Gene ; 743: 144600, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32217139

RESUMO

Exploring molecular markers related to economic traits of livestock is of great significance to breeding. Long-chain fatty acid COA synthetase (ACSL) plays a crucial role in lipid synthesis and metabolism, which may affect animal growth. This study was to investigate the polymorphism of ACSL gene and its association with the growth trait of the donkey. Three insertions and two deletions were detected on the introns of ACSL3 gene in 450 Dezhou donkeys using polyacrylamide gel electrophoresis. After that, linkage disequilibrium analysis found that there was a strong linkage among ACSL3 gene loci in Dezhou donkey. Association analysis of growth traits showed that ACSL3-1, ACSL3-2, ACSL3-3, and ACSL3-4 loci were significantly associated with body weight and other growth traits (P < 0.05). Furthermore, five high frequency haplotypes were identified in Dezhou donkey, and haplotype combination analysis showed that among the first three high-frequency combinations, the low-frequency Hap3Hap3 (II-DD-II-DD-DD) homozygous haplotype combination was lower than the other two groups (Hap1Hap1, Hap5Hap5) in the chest width and chest depth (P < 0.05) of the female. Conclusively, the results of this study indicated that the polymorphisms in ACSL3 gene can be used as molecular markers to participate in donkey breeding.


Assuntos
Peso Corporal/genética , Coenzima A Ligases/genética , Equidae/genética , Haplótipos , Animais , Cruzamento , Equidae/crescimento & desenvolvimento , Feminino , Loci Gênicos/genética , Íntrons/genética , Desequilíbrio de Ligação , Masculino , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
13.
Artigo em Inglês | MEDLINE | ID: mdl-32126286

RESUMO

Alterations in fatty acid metabolism are associated with impaired glucose uptake in skeletal muscle. Long-chain acyl-CoA synthetase (Acsl) 6 is the one of the Acsl isoforms expressed in skeletal muscle although its role in muscle energy metabolism has not been studied. Thus, the aims of this study were to investigate the role of Acsl6 in fatty acid partitioning and glucose uptake in differentiated skeletal myotubes using a siRNA-mediated knockdown approach. Compared with cells transfected with control siRNA, cells transfected with Acsl6 siRNA exhibited reduced intracellular triacylglycerol (TAG) accumulation. The initial rate of [1­14C]­oleic acid uptake was not altered while the incorporation of [1­14C]­acetic acids into total cellular lipids decreased under Acsl6 knockdown (p < 0.05). In a metabolic labeling study, Acsl6 suppression decreased the incorporation of [1­14C]­oleic acids and [1­14C]­acetic acids into TAG and diacylglycerol (DAG) (p < 0.05). During the chase period of a pulse-chase experiment, Acsl6 suppression increased the intracellular free fatty acids and decreased the fatty acid channeling toward the reacylation of TAG (p < 0.05). The incorporation of the labeled fatty acids into acid-soluble metabolites, ß-oxidation product, was not changed under Acsl6 knockdown. Acsl6 siRNA decreased the insulin-induced uptake of [1­14C]­2­deoxyglucose (p < 0.05) but did not change the glucose uptake in the presence of acipimox, inhibitor of lipolysis. Suppression of Acsl6 deteriorated Akt phosphorylation and Glut4 mRNA expression in response to insulin. These results suggest that Acsl6 activates and channels fatty acids toward anabolic pathways and has a role in glucose and fatty acid cycling through the re-esterification of fatty acids in skeletal muscle.


Assuntos
Coenzima A Ligases/metabolismo , Ácidos Graxos/metabolismo , Glucose/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Animais , Linhagem Celular , Coenzima A Ligases/genética , Diglicerídeos/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Triglicerídeos/metabolismo
14.
Am J Pathol ; 190(4): 830-843, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32035059

RESUMO

The molecular mechanisms of prostate inflammation are unclear. We hypothesized that heme oxygenase 1 (HMOX1; HO-1), an enzyme responsible for degradation of heme to carbon monoxide, bilirubin, and iron, is an important regulator of inflammation and epithelial responses in the prostate. Injection of non-uropathogenic Escherichia coli (MG1655 strain) or phosphate-buffered saline into the urethra of mice led to increased numbers of CD45+ leukocytes and mitotic markers (phosphorylated histone H3 and phosphorylated ERK1/2) in the prostate glands. Leukocyte infiltration was elevated in the prostates harvested from mice lacking HO-1 in myeloid compartment. Conversely, exogenous carbon monoxide (250 ppm) increased IL-1ß levels and suppressed cell proliferation in the prostates. Carbon monoxide did not affect the number of infiltrating CD45+ cells in the prostates of E. coli- or phosphate-buffered saline-treated mice. Interestingly, immunomodulatory effects of HO-1 and/or carbon monoxide correlated with early induction of the long-chain acyl-CoA synthetase 1 (ACSL1). ACSL1 levels were elevated in response to E. coli treatment, and macrophage-expressed ACSL1 was in part required for controlling of IL-1ß expression and prostate cancer cell colony growth in soft agar. These results suggest that HO-1 and/or carbon monoxide might play a distinctive role in modulating prostate inflammation, cell proliferation, and IL-1ß levels in part via an ACSL1-mediated pathway.


Assuntos
Infecções por Escherichia coli/complicações , Heme Oxigenase-1/metabolismo , Heme/metabolismo , Inflamação/imunologia , Metabolismo dos Lipídeos/imunologia , Proteínas de Membrana/metabolismo , Próstata/imunologia , Animais , Bilirrubina/metabolismo , Monóxido de Carbono/metabolismo , Proliferação de Células , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Heme Oxigenase-1/genética , Inflamação/metabolismo , Inflamação/microbiologia , Inflamação/patologia , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Próstata/metabolismo , Próstata/microbiologia , Próstata/patologia , Transdução de Sinais
15.
Int J Mol Sci ; 21(5)2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32106618

RESUMO

Echinochloa crus-galli var. mitis has rarely been reported for herbicide resistance, and no case of quinclorac resistance has been reported so far. Synthetic auxin-type herbicide quinclorac is used extensively to control rice weeds worldwide. A long history of using quinclorac in Chinese rice fields escalated the resistance in E. crus-galli var. mitis against this herbicide. Bioassays in Petri plates and pots exhibited four biotypes that evolved into resistance to quinclorac ranking as JS01-R > AH01-R > JS02-R > JX01-R from three provinces of China. Ethylene production in these biotypes was negatively correlated with resistance level and positively correlated with growth inhibition. Determination of the related ethylene response pathway exhibited resistance in biotypes that recorded a decline in 1-aminocyclopropane-1-carboxylic acid (ACC) content, ACC synthase oxidase activities, and less inducible ACS and ACO genes expressions than the susceptible biotype, suggesting that there was a positive correlation between quinclorac resistance and ethylene biosynthesis inhibition. Cyanides produced during the ethylene biosynthesis pathway mainly degraded by the activity of ß-cyanoalanine synthase (ß-CAS). Resistant biotypes exhibited higher ß-CAS activity than the susceptible ones. Nucleotide changes were found in the EcCAS gene of resistant biotypes as compared to sensitive ones that caused three amino acid substitutions (Asn-105-Lys, Gln-195-Glu, and Gly-298-Val), resulting in alteration of enzyme structure, increased binding residues in the active site with its cofactor, and decreased binding free energy; hence, its activity was higher in resistant biotypes. Moreover, these mutations increased the structural stability of the enzyme. In view of the positive correlation between ethylene biosynthesis inhibition and cyanide degradation with resistance level, it is concluded that the alteration in ethylene response pathway or at least variation in ACC synthase and ACC oxidase enzyme activities-due to less relative expression of ACS and ACO genes and enhanced ß-CAS activity, as well as mutation and increased relative expression of EcCAS gene-can be considered as a probable mechanism of quinclorac resistance in E. crus-galli var. mitis.


Assuntos
Cianetos/metabolismo , Echinochloa/genética , Etilenos/biossíntese , Resistência a Herbicidas , Herbicidas/toxicidade , Quinolinas/toxicidade , Substituição de Aminoácidos , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Echinochloa/efeitos dos fármacos , Echinochloa/metabolismo , Ecótipo , Liases/genética , Liases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
BMC Plant Biol ; 20(1): 21, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31931712

RESUMO

BACKGROUND: Triacylglycerols (TAGs) are the main composition of plant seed oil. Long-chain acyl-coenzyme A synthetases (LACSs) catalyze the synthesis of long-chain acyl-coenzyme A, which is one of the primary substrates for TAG synthesis. In Arabidopsis, the LACS gene family contains nine members, among which LACS1 and LACS9 have overlapping functions in TAG biosynthesis. However, functional characterization of LACS proteins in rapeseed have been rarely reported. RESULTS: An orthologue of the Arabidopsis LACS2 gene (BnLACS2) that is highly expressed in developing seeds was identified in rapeseed (Brassica napus). The BnLACS2-GFP fusion protein was mainly localized to the endoplasmic reticulum, where TAG biosynthesis occurs. Interestingly, overexpression of the BnLACS2 gene resulted in significantly higher oil contents in transgenic rapeseed plants compared to wild type, while BnLACS2-RNAi transgenic rapeseed plants had decreased oil contents. Furthermore, quantitative real-time PCR expression data revealed that the expression of several genes involved in glycolysis, as well as fatty acid (FA) and lipid biosynthesis, was also affected in transgenic plants. CONCLUSIONS: A long chain acyl-CoA synthetase, BnLACS2, located in the endoplasmic reticulum was identified in B. napus. Overexpression of BnLACS2 in yeast and rapeseed could increase oil content, while BnLACS2-RNAi transgenic rapeseed plants exhibited decreased oil content. Furthermore, BnLACS2 transcription increased the expression of genes involved in glycolysis, and FA and lipid synthesis in developing seeds. These results suggested that BnLACS2 is an important factor for seed oil production in B. napus.


Assuntos
Brassica napus , Coenzima A Ligases , Sementes/metabolismo , Triglicerídeos/biossíntese , Brassica napus/genética , Brassica napus/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Ácidos Graxos/biossíntese , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Glicólise/genética , Metabolismo dos Lipídeos/genética , Óleos Vegetais/metabolismo , Plantas Geneticamente Modificadas/genética , Interferência de RNA , Triglicerídeos/genética
17.
Environ Microbiol ; 22(1): 329-342, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31691434

RESUMO

Thermoprofundales (Marine Benthic Group D archaea, MBG-D) is a newly proposed archaeal order and widely distributed in global marine sediment, and the members in the order may play a vital role in carbon cycling. However, the lack of pure cultures of these oeganisms has hampered the recognition of their catabolic roles. Here, by constructing high-quality metagenome-assembled genomes (MAGs) of two new subgroups of Thermoprofundales from hydrothermal sediment and predicting their catabolic pathways, we here provide genomic evidences that Thermoprofundales are capable of degrading aromatics via the phenylacetic acid (PAA) pathway. Then, the gene sequences of phenylacetyl-CoA ligase (PCL), a key enzyme for the PAA pathway, were searched in reference genomes. The widespread distribution of PCL genes among 14.9% of archaea and 75.9% of Thermoprofundales further supports the importance of the PAA pathway in archaea, particularly in Thermoprofundales where no ring-cleavage dioxygenases were found. Two PCLs from Thermoprofundales MAGs, PCLM8-3 and PCLM10-15 , were able to convert PAA to phenylacetyl-CoA (PA-CoA) in vitro, demonstrating the involvement of Thermoprofundales in aromatics degradation through PAA via CoA activation. Their acid tolerance (pH 5-7), high-optimum temperatures (60°C and 80°C), thermostability (stable at 60°C and 50°C for 48 h) and broad substrate spectra imply that Thermoprofundales are capable of transforming aromatics under extreme conditions. Together with the evidence of in situ transcriptional activities for most genes related to the aromatics pathway in Thermoprofundales, these genomic, and biochemical evidences highlight the essential role of this ubiquitous and abundant archaeal order in the carbon cycle of marine sediments.


Assuntos
Archaea/metabolismo , Sedimentos Geológicos/microbiologia , Fenilacetatos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Acetilcoenzima A/genética , Archaea/classificação , Archaea/genética , Ciclo do Carbono , Coenzima A Ligases/genética , Genômica , Fontes Hidrotermais/microbiologia , Metagenoma
18.
Plant Cell Rep ; 39(2): 207-215, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31713663

RESUMO

KEY MESSAGE: Benzoate-Coenzyme A ligase enzyme activity catalyzing the conversion of free benzoic acid to benzoyl-CoA was detected and biochemically characterized in the elicitor-treated pear cell cultures. Asian pear (Pyrus pyrifolia) is an economically and nutritionally important fruit-bearing tree of the subtribe Malinae. Upon pathogen attack, pears produce unique benzoate-derived biphenyl phytoalexins. The upstream biosynthesis of the biphenyl in Malinae is still incomplete. Previously, protein preparations from yeast extract-treated pear cultures were able to convert L-phenylalanine to cinnamic acid catalyzed by the activity of the phenylalanine ammonia lyase. The same extract was able to perform a C2 side-chain cleavage of cinnamic acid to benzaldehyde followed by oxidation of the latter to benzoic acid owing to the molecularly-undefined benzaldehyde synthase and benzaldehyde dehydrogenase activities, respectively. The biosynthesis of biphenyls starts with benzoate-Coenzyme A ligase (BZL), which converts benzoic acid to benzoyl-CoA. Subsequently, the previously-defined biphenyl synthase uses benzoyl-CoA to form the biphenyls. The current study reports the first time detection and characterization of BZL activity in elicitor-treated pear cell cultures. The preferred substrate was benzoic acid (Km = 62 ± 4 µM). Magnesium or manganese was prerequisite for the activity, which was enhanced by ~ 70% in the presence of potassium. Maximum BZL activity was observed 18 h post elicitation, which is in agreement with the coordinate induction reported for the enzymes in the same pathway. The induced BZL activity preceded the accumulation of biphenyls supporting its involvement in their biosynthesis.


Assuntos
Compostos de Bifenilo/metabolismo , Coenzima A Ligases/genética , Células Vegetais , Pyrus/citologia , Sesquiterpenos/metabolismo , Acil Coenzima A/metabolismo , Benzaldeídos/metabolismo , Ácido Benzoico/metabolismo , Cinamatos/metabolismo , Coenzima A Ligases/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Pyrus/metabolismo , Espectrometria de Massas em Tandem
19.
Nat Chem Biol ; 16(2): 197-205, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31844304

RESUMO

Phospholipids, the most abundant membrane lipid components, are crucial in maintaining membrane structures and homeostasis for biofunctions. As a structurally diverse and tightly regulated system involved in multiple organelles, phospholipid metabolism is complicated to manipulate. Thus, repurposing phospholipids for lipid-derived chemical production remains unexplored. Herein, we develop a Saccharomyces cerevisiae platform for de novo production of oleoylethanolamide, a phospholipid derivative with promising pharmacological applications in ameliorating lipid dysfunction and neurobehavioral symptoms. Through deregulation of phospholipid metabolism, screening of biosynthetic enzymes, engineering of subcellular trafficking and process optimization, we could produce oleoylethanolamide at a titer of 8,115.7 µg l-1 and a yield on glucose of 405.8 µg g-1. Our work provides a proof-of-concept study for systemically repurposing phospholipid metabolism for conversion towards value-added biological chemicals, and this multi-faceted framework may shed light on tailoring phospholipid metabolism in other microbial hosts.


Assuntos
Endocanabinoides/biossíntese , Engenharia Metabólica/métodos , Ácidos Oleicos/biossíntese , Fosfolipídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Acil Coenzima A/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Coenzima A Ligases/genética , Endocanabinoides/genética , Enzimas/genética , Enzimas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Lisofosfolipase/genética , Lisofosfolipase/metabolismo , Microrganismos Geneticamente Modificados , Monoacilglicerol Lipases/genética , Monoacilglicerol Lipases/metabolismo , Ácidos Oleicos/genética , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/metabolismo , Fosfolipídeos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Biochem J ; 476(22): 3521-3532, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31688904

RESUMO

Plants have evolved the ability to derive the benzenoid moiety of the respiratory cofactor and antioxidant, ubiquinone (coenzyme Q), either from the ß-oxidative metabolism of p-coumarate or from the peroxidative cleavage of kaempferol. Here, isotopic feeding assays, gene co-expression analysis and reverse genetics identified Arabidopsis 4-COUMARATE-COA LIGASE 8 (4-CL8; At5g38120) as a contributor to the ß-oxidation of p-coumarate for ubiquinone biosynthesis. The enzyme is part of the same clade (V) of acyl-activating enzymes than At4g19010, a p-coumarate CoA ligase known to play a central role in the conversion of p-coumarate into 4-hydroxybenzoate. A 4-cl8 T-DNA knockout displayed a 20% decrease in ubiquinone content compared with wild-type plants, while 4-CL8 overexpression boosted ubiquinone content up to 150% of the control level. Similarly, the isotopic enrichment of ubiquinone's ring was decreased by 28% in the 4-cl8 knockout as compared with wild-type controls when Phe-[Ring-13C6] was fed to the plants. This metabolic blockage could be bypassed via the exogenous supply of 4-hydroxybenzoate, the product of p-coumarate ß-oxidation. Arabidopsis 4-CL8 displays a canonical peroxisomal targeting sequence type 1, and confocal microscopy experiments using fused fluorescent reporters demonstrated that this enzyme is imported into peroxisomes. Time course feeding assays using Phe-[Ring-13C6] in a series of Arabidopsis single and double knockouts blocked in the ß-oxidative metabolism of p-coumarate (4-cl8; at4g19010; at4g19010 × 4-cl8), flavonol biosynthesis (flavanone-3-hydroxylase), or both (at4g19010 × flavanone-3-hydroxylase) indicated that continuous high light treatments (500 µE m-2 s-1; 24 h) markedly stimulated the de novo biosynthesis of ubiquinone independently of kaempferol catabolism.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Coenzima A Ligases/metabolismo , Peroxissomos/metabolismo , Ubiquinona/análogos & derivados , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Coenzima A Ligases/genética , Regulação da Expressão Gênica de Plantas , Estrutura Molecular , Oxirredução , Peroxissomos/química , Peroxissomos/genética , Ubiquinona/biossíntese , Ubiquinona/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA