Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.600
Filtrar
1.
PLoS One ; 15(7): e0236992, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32735603

RESUMO

We wanted to investigate whether Isoniazid (INH) can directly stimulate activation of hepatic stellate cells (HSCs) and enhance production of collagen. Treatment of human hepatic stellate cell line LX2 with or without 5µM INH for 24 to 72 hours was performed to look into content of cytochrome P450 2E1 (CYP2E1), activity of NADPH oxidase (NOX) and intracellular oxidative stress. Protein level as well as mRNA expression of alpha smooth muscle actin (α-SMA) and collagen1A1 (COL1A1) were assessed by western blot and real time PCR. In some experiments pyrazole (PY) was pre-treated to LX2 cells to induce CYP2E1 prior to INH treatment. CYP2E1 level as well as NOX activity was gradually increased with INH treatment in LX2 cells till 72 hours. Following 72 hours of INH exposure, intracellular glutathione (GSH) level was found to be reduced compared to control (p<0.01) and showed expression of α-SMA, indicating activation of HSC. We could not found any change in collagen expression in this experimental study. Pyrazole (PY) pre-treatment to LX2 cells caused significant increase in cellular CYP2E1 content associated with increase of NOX, intracellular reactive oxygen species (ROS), and expression of α-SMA and collagen1 after INH exposure. CYP2E1 is present in insignificant amount in HSCs and INH treatment could not induce collagen expression, although altered cellular oxidant levels was observed. But in LX2 cells when CYP2E1 was over-expressed by PY, INH administration provokes oxidative stress mediated stellate cells activation along with collagen type I expression.


Assuntos
Colágeno Tipo I , Citocromo P-450 CYP2E1 , Isoniazida/farmacologia , Linhagem Celular , Colágeno Tipo I/efeitos dos fármacos , Colágeno Tipo I/metabolismo , Citocromo P-450 CYP2E1/efeitos dos fármacos , Citocromo P-450 CYP2E1/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Humanos , NADPH Oxidases/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
2.
Int J Nanomedicine ; 15: 4943-4956, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764927

RESUMO

Background: Hydroxyapatite (HA) [Ca5(PO4)3(OH)] is a naturally occurring calcium phosphate which makes up 60-70% of the dry weight of human bones. Nano-scale HA particles are increasingly being used as carriers for controlled and targeted delivery of bioactive agents like drugs, proteins, and nucleic acids due to their high porosity, negative charge, and biodegradability. Purpose: Although much effort has been devoted to understanding the delivery kinetics and effects of the payloads in such carriers, a thorough understanding of the influence of the carriers themselves is lacking. Methods: HA particles (300 µg/mL) were administered to primary human dermal fibroblasts (HDFs). The uptake and intracellular localization of the particles were determined by flow cytometry, confocal imaging, and transmission electron microscopy (TEM). Immunological assays and PCR were performed to determine the levels of pro-inflammatory cytokines and collagens in cell lysates and media supernatant. Results: The current study explores the effects of poly-dispersed HA particles on primary HDFs as a model system. The majority of the particles were determined to range between 150 and 200 nm in diameter. Upon exposure to HA suspensions, primary HDFs internalized the particles by endocytosis within 6 hours of exposure, showing maximum uptake at 72 hours following which the particles were exocytosed by 168 hours. This correlated to reduced secretion of various pro-inflammatory and pro-collagenic cytokines. Biochemical analysis further revealed a reduction in Type I collagen expression and secretion. Conclusion: HA particles have an immune-modulatory effect on dermal fibroblasts and reduce collagen production, which may impact the integrity of the extracellular matrix (ECM). This study demonstrates the need to consider the secondary effects of particulate carriers like HA, beyond basic cytotoxicity, in the specific tissue environment where the intended function is to be realized.


Assuntos
Colágeno/metabolismo , Durapatita/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Pele/citologia , Colágeno Tipo I/metabolismo , Citocinas/metabolismo , Durapatita/química , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fibroblastos/citologia , Humanos
3.
Prostate ; 80(13): 1071-1086, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32687633

RESUMO

BACKGROUND: The emergence of reactive stroma is a hallmark of prostate cancer (PCa) progression and a potential source for prognostic and diagnostic markers of PCa. Collagen is a main component of reactive stroma and changes systematically and quantitatively to reflect the course of PCa, yet has remained undefined due to a lack of tools that can define collagen protein structure. Here we use a novel collagen-targeting proteomics approach to investigate zonal regulation of collagen-type proteins in PCa prostatectomies. METHODS: Prostatectomies from nine patients were divided into zones containing 0%, 5%, 20%, 70% to 80% glandular tissue and 0%, 5%, 25%, 70% by mass of PCa tumor following the McNeal model. Tissue sections from zones were graded by a pathologist for Gleason score, percent tumor present, percent prostatic intraepithelial neoplasia and/or inflammation (INF). High-resolution accurate mass collagen targeting proteomics was done on a select subset of tissue sections from patient-matched tumor or nontumor zones. Imaging mass spectrometry was used to investigate collagen-type regulation corresponding to pathologist-defined regions. RESULTS: Complex collagen proteomes were detected from all zones. COL17A and COL27A increased in zones of INF compared with zones with tumor present. COL3A1, COL4A5, and COL8A2 consistently increased in zones with tumor content, independent of tumor size. Collagen hydroxylation of proline (HYP) was altered in tumor zones compared with zones with INF and no tumor. COL3A1 and COL5A1 showed significant changes in HYP peptide ratios within tumor compared with zones of INF (2.59 ± 0.29, P value: .015; 3.75 ± 0.96 P value .036, respectively). By imaging mass spectrometry COL3A1 showed defined localization and regulation to tumor pathology. COL1A1 and COL1A2 showed gradient regulation corresponding to PCa pathology across zones. Pathologist-defined tumor regions showed significant increases in COL1A1 HYP modifications compared with COL1A2 HYP modifications. Certain COL1A1 and COL1A2 peptides could discriminate between pathologist-defined tumor and inflammatory regions. CONCLUSIONS: Site-specific posttranslational regulation of collagen structure by proline hydroxylation may be involved in reactive stroma associated with PCa progression. Translational and posttranslational regulation of collagen protein structure has potential for new markers to understand PCa progression and outcomes.


Assuntos
Colágeno/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Processamento de Proteína Pós-Traducional , Idoso , Sequência de Aminoácidos , Autoantígenos , Colágeno Tipo I/metabolismo , Colágeno Tipo III/metabolismo , Colágeno Tipo IV/metabolismo , Colágeno Tipo VIII/metabolismo , Progressão da Doença , Colágenos Fibrilares/metabolismo , Humanos , Hidroxilação , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/metabolismo , Colágenos não Fibrilares , Prolina/metabolismo , Próstata/metabolismo , Prostatectomia , Neoplasias da Próstata/diagnóstico por imagem , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
4.
Prostate ; 80(13): 1087-1096, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32609927

RESUMO

BACKGROUND: Prostate cancer is the second most common cancer worldwide. Tumor microenvironment is composed of activated fibroblasts, the so called carcinoma-associated fibroblasts (CAFs). They express high levels of α-smooth muscle actin (α-SMA) and type I collagen (COL1), and support proliferation and migration of tumor epithelial cells. Extracorporeal shock waves (ESWs), acoustic waves, are effective in the treatment of hypertrophic scars, due to their ability to modulate fibrosis. Based on this rationale, the study evaluated the effects of ESWs on CAF activation and the influence of ESW-treated CAFs on the growth and migration of epithelial prostatic carcinoma cells. METHODS: Primary cultures of CAFs (n = 10) were prepared from tumors of patients undergoing surgery for high-risk prostate carcinoma. CAFs were treated with ESWs (energy levels: 0.32 mJ/mm2 , 1000 pulses; 0.59 mJ/mm2 , 250 pulses). After treatment, the messenger RNA and protein levels of the stromal activation markers α-SMA and COL1 were determined. Subsequently, two different stabilized cell lines (PC3 and DU145) of androgen-resistant prostate cancer were treated with the conditioned media produced by ESW-treated CAFs. At different times, viability and migration of PC3 and DU145 cells were evaluated. Viability was also assessed by coculture system using CAFs and PC3 or DU145 cells. RESULTS: ESWs reduced gene expression and protein level of α-SMA and COL1 in CAFs. The treatment of PC3 and DU145 with conditioned media of ESW-treated CAFs determined a reduction of their growth and invasive potential. Coculture systems between ESW-treated CAFs and PC3 or DU145 cells confirmed the epithelial cell number reduction. CONCLUSIONS: This in vitro study demonstrates for the first time that ESWs are able to modulate the activation of prostate CAFs in favor of a less "reactive" stroma, with consequent slowing of the growth and migration of prostate cancer epithelial cells. However, only further studies to be performed in vivo will confirm the possibility of using this new therapy in patients with prostate cancer.


Assuntos
Tratamento por Ondas de Choque Extracorpóreas/métodos , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/terapia , Células Estromais/patologia , Actinas/genética , Actinas/metabolismo , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Progressão da Doença , Humanos , Masculino , Células PC-3 , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Estromais/metabolismo
5.
PLoS One ; 15(7): e0235553, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32614927

RESUMO

Aortic aneurysm refers to dilatation of the aorta due to loss of elasticity and degenerative weakening of its wall. A preventive role for osteoprotegerin (Opg) in the development of abdominal aortic aneurysm has been reported in the CaCl2-induced aneurysm model, whereas Opg was found to promote suprarenal aortic aneurysm in the AngII-induced ApoE knockout mouse aneurysm model. To determine whether there is a common underlying mechanism to explain the impact of Opg deficiency on the vascular structure of the two aneurysm models, we analyzed suprarenal aortic tissue of 6-month-old ApoE-/-Opg-/- mice after AngII infusion for 28 days. Less aortic dissection and aortic lumen dilatation, more adventitial thickening, and higher expression of collagen I and Trail were observed in ApoE-/-Opg-/- mice relative to ApoE-/-Opg+/+ mice. An accumulation of α-smooth muscle actin and vimentin double-positive myofibroblasts was noted in the thickened adventitia of ApoE-/-Opg-/- mice. Our results suggest that fibrotic remodeling of the aorta induced by myofibroblast accumulation might be an important pathological event which tends to limit AngII-induced aortic dilatation in ApoE -/-Opg-/- mice.


Assuntos
Túnica Adventícia/patologia , Aneurisma da Aorta Abdominal/patologia , Osteoprotegerina/genética , Túnica Adventícia/fisiologia , Angiotensina II/farmacologia , Animais , Aorta Abdominal/patologia , Aorta Abdominal/fisiologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Colesterol/sangue , Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Fibrose , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Osteoprotegerina/deficiência , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Regulação para Cima/efeitos dos fármacos
6.
J Vis Exp ; (160)2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32658183

RESUMO

Significant progress has been made in treating cancer with immunotherapy, although a large number of cancers remain resistant to treatment. A limited number of assays allow for direct monitoring and mechanistic insights into the interactions between tumor and immune cells, amongst which, T-cells play a significant role in executing the cytotoxic response of the adaptive immune system to cancer cells. Most assays are based on two-dimensional (2D) co-culture of cells due to the relative ease of use but with limited representation of the invasive growth phenotype, one of the hallmarks of cancer cells. Current three-dimensional (3D) co-culture systems either require special equipment or separate monitoring for invasion of co-cultured cancer cells and interacting T-cells. Here we describe an approach to simultaneously monitor the invasive behavior in 3D of cancer cell spheroids and T-cell cytotoxicity in co-culture. Spheroid formation is driven by enhanced cell-cell interactions in scaffold-free agarose microwell casts with U-shaped bottoms. Both T-cell co-culture and cancer cell invasion into type I collagen matrix are performed within the microwells of the agarose casts without the need to transfer the cells, thus maintaining an intact 3D co-culture system throughout the assay. The collagen matrix can be separated from the agarose cast, allowing for immunofluorescence (IF) staining and for confocal imaging of cells. Also, cells can be isolated for further growth or subjected to analyses such as for gene expression or fluorescence activated cell sorting (FACS). Finally, the 3D co-culture can be analyzed by immunohistochemistry (IHC) after embedding and sectioning. Possible modifications of the assay include altered compositions of the extracellular matrix (ECM) as well as the inclusion of different stromal or immune cells with the cancer cells.


Assuntos
Técnicas de Cocultura/métodos , Linfócitos T Citotóxicos/citologia , Comunicação Celular , Linhagem Celular Tumoral , Colágeno Tipo I/metabolismo , Matriz Extracelular/metabolismo , Humanos , Invasividade Neoplásica , Esferoides Celulares/patologia
7.
Gene ; 757: 144852, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32599019

RESUMO

Until now, various methods have been introduced to fabricate 3D scaffolds to provide a suitable substrate for cell growth and proliferation and subsequent use in tissue engineering to repair damaged tissues. The 3D scaffolds can simulate the natural cellular microenvironment well. Herein, the decellularized leaf spinach has been used which not only have no problems associated with artificial scaffolds, but they also do not cost significantly. Decellularized scaffolds surface properties were characterized by the investigation of scaffolds surface roughness, hydrophilicity, mechanical properties, size and shape of porosities and specific surface area. In the next step, osteogenic differentiation potential of bone marrow derived mesenchymal stem cells cultured on the scaffold and culture plate (as a control) was evaluated using alizarin staining and calcium content, alkaline phosphatase activity and bone related genes expression assays. The results indicated that the surface properties and shape of scaffold pores were effective in the stem cells binding, growth and proliferation. This higher biocompatibility due to the ideal surface hydrophilicity as well as high specific surface area due to the presence of a rough grid surface ultimately increased the efficiency of stem cell's bone differentiation. Taken together, it can be concluded that the decellularized spinach leaf scaffold, due to its easy availability, low prices and high efficiency, can be considered as a promising potential candidate for use as a proper substrate for stem cell growth and differentiation in bone tissue engineering.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Osteocalcina/genética , Folhas de Planta/química , Tecidos Suporte/química , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Biomineralização , Cálcio/metabolismo , Linhagem Celular , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Osteocalcina/metabolismo , Spinacia oleracea/química
8.
AAPS PharmSciTech ; 21(5): 175, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32556636

RESUMO

Wound-healing is a very complex and evolutionary process that involves a great variety of dynamic steps. Although different pharmaceutical agents have been developed to hasten the wound-healing process, the existing agents are still far from optimal. The present work aimed to prepare and evaluate the wound-healing efficacy of phenytoin-loaded copper nanoparticles (PHT-loaded CuNPs). CuNPs were biosynthesized using licorice aqueous extract. The prepared CuNPs were loaded with PHT by adsorption, characterized, and evaluated for wound-healing efficiency. Results showed that both plain and PHT-loaded CuNPs were monodisperse and exhibited a cubic and hexagonal morphology. The mechanism by which PHT was adsorbed on the surface of CuNPs was best fit by the Langmuir model with a maximum loaded monolayer capacity of 181 mg/g. The kinetic study revealed that the adsorption reaction followed the pseudo-second order while the thermodynamic parameters indicated that the adsorption process was physical in nature and endothermic, and occurred spontaneously. Moreover, the in vivo wound-healing activity of PHT-loaded CuNP impregnated hydroxypropylmethyl cellulose (HPMC) gel was carried out using an excisional wound model in rats. Data showed that PHT-loaded CuNPs accelerated epidermal regeneration and stimulated granulation and tissue formation in treated rats compared to controls. Additionally, quantitative real-time polymerase chain reaction (RT-PCR) analysis showed that lesions treated with PHT-loaded CuNPs were associated with a marked increase in the expression of dermal procollagen type I and a decrease in the expression of the inflammatory JAK3 compared to control samples. In conclusion, PHT-loaded CuNPs are a promising platform for effective and rapid wound-healing.


Assuntos
Cobre/farmacologia , Nanopartículas , Fenitoína/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Colágeno Tipo I/metabolismo , Janus Quinase 3/metabolismo , Masculino , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Pele/patologia
9.
Am J Physiol Renal Physiol ; 319(1): F93-F105, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32475133

RESUMO

The long noncoding RNA nuclear enriched abundant transcript 1 (NEAT1) has been reported to promote liver fibrosis progression. However, its molecular mechanism in renal fibrosis was not elucidated. In the present study, an in vitro model of renal fibrosis was established with HK-2 and HKC-8 cells treated with transforming growth factor-ß1. C57BL/6 mice were used for the in vivo model with unilateral ureteral obstruction. Our results indicated that NEAT1 and collagen type I levels were significantly upregulated, whereas miR-129 was obviously downregulated, in the progression of renal fibrosis. Meanwhile, NEAT1 knockdown or miR-129 overexpression inhibited collagen type I deposition, the epithelial-mesenchymal transition process, and the inflammation response to suppress renal fibrosis. NEAT1 directly targeted miR-129, and miR-129 directly bound to collagen type I. Downregulation of miR-129 reversed inhibition of renal fibrosis induced by NEAT1 silencing, and upregulation of collagen type I also reversed inhibition of renal fibrosis caused by miR-129 overexpression. NEAT1 knockdown alleviated renal fibrosis in mice subjected to unilateral ureteral obstruction. In conclusion, NEAT1 sponged miR-129 to modulate the epithelial-mesenchymal transition process and inflammation response of renal fibrosis by regulation of collagen type I. Our study indicates a novel role in the regulation of renal fibrosis and provides a new potential treatment target for renal fibrosis.


Assuntos
Colágeno Tipo I/metabolismo , Nefropatias/metabolismo , Rim/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Nitrogênio da Ureia Sanguínea , Linhagem Celular , Creatinina/sangue , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fibrose/metabolismo , Fibrose/patologia , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Nefropatias/patologia , Camundongos , MicroRNAs/genética , RNA Longo não Codificante/genética , Fator de Crescimento Transformador beta1/farmacologia
10.
Proc Natl Acad Sci U S A ; 117(19): 10131-10141, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32350144

RESUMO

Over the course of the aging process, fibroblasts lose contractility, leading to reduced connective-tissue stiffness. A promising therapeutic avenue for functional rejuvenation of connective tissue is reprogrammed fibroblast replacement, although major hurdles still remain. Toward this, we recently demonstrated that the laterally confined growth of fibroblasts on micropatterned substrates induces stem-cell-like spheroids. In this study, we embedded these partially reprogrammed spheroids in collagen-I matrices of varying densities, mimicking different three-dimensional (3D) tissue constraints. In response to such matrix constraints, these spheroids regained their fibroblastic properties and sprouted to form 3D connective-tissue networks. Interestingly, we found that these differentiated fibroblasts exhibit reduced DNA damage, enhanced cytoskeletal gene expression, and actomyosin contractility. In addition, the rejuvenated fibroblasts show increased matrix protein (fibronectin and laminin) deposition and collagen remodeling compared to the parental fibroblast tissue network. Furthermore, we show that the partially reprogrammed cells have comparatively open chromatin compaction states and may be more poised to redifferentiate into contractile fibroblasts in 3D-collagen matrix. Collectively, our results highlight efficient fibroblast rejuvenation through laterally confined reprogramming, which has important implications in regenerative medicine.


Assuntos
Diferenciação Celular , Reprogramação Celular , Fibroblastos/citologia , Medicina Regenerativa , Rejuvenescimento/fisiologia , Idoso , Animais , Proliferação de Células , Células Cultivadas , Colágeno Tipo I/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Humanos , Laminina/metabolismo , Camundongos , Células NIH 3T3 , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo
11.
Proc Natl Acad Sci U S A ; 117(21): 11450-11458, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32385162

RESUMO

Dynamic remodeling of the extracellular matrix affects many cellular processes, either directly or indirectly, through the regulation of soluble ligands; however, the mechanistic details of this process remain largely unknown. Here we propose that type I collagen remodeling regulates the receptor-binding activity of pigment epithelium-derived factor (PEDF), a widely expressed secreted glycoprotein that has multiple important biological functions in tissue and organ homeostasis. We determined the crystal structure of PEDF in complex with a disulfide cross-linked heterotrimeric collagen peptide, in which the α(I) chain segments-each containing the respective PEDF-binding region (residues 930 to 938)-are assembled with an α2α1α1 staggered configuration. The complex structure revealed that PEDF specifically interacts with a unique amphiphilic sequence, KGHRGFSGL, of the type I collagen α1 chain, with its proposed receptor-binding sites buried extensively. Molecular docking demonstrated that the PEDF-binding surface of type I collagen contains the cross-link-susceptible Lys930 residue of the α1 chain and provides a good foothold for stable docking with the α1(I) N-telopeptide of an adjacent triple helix in the fibril. Therefore, the binding surface is completely inaccessible if intermolecular crosslinking between two crosslink-susceptible lysyl residues, Lys9 in the N-telopeptide and Lys930, is present. These structural analyses demonstrate that PEDF molecules, once sequestered around newly synthesized pericellular collagen fibrils, are gradually liberated as collagen crosslinking increases, making them accessible for interaction with their target cell surface receptors in a spatiotemporally regulated manner.


Assuntos
Colágeno Tipo I/metabolismo , Proteínas do Olho/química , Proteínas do Olho/metabolismo , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/metabolismo , Serpinas/química , Serpinas/metabolismo , Sítios de Ligação , Dicroísmo Circular , Colágeno Tipo I/química , Cristalografia por Raios X , Dissulfetos/química , Lisina/química , Simulação de Acoplamento Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Transdução de Sinais , Análise Espaço-Temporal
12.
J Vis Exp ; (159)2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32420993

RESUMO

It has been shown that in vivo tissues are highly crowded by proteins, nucleic acids, ribonucleoproteins, polysaccharides, etc. The following protocol applies a macromolecular crowding (MMC) technique to mimic this physiological crowding through the addition of neutral polymers (crowders) to cell cultures in vitro. Previous studies using Ficoll or dextran as crowders demonstrate that the expression of collagen I and fibronectin in WI38 and WS-1 cell lines are significantly enhanced using the MMC technique. However, this technique has not been validated in primary hypertrophic scar-derived human skin fibroblasts (hHSFs). As hypertrophic scarring arises from the excessive deposition of collagen, this protocol aims to construct a collagen-rich in vitro hypertrophic scar model by applying the MMC technique with hHSFs. This optimized MMC model has been shown to possess more similarities with in vivo scar tissue compared to traditional 2-dimensional (2-D) cell culture systems. In addition, it is cost-effective, time-efficient, and ethically desirable compared to animal models. Therefore, the optimized model reported here offers an advanced "in vivo-like" model for hypertrophic scar-related studies.


Assuntos
Cicatriz Hipertrófica/patologia , Substâncias Macromoleculares/metabolismo , Modelos Biológicos , Animais , Células Cultivadas , Cicatriz Hipertrófica/genética , Colágeno Tipo I/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibronectinas , Regulação da Expressão Gênica , Humanos , Pele/patologia
13.
Am J Physiol Gastrointest Liver Physiol ; 318(6): G989-G999, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32363890

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is associated with testosterone deficiency. However, NAFLD patients generally do not respond to treatment with testosterone alone. We investigated the innate immune mechanisms underlying the effects of treatment with testosterone alone, estrogen alone, or combined testosterone and estrogen on high-fat diet (HFD)-induced NAFLD due to testosterone deficiency. Orchiectomized (OCX) male Rag2-/- mice were used as a model of testosterone deficiency. To assess NAFLD severity, NAFLD activity score (NAS) is adopted. Moreover, immunological change was analyzed by multicolor flow cytometry. Treatment with both testosterone and estrogen significantly decreased body weight to that of the sham mice/normal diet (ND). NAS and liver fibrosis in OCX-HFD mice were significantly deteriorated, and treatment with testosterone and estrogen improved same as sham-ND mice. HFD increased the ratio of both type 2 and 3 innate lymphoid cells (ILC2s and ILC3s) to CD45-positive cells in the liver. Treatment with testosterone alone decreased the ratio of ILC2 to CD45 but not the ILC3-to-CD45 ratio. Addition of estrogen to the treatment reduced the ratios of ILC2-to-CD45 and ILC3-to-CD45 to the same level observed in sham-HFD mice. Moreover, OCX-HFD mice had a decreased proportion of M2 macrophages compared with sham-ND mice. Treatment with testosterone alone did not restore the proportion of M2 macrophages; however, combination treatment with both estrogen and testosterone increased that to the same level as that in sham-HFD mice. Treatment with both testosterone and estrogen improves liver fibrosis and decreases ILC3 and increases M2 macrophage abundance in the liver.NEW & NOTEWORTHY The progression of nonalcoholic fatty liver disease (NAFLD) is associated with testosterone deficiency. NAFLD patients generally do not respond to treatment with testosterone alone. In animal studies, treatment with testosterone and estrogen reduced the ratios of ILC2:CD45 and ILC3:CD45 and increased M2 macrophages in liver. Our study suggests, based on our immunological data, that a combination of estrogen and testosterone may be clinically relevant for the treatment of NAFLD in patients with male menopause.


Assuntos
Estradiol/farmacologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Testosterona/farmacologia , Aminoácidos , Animais , Carcinoma Hepatocelular , Linhagem Celular Tumoral , Cromo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dieta Hiperlipídica/efeitos adversos , Regulação para Baixo , Estradiol/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Insulina , Cirrose Hepática , Neoplasias Hepáticas , Masculino , Camundongos , Camundongos Knockout , Ácidos Nicotínicos , Hepatopatia Gordurosa não Alcoólica/patologia , Orquiectomia , Células RAW 264.7 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores CCR2/genética , Receptores CCR2/metabolismo , Testosterona/administração & dosagem , Testosterona/deficiência , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
14.
Arterioscler Thromb Vasc Biol ; 40(7): e203-e213, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32460580

RESUMO

OBJECTIVE: Arteriovenous fistulae (AVF) are the optimal conduit for hemodialysis access but have high rates of primary maturation failure. Successful AVF maturation requires wall thickening with deposition of ECM (extracellular matrix) including collagen and fibronectin, as well as lumen dilation. TAK1 (TGFß [transforming growth factor-beta]-activated kinase 1) is a mediator of noncanonical TGFß signaling and plays crucial roles in regulation of ECM production and deposition; therefore, we hypothesized that TAK1 regulates wall thickening and lumen dilation during AVF maturation. Approach and Results: In both human and mouse AVF, immunoreactivity of TAK1, JNK (c-Jun N-terminal kinase), p38, collagen 1, and fibronectin was significantly increased compared with control veins. Manipulation of TAK1 in vivo altered AVF wall thickening and luminal diameter; reduced TAK1 function was associated with reduced thickness and smaller diameter, whereas activation of TAK1 function was associated with increased thickness and larger diameter. Arterial magnitudes of laminar shear stress (20 dyne/cm2) activated noncanonical TGFß signaling including TAK1 phosphorylation in mouse endothelial cells. CONCLUSIONS: TAK1 is increased in AVF, and TAK1 manipulation in a mouse AVF model regulates AVF thickness and diameter. Targeting noncanonical TGFß signaling such as TAK1 might be a novel therapeutic approach to improve AVF maturation.


Assuntos
Aorta/cirurgia , Derivação Arteriovenosa Cirúrgica , MAP Quinase Quinase Quinases/metabolismo , Grau de Desobstrução Vascular , Remodelação Vascular , Veia Cava Inferior/cirurgia , Animais , Aorta/diagnóstico por imagem , Aorta/enzimologia , Aorta/fisiopatologia , Células Cultivadas , Colágeno Tipo I/metabolismo , Células Endoteliais/enzimologia , Fibronectinas/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase Quinases/genética , Masculino , Mecanotransdução Celular , Camundongos Endogâmicos C57BL , Fosforilação , Estresse Mecânico , Veia Cava Inferior/diagnóstico por imagem , Veia Cava Inferior/enzimologia , Veia Cava Inferior/fisiopatologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
15.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 55(4): 253-258, 2020 Apr 09.
Artigo em Chinês | MEDLINE | ID: mdl-32268625

RESUMO

Objective: To study the effects of titania nanotubes with three different diameters on human gingival fibroblast (HGF). Methods: Three groups of specimens were prepared. Titania nanotubes with diameters of 30, 100, and 200 nm were synthesized on titanium surfaces through electrochemical anodization at 10, 30, and 60 V, respectively. Specimens were assigned into the three groups according to the diameter of the titania nanotubes. Pure smooth titanium without any treatment was set as the control group. HGF were seeded on the surface of the samples. The cell morphology on the specimens was observed with immunofluorescence staining after 2 h, the cell adhesion after 2 d and cell proliferation after 1, 3, and 7 d were detected using methyl thiazolyl tetrazolium assay, and the secretion of type Ⅰ collagen after 7 d was determined using enzyme-linked immunosorbent assay (each group has three samples for each experiment). Results: HGF on the control group exhibited an oval shape without noticeable extensions. HGF on titania nanotubes with a diameter of 30 nm and titania nanotubes with a diameter of 100 nm elongated further and were arranged orderly. HGF on titania nanotubes with a diameter of 200 nm were sparsely distributed without noticeable extensions. Titania nanotubes with a diameter of 30 nm and titania nanotubes with a diameter of 100 nm could enhance the cell attachment (0.603±0.021 and 0.773±0.045), and secretion of type Ⅰ collagen [(36.5±9.5) and (47.7±4.5) µg/ml, respectively] compared with the control group whose cell attactment was 0.427±0.057, and secretion of type Ⅰ collagen was (22.2±5.9) µg/ml (P<0.05). Furthermore, titania nanotubes with a diameter of 100 nm showed more cell attchment than titania nanotubes with a diameter of 30 nm did (P<0.05). Ttania nanotubes with a diameter of 200 nm clearly impaired the cell adhesion (0.250±0.046) and secretion of type Ⅰ collagen [(10.1±3.7) µg/ml] compared with the control group (P<0.05). At each time point, titania nanotubes with a diameter of 100 nm showed the highest cell proliferation, and the amount of cell proliferation was significantly higher than that on the titania nanotubes with a diameter of 200 nm and the control group at each time point (P<0.05), and was also significantly higher than that on the titania nanotubes with a diameter of 30 nm at day three (P<0.05). At each time point, titania nanotubes with a diameter of 200 nm showed the lowest cell proliferation, which was significantly lower than that on the control group at each time point (P<0.05), except that there was no significant difference in the amount of cell proliferation between titania nanotubes with a diameter of 200 nm and the control group at day one (P>0.05). Conclusions: Titania nanotubes with a diameter of 100 nm can improve the HGF attachment, proliferation, and secretion of type Ⅰ collagen.


Assuntos
Adesão Celular , Proliferação de Células , Fibroblastos/efeitos dos fármacos , Gengiva/efeitos dos fármacos , Nanotubos , Titânio/farmacologia , Colágeno Tipo I/metabolismo , Humanos , Propriedades de Superfície
16.
Life Sci ; 252: 117650, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32294475

RESUMO

It has been described that the cardiac dysfunction in the obesity model is because of collagen imbalance and that angiotensin II (Ang II) contributes to myocardial fibrosis. However, it remains undefined if changes in collagen I and III metabolism in obesity is due to the renin-angiotensin system (RAS) dysregulation from myocardium or excessive adipose tissue. AIM: This study aimed to verify whether the changes in myocardial collagen metabolism result from RAS deregulation of cardiac or adipose tissue in an obesity model. MAIN METHODS: Wistar rats were fed with control (CD) and high-fat (HFD) diets for 30 weeks. After the dietary intervention, animals were assigned to be treated with losartan at the 30 mg/kg/day dosage or kept untreated for an additional five weeks. KEY FINDINGS: HFD induced obesity, comorbidities, and cardiac collagen overexpression. The HFD group presented an increase in Ang II levels in both adipose tissue and plasma, as well as AT1 receptor expression in cardiac tissue. Of note, the myocardial Ang II was not changed in the HFD group. Losartan administration reduced some obesity-induced comorbidities regardless of weight loss. The AT1 receptor blockade also decreased the release of Ang II from adipose tissue and myocardial AT1 receptor and collagen. SIGNIFICANCE: It was seen that excessive adipose tissue is responsible for the exacerbated circulating Ang II, which induced cardiac fibrosis development.


Assuntos
Tecido Adiposo/metabolismo , Angiotensina II/metabolismo , Miocárdio/patologia , Obesidade/fisiopatologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Colágeno Tipo I/metabolismo , Colágeno Tipo III/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fibrose , Losartan/farmacologia , Masculino , Miocárdio/metabolismo , Ratos , Ratos Wistar , Sistema Renina-Angiotensina/fisiologia
17.
Am J Sports Med ; 48(7): 1727-1734, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32282227

RESUMO

BACKGROUND: Platelet-rich plasma (PRP) is widely used in sports medicine. However, neither preparation nor parameters for clinical application, such as concentration, timing, and number of applications, are standardized, making research and clinical utilization challenging. PURPOSE: To investigate the effect of varying doses of PRP powder in terms of different concentrations, timing, and number of applications on human chondrocytes in a reproducible cell culture model. STUDY DESIGN: Controlled laboratory study. METHODS: A standardized lyophilized platelet growth factor preparation (PRP powder) was used to stimulate human chondrocytes. Chondrocytes were cultivated for 2 weeks with different stimulation frequencies (2×, 3×, 6×) and different concentrations of PRP powders (0.5%, 1%, 5%). Cell proliferation and metabolic cell activity were analyzed on days 7 and 14. Phenotypic changes were visualized through live-dead staining. Chondrogenic differentiation was quantified with enzyme-linked immunosorbent assay to assess the synthesis of procollagen types 1 and 2. Furthermore, sulfated proteoglycans and glycosaminoglycans were analyzed. RESULTS: Human chondrocytes exhibited a significant dose- and time-dependent increase after 14 days in cell number (1% and 5% PRP powder vs unstimulated control: 7.95- and 15.45-fold increase, respectively; 2× vs 6× stimulation with 5% PRP powder: 4.00-fold increase) and metabolic cell activity (1% and 5% PRP powder vs unstimulated control: 3.27-fold and 3.58-fold change, respectively). Furthermore, cells revealed a significant increase in the amount of bone-specific procollagen type 1 (14 days, 1.94-fold) and sulfated glycosaminoglycans (14 days, 2.69-fold); however, no significant change was observed in the amount of cartilage-specific collagen type 2. CONCLUSION: We showed that chondrocytes exhibit a significant dose- and time-dependent increase in cell number and metabolic cell activity. The standardized use of growth factor concentrates in cell culture models can contribute to clinical knowledge in terms of dosage and timing of PRP applications. CLINICAL RELEVANCE: Problems with PRP, such as the absence of standardization, lack of consistency among studies, and unknown dosage, could be solved by using characterized PRP powder made by pooling and lyophilizing multiple platelet concentrates. The innovative PRP powder generates new possibilities for PRP research, as well as for the treatment of patients.


Assuntos
Condrócitos/citologia , Plasma Rico em Plaquetas , Técnicas de Cultura de Células , Diferenciação Celular , Proliferação de Células , Condrócitos/metabolismo , Condrogênese , Colágeno Tipo I/metabolismo , Colágeno Tipo II/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Plasma Rico em Plaquetas/metabolismo , Pós , Proteoglicanas/metabolismo
19.
PLoS One ; 15(3): e0229914, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32163452

RESUMO

Mesenchymal stromal/stem cells (MSCs) are increasingly employed for tissue regeneration, largely mediated through paracrine actions. Currently, extracellular vesicles (EVs) released by MSCs are major mediators of these paracrine effects. We evaluated whether rat-bone-marrow-MSC-derived EVs (rBMSCs-EVs) can ameliorate tendon injury in an in vivo rat model. Pro-collagen1A2 and MMP14 protein are expressed in rBMSC-EVs, and are important factors for extracellular-matrix tendon-remodeling. In addition, we found pro-collagen1A2 in rBMSC-EV surface-membranes by dot blot. In vitro on cells isolated from Achilles tendons, utilized as rBMSC -EVs recipient cells, EVs at both low and high doses induce migration of tenocytes; at higher concentration, they induce proliferation and increase expression of Collagen type I in tenocytes. Pretreatment with trypsin abrogate the effect of EVs on cell proliferation and migration, and the expression of collagen I. When either low- or high-dose rBMSCs-EVs were injected into a rat-Achilles tendon injury-model (immediately after damage), at 30 days, rBMSC-EVs were found to have accelerated the remodeling stage of tendon repair in a dose-dependent manner. At histology and histomorphology evaluation, high doses of rBMSCs-EVs produced better restoration of tendon architecture, with optimal tendon-fiber alignment and lower vascularity. Higher EV-concentrations demonstrated greater expression of collagen type I and lower expression of collagen type III. BMSC-EVs hold promise as a novel cell-free modality for the management of tendon injuries.


Assuntos
Tendão do Calcâneo/lesões , Vesículas Extracelulares/transplante , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Traumatismos dos Tendões/terapia , Tendão do Calcâneo/patologia , Animais , Colágeno Tipo I/metabolismo , Colágeno Tipo III/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Projetos Piloto , Ratos , Traumatismos dos Tendões/patologia , Cicatrização
20.
Stroke ; 51(5): 1624-1628, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32192404

RESUMO

Background and Purpose- Determinants for molecular and structural instability, that is, impending growth or rupture, of intracranial aneurysms (IAs) remain uncertain. To elucidate this, we endeavored to estimate the actual turnover rates of the main molecular constituent in human IA (collagen) on the basis of radiocarbon (14C) birth dating in relation to IA hemodynamics. Methods- Collagen turnover rates in excised human IA samples were calculated using mathematical modeling of 14C birth dating data of collagen in relation to risk factors and histological markers for collagen maturity/turnover in selected IA. Hemodynamics were simulated using image-based computational fluid dynamics. Correlation, logistic regression, and receiver operating characteristic analyses were performed. Results- Collagen turnover rates were estimated in 46 IA (43 patients); computational fluid dynamics could be performed in 20 IA (20 patients). The mean collagen turnover rate (γ) constituted 126% (±1% error) per year. For patients with arterial hypertension, γ was greater than 2600% annually, whereas γ was distinctly lower with 32% (±1% error) per year for patients without risk factors, such as smoking and hypertension. There was a distinct association between histological presence of rather immature collagen in human IA and the presence of modifiable risk factors. Spatial-temporal averaged wall shear stress predicted rapid collagen turnover (odds ratio, 1.6 [95% CI, 1.0-2.7]). Receiver operating characteristic analysis demonstrated a good test accuracy (area under the curve, 0.798 [95% CI, 0.598-0.998]) for average wall shear stress with a threshold ≥4.9 Pa for rapid collagen turnover. Conclusions- Our data indicate that turnover rates and stability of collagen in human IA are strongly associated with the presence of modifiable risk factors and aneurysmal hemodynamics. These findings underline the importance of strict risk factor modification in patients with unruptured IA. Future should include more detailed risk factor data to establish a more causal understanding of hemodynamics and the rupture risk of individual IA.


Assuntos
Aneurisma Roto/epidemiologia , Colágeno Tipo I/metabolismo , Hemodinâmica/fisiologia , Aneurisma Intracraniano/metabolismo , Adulto , Idoso , Colágeno/metabolismo , Feminino , Humanos , Hipertensão/epidemiologia , Aneurisma Intracraniano/epidemiologia , Aneurisma Intracraniano/patologia , Aneurisma Intracraniano/fisiopatologia , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Curva ROC , Datação Radiométrica , Medição de Risco , Fatores de Risco , Fumar/epidemiologia , Remodelação Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA