Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.004
Filtrar
1.
Cell Host Microbe ; 31(2): 199-212.e5, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36758520

RESUMO

Rapid advances in synthetic biology have fueled interest in engineered microorganisms that can diagnose and treat disease. However, designing bacteria that detect dynamic disease-associated biomarkers that then drive treatment remains difficult. Here, we have developed an engineered probiotic that noninvasively monitors and records inflammatory bowel disease (IBD) occurrence and progression in real time and can release treatments via a self-tunable mechanism in response to these biomarkers. These intelligent responsive bacteria for diagnosis and therapy (i-ROBOT) consists of E. coli Nissle 1917 that responds to levels of the inflammatory marker thiosulfate by activating a base-editing system to generate a heritable genomic DNA sequence as well as producing a colorimetric signal. Fluctuations in thiosulfate also drive the tunable release of the immunomodulator AvCystatin. Orally administering i-ROBOT to mice with colitis generated molecular recording signals in processed fecal and colon samples and effectively ameliorated disease. i-ROBOT provides a promising paradigm for gastrointestinal and other metabolic disorders.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Probióticos , Animais , Camundongos , Escherichia coli/genética , Tiossulfatos , Doenças Inflamatórias Intestinais/terapia , Colite/terapia , Colite/microbiologia , Bactérias , Probióticos/uso terapêutico
2.
Food Funct ; 14(4): 2188-2199, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36756938

RESUMO

Soluble oat fibers, including ß-glucan, have been shown to alter the gut microbiome composition and ameliorate DSS-induced colitis; however, the beneficial effect of soluble oat fiber on colonic inflammation is not yet fully understood. In this study, we demonstrated that soluble oat fibers ameliorate T cell-dependent colitis through the induction of peripherally induced regulatory T cells (pTregs). Soluble oat fibers elevated colonic butyrate production dose-dependently, which coincided with the overrepresentation of Faecalibaculum rodentium (an analog of butyrate-producing Holdemanella biformis) in the gut microbiome. Soluble oat fibers promoted the growth of F. rodentium and H. biformis even in vitro, and increased the concentration of butyrate in the culture supernatant. These results indicate that soluble oat fibers are an energy source for butyrate-producing bacteria and are a fermentation substrate. Soluble oat fibers increased the percentage of colonic pTregs and ameliorated the weight loss and inflammation in acute 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis; this may in part be mediated by the increase in IL-10-producing T cells. In conclusion, our results suggest that the administration of soluble oat fibers is a promising prebiotic treatment for the prevention of colitis mediated via altered gut microbiota composition and elevated butyrate production.


Assuntos
Avena , Colite , Animais , Ácido Trinitrobenzenossulfônico , Avena/química , Colite/microbiologia , Butiratos , Inflamação , Modelos Animais de Doenças
3.
Food Funct ; 14(4): 1909-1928, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36748225

RESUMO

Large preclinical evidence suggested that colitis was one of the risk factors for depression and probiotics were effective therapeutic agents to prevent the disease. The effect of Lacticaseibacillus rhamnosus Fmb14 on colitis-related depression-like behavior and its possible mechanisms were investigated. One week of DSS exposure led to the following changes in male C57BL/6N mice: a reduction in the movement distance from 2218 to 1299 cm, time in central areas from 23.6 s to 11.5 s, and time in the bright box from 217 s to 103 s, which were restored to 1816 cm, 18.4 s, and 181 s, respectively, with preadministration of Fmb14 for 8 weeks. All improvements provided by Fmb14 indicated a remarkable protective effect on depression-like behavior. Fmb14 first worked to repair intestinal barrier damage and the inflammatory response in the colon through ZO1 and Ocln enhancement and IL-1ß, NF-κB and IL-6 reduction, respectively. Second, dysbiosis of the gut microbiota was modulated by Fmb14, including reduction of Akkermansia (18.9% to 5.4%), Mucispirillum (0.6% to 0.1%) and Bifidobacterium (0.32% to 0.03%). Fmb14 supplementation ameliorates the brain inflammatory response via IL-18 and NF-κB reduction and improves the blood-brain barrier via increased levels of ZO1 and Ocln. Moreover, brain activity was facilitated by an increase in BDNF and dopamine and the downregulation of GABA in the Fmb14 group. As a consequence of the modulatory effect on the dysfunction of neurotransmitters and neuroinflammation, Fmb14 prevents neurodegeneration by inhibiting neuronal apoptosis and Nissl edema. In addition, the correlation analysis further demonstrated the preventative effect of Fmb14 on depression-like behavior through the microbiota-gut-brain axis. Together, these findings demonstrated the important role of Fmb14 in biological signal transduction over the microbiota-gut-brain axis to improve mood disorders.


Assuntos
Colite , Lacticaseibacillus rhamnosus , Camundongos , Masculino , Animais , Lacticaseibacillus , Depressão/prevenção & controle , Eixo Encéfalo-Intestino , NF-kappa B/metabolismo , Camundongos Endogâmicos C57BL , Colite/microbiologia , Encéfalo/metabolismo , Colo/metabolismo , Ingestão de Alimentos , Sulfato de Dextrana , Modelos Animais de Doenças
4.
Int J Biol Macromol ; 231: 123326, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36681226

RESUMO

Decreased bifidobacterial abundance, disrupted gut barrier function, dysregulated immune response and ulceration have been reported in the gut microbiota of IBD patients. Non-digestible carbohydrates with bifidogenic effect enrich the gut microbiota with Bifidobacterium spp. and could help in overcoming inflammatory gut conditions. In this study, the protective effect of Bifidobacterium longum Bif10 and Bifidobacterium breve Bif11; isomaltooligosaccharides (IMOS); Finger millet arabinoxylan (FM-AX) and their Synbiotic mix were evaluated against dextran sodium sulphate (DSS) induced UC in male Balb/c mice for 25 days. All the interventions ameliorated symptoms of colitis such as disease activity index (DAI), histological damage to the colon, gut-bacterial dysbiosis and inflammation. However, the synbiotic mix was more potent in amelioration of some of the parameters such as decreased TNF-α and lipocalin levels; increased anti-inflammatory markers (IL-10 and IL-22), and improved short chain fatty acids (SCFAs) levels in the cecum content. Furthermore, mouse colitis histological scoring (MCHI) also suggested the preventive role of synbiotic mix. All the dietary interventions aid in improving the DAI and immune parameters; restoration or regeneration of the altered selected gut bacteria, enhances the SCFA production, strengthens gut barrier, prevents gut inflammation and decreases the colonic MCHI score in DSS fed mice.


Assuntos
Bifidobacterium breve , Bifidobacterium longum , Colite Ulcerativa , Colite , Eleusine , Simbióticos , Camundongos , Masculino , Animais , Colite Ulcerativa/microbiologia , Dextranos/farmacologia , Colite/microbiologia , Colo , Inflamação/patologia , Bifidobacterium , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
5.
J Agric Food Chem ; 71(2): 1100-1112, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36604158

RESUMO

Glucoraphanin, rich in broccoli seed extract (BSE), is generally inert but can be biotransformed into active sulforaphane by gut bacteria. This study aimed to screen probiotics with glucoraphanin-metabolizing ability and explore the effect of a combination of strain and BSE on colitis induced by dextran sulfate sodium (DSS) in mice. Bifidobacterium longum CCFM1206 was isolated from healthy adult feces. Ultra-high-performance liquid chromatography Q Exactive mass spectrometry analysis revealed the presence of sulforaphane, sulforaphane-l-cysteine, and erucin in the BSE supernatant fermented by B. longum CCFM1206 in vitro. Combined and individual interventions of BSE and B. longum CCFM1206 were applied to explore the effects on DSS-induced colitis. The results suggested that the combination of B. longum CCFM1206 and BSE could ameliorate colitis symptoms, relieve colonic inflammatory reactions and oxidative stress, and protect the intestinal barrier in DSS-induced mice. In comparison to the BSE intervention alone, the combined intervention of B. longum CCFM1206 and BSE promoted the generation of sulforaphane and sulforaphane-N-acetylcysteine in mice colon from 220.88 ± 19.81 to 333.99 ± 36.46 nmol/g and from 232.04 ± 26.48 to 297.50 ± 40.08 nmol/g dry weight feces, respectively. According to quantitative reverse transcription polymerase chain reaction and immunohistochemical analysis, B. longum CCFM1206 and BSE effectively activated the transcription and expression of genes related to the Nrf2 signaling pathway. These results were intended to elucidate that probiotics could elevate the bioactivity of dietary phytochemicals in vivo, and the combination had potential for therapeutic treatment of colitis.


Assuntos
Bifidobacterium longum , Colite , Camundongos , Animais , Bifidobacterium longum/metabolismo , Dextranos/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/microbiologia , Colo/metabolismo , Biotransformação , Sulfatos/metabolismo , Sódio/metabolismo , Sulfato de Dextrana/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
6.
Gut Microbes ; 15(1): 2163838, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36656595

RESUMO

Conflicting evidence exists on the association between consumption of non-steroidal anti-inflammatory drugs (NSAIDs) and symptomatic worsening of inflammatory bowel disease (IBD). We hypothesized that the heterogeneous prevalence of pathobionts [e.g., adherent-invasive Escherichia coli (AIEC)], might explain this inconsistent NSAIDs/IBD correlation. Using IL10-/- mice, we found that NSAID aggravated colitis in AIEC-colonized animals. This was accompanied by activation of the NLRP3 inflammasome, Caspase-8, apoptosis, and pyroptosis, features not seen in mice exposed to AIEC or NSAID alone, revealing an AIEC/NSAID synergistic effect. Inhibition of NLRP3 or Caspase-8 activity ameliorated colitis, with reduction in NLRP3 inflammasome activation, cell death markers, activated T-cells and macrophages, improved histology, and increased abundance of Clostridium cluster XIVa species. Our findings provide new insights into how NSAIDs and an opportunistic gut-pathobiont can synergize to worsen IBD symptoms. Targeting the NLRP3 inflammasome or Caspase-8 could be a potential therapeutic strategy in IBD patients with gut inflammation, which is worsened by NSAIDs.


Assuntos
Anti-Inflamatórios não Esteroides , Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Animais , Camundongos , Anti-Inflamatórios não Esteroides/efeitos adversos , Caspase 8/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/microbiologia , Inflamassomos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/microbiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inibidores de Caspase/farmacologia , Escherichia coli/patogenicidade
7.
Food Funct ; 14(1): 122-132, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36510766

RESUMO

The seeds from Gleditsia sinensis Lam., a common ecologically and economically useful tree, have high economic and nutritional value. The protective effect of polysaccharides from Gleditsia sinensis Lam. seeds (ZJMP) against dextran sulfate sodium-induced colitis in mice was investigated in this study. ZJMP alleviated weight loss, reduced the disease activity index, prevented colon shortening, alleviated colonic tissue damage, and restored goblet cell secretion in colitic mice. Dietary ZJMP reduced proinflammatory cytokine overproduction in the colonic mucosa and serum, which was accompanied by suppression of NO levels and MPO and SOD activities. The addition of ZJMP increased the expression of Muc2 and tight junction proteins. Furthermore, dietary ZJMP partially reversed the alteration of gut microbiota in colitic mice by boosting the abundance of beneficial bacteria like Akkermansia, Lactobacillus, and Christensenella while lowering the abundance of harmful bacteria like Bacteroides, Prevotella, and Mucispirillum. Additionally, the decreased production of short-chain fatty acids in the colitic mice was recovered by ZJMP administration. The findings demonstrated the anti-inflammatory properties and mechanism of dietary ZJMP in the colon, which is essential for the sensible application of ZJMP in the prevention and amelioration of inflammation-related diseases as a nutritional supplement.


Assuntos
Colite , Microbioma Gastrointestinal , Gleditsia , Animais , Camundongos , Gleditsia/metabolismo , Sulfato de Dextrana/efeitos adversos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/microbiologia , Colo/metabolismo , Citocinas/metabolismo , Sementes/metabolismo , Homeostase , Bactérias/genética , Bactérias/metabolismo , Polissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
8.
Life Sci ; 314: 121309, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563843

RESUMO

AIMS: Inflammatory bowel disease is a complex, refractory disorder characterised by chronic gastrointestinal inflammation. Studies have reported that Lactobacillus reuteri alleviates gastrointestinal inflammation and strengthens the intestinal barrier. However, further biochemical and genetic studies are required to correctly understand the therapeutic potential of L. reuteri. MATERIALS AND METHODS: This study sought to further understand the anti-colitis effect of L. reuteri isolated from faecal samples of healthy locals by focusing on biochemical (immunological, mechanical, chemical and biological barriers) and genetic studies. KEY FINDINGS: In this study, we assessed and compared the benefits and efficacy of L. reuteri FYNDL13 and FCQHC8L in the treatment of colitis and found strain FYNDL13 to be superior to FCQHC8L in this regard. Compared with FCQHC8L, FYNDL13 was associated with more diverse and powerful regulatory pathways. Meanwhile, it encouraged butyric acid formation, upregulated antimicrobial peptide-coding gene transcription and prevented hyperimmune reactions on the intestinal periphery and within the intestine. Moreover, it enhanced the abundance of beneficial bacteria (Bifidobacterium, Akkermansia, Blautia and Oscillospira), thereby limiting the relative abundance of harmful bacteria (Bacteroides and Sutterella). Furthermore, the advantage might be attributed to metabolism- and defence system-related genomic characteristics. SIGNIFICANCE: Taken together, our study compares and summarizes a pathway paradigm of these two L. reuteri strains in reinforcing the intestinal barrier against colitis and identifies candidate genes responsible for microbiota-immune axis balance.


Assuntos
Colite , Microbioma Gastrointestinal , Limosilactobacillus reuteri , Probióticos , Camundongos , Animais , Probióticos/uso terapêutico , Colite/induzido quimicamente , Colite/terapia , Colite/microbiologia , Inflamação , Sulfato de Dextrana/toxicidade , Camundongos Endogâmicos C57BL
9.
Food Funct ; 14(1): 354-368, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36511157

RESUMO

B. longum subsp. infantis is a subspecies of Bifidobacterium longum, and very few strains are shown to have immunomodulatory effects. In the present study, the improvement of dextran sulphate sodium (DSS)-induced colitis by four B. longum subsp. infantis strains was compared. The results showed that B. longum subsp. infantis FJSYZ1M3 could significantly decrease disease activity index (DAI), inhibit weight loss and colon shortening, and attenuate colon tissue damage in DSS-induced colitis mice. And B. longum subsp. infantis FJSYZ1M3 intervention improved the integrity of intestinal tight junctions, relieved mucus layer damage and inhibited epithelial cell apoptosis, thereby maintaining the intestinal barrier. Additionally, B. longum subsp. infantis FJSYZ1M3 significantly affected the levels of inflammatory cytokines IL-6, IL-1ß, and IL-10 in the colon, thus relieving inflammation in colitis mice. Furthermore, B. longum subsp. infantis FJSYZ1M3 could ameliorate gut microbiota disturbance caused by DSS exposure and increase the level of butyric acid in cecal contents. In general, these findings suggested that B. longum subsp. infantis FJSYZ1M3 alleviated DSS-induced colitis by maintaining the intestinal barrier, regulating inflammatory cytokines, and modifying the gut microbiota.


Assuntos
Bifidobacterium longum , Colite , Microbioma Gastrointestinal , Camundongos , Animais , Citocinas , Bifidobacterium/fisiologia , Colite/induzido quimicamente , Colite/microbiologia , Bifidobacterium longum subspecies infantis , Colo , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
10.
J Nutr Biochem ; 113: 109254, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36572070

RESUMO

High-fat diets (HFDs) and frequent consumption of sugar-sweetened beverages (SSBs) are potential contributors to increasing inflammatory bowel disease (IBD) incidences. While HFDs have been implicated in mild intestinal inflammation, the role of sucrose in SSBs remains unclear. Therefore, we studied the role of SSBs in IBD pathogenesis in a mouse model and humans. C57BL6/J mice were given ad libitum access to a sucrose solution or plain water for 10 weeks, with or without an HFD. Interestingly, sucrose solution consumption alone did not induce gut inflammation in mice; however, when combined with an HFD, it dramatically increased the inflammation score, submucosal edema, and CD45+ cell infiltration. 16S ribosomal RNA gene-sequencing revealed that sucrose solution and HFD co-consumption significantly increased the relative abundance of IBD-related pathogenic bacteria when compared with HFD consumption. RNA sequencing and flow cytometry showed that co-consumption promoted pro-inflammatory cytokine and chemokine synthesis, dendritic-cell expansion, and IFN-γ+TNF-α+CD4+ and CD8+ T-cell activation. Fecal microbiota transplantation from HFD- and sucrose water-fed mice into gut-sterilized mice increased the susceptibility to dextran sulfate sodium-induced colitis in the recipient mice. Consistent herewith, high consumption of SSBs and animal fat-rich diets markedly increased systemic inflammation-associated IBD marker expression in humans. In conclusion, SSBs exacerbate HFD-induced colitis by triggering a shift of the gut microbiome into a pathobiome. Our findings provide new insights for the development of strategies aimed at preventing IBD.


Assuntos
Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Bebidas Adoçadas com Açúcar , Humanos , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Colite/induzido quimicamente , Colite/microbiologia , Doenças Inflamatórias Intestinais/etiologia , Inflamação , Sacarose/efeitos adversos , Água/efeitos adversos , Camundongos Endogâmicos C57BL , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças
11.
Front Immunol ; 13: 1036196, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531989

RESUMO

Introduction: Bacteroides vulgatus is one of the predominant Bacteroides species in the human gut and exerts a series of beneficial effects. The aim of this study was to investigate the protective role of B. vulgatus Bv46 in a dextran sodium sulfate (DSS) induced colitis mouse model. Methods: Female C57BL/6J mice were given 3% DSS in drinking water to induce colitis and simultaneously treated with B. vulgatus Bv46 by gavage for 7 days. Daily weight and disease activity index (DAI) of mice were recorded, and the colon length and histological changes were evaluated. The effects of B. vulgatus Bv46 on gut microbiota composition, fecal short chain fatty acids (SCFAs) concentration, transcriptome of colon, colonic cytokine level and cytokine secretion of RAW 264·7 macrophage cell line activated by the lipopolysaccharide (LPS) were assessed. Results and Discussion: B. vulgatus Bv46 significantly attenuated symptoms of DSS-induced colitis in mice, including reduced DAI, prevented colon shortening, and alleviated colon histopathological damage. B. vulgatus Bv46 modified the gut microbiota community of colitis mice and observably increased the abundance of Parabacteroides, Bacteroides, Anaerotignum and Alistipes at the genus level. In addition, B. vulgatus Bv46 treatment decreased the expression of colonic TNF-α, IL-1ß and IL-6 in DSS-induced mouse colitis in vivo, reduced the secretion of TNF-α, IL-1ß and IL-6 in macrophages stimulated by LPS in vitro, and downregulated the expression of Ccl19, Cd19, Cd22, Cd40 and Cxcr5 genes in mice colon, which mainly participate in the regulation of B cell responses. Furthermore, oral administration of B. vulgatus Bv46 notably increased the contents of fecal SCFAs, especially butyric acid and propionic acid, which may contribute to the anti-inflammatory effect of B. vulgatus Bv46. Supplementation with B. vulgatus Bv46 serves as a promising strategy for the prevention of colitis.


Assuntos
Colite , Microbioma Gastrointestinal , Animais , Feminino , Humanos , Camundongos , Bacteroides , Colite/induzido quimicamente , Colite/microbiologia , Colite/terapia , Citocinas/farmacologia , Sulfato de Dextrana , Ácidos Graxos Voláteis/farmacologia , Imunidade , Interleucina-6/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/farmacologia
12.
Mar Drugs ; 20(12)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36547911

RESUMO

Polysaccharide from the edible alga Enteromorpha clathrata has been demonstrated to exert beneficial effects on human health. However, what effect it has on inflammatory bowel diseases has not been investigated. Here, using a mouse model of dextran sulfate sodium (DSS)-induced ulcerative colitis, we illustrate that Enteromorpha clathrata polysaccharide (ECP) could alleviate body weight loss, reduce incidences of colonic bleeding, improve stool consistency and ameliorate mucosal damage in diseased mice. 16S rRNA high-throughput sequencing and bioinformatic analysis indicated that ECP significantly changed the structure of the gut microbiota and increased the abundance of Parabacteroides spp. in DSS-fed mice. In vitro fermentation studies further confirmed that ECP could promote the growth of Parabacteroides distasonis F1-28, a next-generation probiotic bacterium isolated from the human gut, and increase its production of short-chain fatty acids. Additionally, Parabacteroides distasonis F1-28 was also found to have anti-ulcerative colitis effects in DSS-fed mice. Altogether, our study demonstrates for the first time a beneficial effect of ECP on ulcerative colitis and provides a possible basis for understanding its therapeutic mechanisms from the perspective of symbiotic gut bacteria Parabacteroides distasonis.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Humanos , Animais , Camundongos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/microbiologia , Sulfato de Dextrana/toxicidade , RNA Ribossômico 16S , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Bactérias , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Colo/microbiologia
13.
Int J Mol Sci ; 23(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36499169

RESUMO

Inflammatory bowel disease (IBD) is a worldwide chronic intestinal inflammatory immune-related disease. In this study, mice with dextran sulfate sodium (DSS)-induced colitis were used to evaluate the effect of Lactobacillus acidophilus on colitis. The results revealed that L. acidophilus CCFM137 and FAHWH11L56 show potential for relieving colitis symptoms, while L. acidophilus FGSYC48L79 did not show a protective effect. Moreover, L. acidophilus NCFM and FAHWH11L56 showed similar effects on various indicators of DSS-induced colitis, increasing the IL-10 and IL-17 in the colon, and modifying the CCL2/CCR2 axis and CCL3/CCR1 axis. For L. acidophilus CCFM137, its effects on colitis were different from the above two strains. Moreover, L. acidophilus FGSYC48L79 had negative effects on colitis by increasing the abundance of harmful bacteria in the gut microbiota and may promote the signaling of chemokines and their receptors. This may be related to its special genome compared to the other strains.


Assuntos
Colite , Probióticos , Camundongos , Animais , Lactobacillus acidophilus , Sulfato de Dextrana/toxicidade , Colite/induzido quimicamente , Colite/microbiologia , Probióticos/uso terapêutico , Colo/microbiologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Citocinas
14.
Mucosal Immunol ; 15(6): 1338-1349, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36372810

RESUMO

Inflammatory bowel disease (IBD) is characterized by a dysregulated intestinal epithelial barrier leading to breach of barrier immunity. Here we identified similar protein expression changes between IBD and Citrobacter rodentium-infected FVB mice with respect to dysregulation of solute transporters as well as components critical for intestinal barrier integrity. We attribute the disease associated changes in the model to the emergence of undifferentiated intermediate intestinal epithelial cells. Prophylactic treatment with IL-22.Fc in C. rodentium-infected FVB mice reduced disease severity and rescued the mice from lethality. Multi-omics and solute analyses revealed that IL-22.Fc treatment prevented disease-associated changes including disruption of the solute transporter machinery and restored proper physiological functions of the intestine, respectively. Taken together, we established the disease relevance of the C. rodentium-induced colitis model to IBD, demonstrated the protective role of IL-22 in amelioration of epithelial dysfunction and elucidated the molecular mechanisms with IL-22's effect on intestinal epithelial cells.


Assuntos
Colite , Infecções por Enterobacteriaceae , Doenças Inflamatórias Intestinais , Interleucinas , Animais , Camundongos , Citrobacter rodentium/fisiologia , Colite/tratamento farmacológico , Colite/microbiologia , Infecções por Enterobacteriaceae/tratamento farmacológico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/microbiologia , Mucosa Intestinal/metabolismo , Intestinos , Camundongos Endogâmicos C57BL , Interleucinas/farmacologia
15.
Gut Microbes ; 14(1): 2145843, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36398889

RESUMO

Imbalance of gut microbiota homeostasis is related to the occurrence of ulcerative colitis (UC), and probiotics are thought to modulate immune microenvironment and repair barrier function. Here, in order to reveal the interaction between UC and gut microbiota, we screened a new probiotic strain by 16S rRNA sequencing from Dextran Sulfate Sodium (DSS)-induced colitis mice, and explored the mechanism and clinical relevance. Lactobacillus johnsonii (L. johnsonii), as a potential anti-inflammatory bacterium was decreased colonization in colitis mice. Gavage L. johnsonii could alleviate colitis by specifically increasing the proportion of intestinal macrophages and the secretion of Il-10 with macrophages depleted model and in Il10-/- mice. We identified this subset of immune cells activated by L. johnsonii as CD206+ macrophagesIL-10. Mechanistically, L. johnsonii supplementation enhanced the mobilization of CD206+ macrophagesIL-10 through the activation of STAT3 in vivo and in vitro. In addition, we revealed that TLR1/2 was essential for the activation of STAT3 and the recognition of L. johnsonii by macrophages. Clinically, there was positive correlation between the abundance of L. johnsonii and the expression level of MRC1, IL10 and TLR1/2 in UC tissues. L. johnsonii could activate native macrophages into CD206+ macrophages and release IL-10 through TLR1/2-STAT3 pathway to relieve experimental colitis. L. johnsonii may serve as an immunomodulator and anti-inflammatory therapeutic target for UC.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Lactobacillus johnsonii , Receptor 1 Toll-Like , Animais , Camundongos , Anti-Inflamatórios , Colite/genética , Colite/microbiologia , Colite/terapia , Colite Ulcerativa/genética , Colite Ulcerativa/microbiologia , Colite Ulcerativa/terapia , Sulfato de Dextrana/toxicidade , Interleucina-10/genética , Macrófagos , RNA Ribossômico 16S , Receptor 1 Toll-Like/genética , Receptor 1 Toll-Like/metabolismo
16.
BMC Gastroenterol ; 22(1): 469, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36401221

RESUMO

BACKGROUND: Triclosan, an antimicrobial agent in personal care products, could be absorbed into the human body through the digestive tract. This animal experiment aimed to clarify the effects of triclosan exposure on the microbiome and intestinal immune functions in healthy and ulcerative colitis models. METHODS: Balb/c mice were maintained on an AIN-93G diet containing 80ppm triclosan dissolved in polyethylene as vehicle or vehicle alone for 1 week or 4 weeks. In the end, the mice were sacrificed, blood samples and colon tissues were collected for analysis of inflammation, and fecal samples were collected for 16 S rRNA sequencing of gut microbiota. To establish ulcerative colitis mice model, at the beginning of the 4th week, mice maintained on the diet with or without triclosan were treated with 2% Dextran sulfate sodium(DSS) in drinking water for 1 week. Then mice were sacrificed for analysis of colitis and gut microbiota. RESULTS: Triclosan exposure to common mice enhanced the levels of p-NF-κb and Toll-like receptor 4 (TLR4), and decreased the Occludin in the colon. Triclosan exposure to DSS-induced mice increased the level of inflammatory cytokines, reduced the levels of Occludin, and exacerbated the degree of damage to intestinal mucosa and crypt, infiltration of inflammatory cells and atypia of glandular cells. Low-grade intraepithelial neoplasia appeared. Both in common and DSS-induced mice, triclosan exposure changed the diversity and composition of gut microbiota. Fecal samples showed higher enrichment of sulfate-reducing bacteria and Bacteroides, and less butyrate-producing bacteria. CONCLUSION: Triclosan exposure induced disturbance of gut microbiota and exaggerated experimental colitis in mice. And changes in the composition of gut microbiota were characterized by the increase of harmful bacteria, including sulfate-reducing bacteria and Bacteroides, and the reduction of protective probiotics, butyrate-producing bacteria.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Triclosan , Humanos , Camundongos , Animais , Microbioma Gastrointestinal/genética , Triclosan/efeitos adversos , Sulfato de Dextrana/efeitos adversos , Colite Ulcerativa/induzido quimicamente , Ocludina , Camundongos Endogâmicos C57BL , Colite/induzido quimicamente , Colite/microbiologia , Sulfatos/efeitos adversos , Butiratos/farmacologia
17.
Sci Rep ; 12(1): 17591, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266398

RESUMO

Live biotherapeutic products constitute an emerging therapeutic approach to prevent or treat inflammatory bowel diseases. Lactobacillus acidophilus is a constituent of the human microbiota with probiotic potential, that is illustrated by improvement of intestinal inflammation and antimicrobial activity against several pathogens. In this study, we evaluated the immunomodulatory properties of the L. acidophilus strain BIO5768 at steady state and upon acute inflammation. Supplementation of naïve mice with BIO5768 heightened the transcript level of some IL-17 target genes encoding for protein with microbicidal activity independently of NOD2 signaling. Of these, the BIO5768-induced expression of Angiogenin-4 was blunted in monocolonized mice that are deficient for the receptor of IL-17 (but not for NOD2). Interestingly, priming of bone marrow derived dendritic cells by BIO5768 enhanced their ability to support the secretion of IL-17 by CD4+ T cells. Equally of importance, the production of IL-22 by type 3 innate lymphoid cells is concomitantly heightened in response to BIO5768. When administered alone or in combination with Bifidobacterium animalis spp. lactis BIO5764 and Limosilactobacillus reuteri, BIO5768 was able to alleviate at least partially intestinal inflammation induced by Citrobacter rodentium infection. Furthermore, BIO5768 was also able to improve colitis induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). In conclusion, we identify a new potential probiotic strain for the management of inflammatory bowel diseases, and provide some insights into its IL-17-dependent and independent mode of action.


Assuntos
Colite , Imunidade Inata , Doenças Inflamatórias Intestinais , Lactobacillus acidophilus , Probióticos , Animais , Camundongos , Bifidobacterium animalis , Colite/induzido quimicamente , Colite/terapia , Colite/microbiologia , Infecções por Enterobacteriaceae/terapia , Inflamação , Doenças Inflamatórias Intestinais/terapia , Interleucina-17 , Linfócitos , Probióticos/farmacologia , Probióticos/uso terapêutico , Ácido Trinitrobenzenossulfônico/efeitos adversos
18.
Cells ; 11(20)2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36291135

RESUMO

BACKGROUND: Extensive evidence suggests that gut microbiota may interact with the kidneys and play central roles in the pathogenesis of disease. However, the association of gut microbiota-kidneys in diarrhea remains unclear. METHODS: A diarrhea mouse model was constructed by combining adenine with Folium sennae. We analyzed the characteristics of the gut content microbiota and short chain fatty acids (SCFAs); and explored the potential link between gut content microbiota, SCFAs, intestinal inflammatory response and kidney function. RESULTS: Characteristic bacteria Lactobacillus intestinalis and Bacteroides acidifaciens were enriched in the gut contents of mice. The productions of SCFAs were remarkably inhibited. Model mice presented an increased trend of creatinine (Cr), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), a decreased trend of blood urea nitrogen (BUN) and secretory immunoglobulin A (SIgA). The pathological analysis proved obvious damage to the kidney structure. Lactobacillus intestinalis and Bacteroides acidifaciens exisited in the correlations with acetic acid, intestinal inflammatory response and kidney function. CONCLUSIONS: Adenine combined with Folium sennae-induced diarrhea, altered the structure and function of the gut content microbiota in mice, causing the enrichment of the characteristic bacteria Lactobacillus intestinalis and Bacteroides acidifaciens. The interactions between Lactobacillus intestinalis, Bacteroides acidifaciens and acetic acid, intestinal inflammation, and kidney function might be involved in the process of gut-kidney impairment in adenine, combined with Folium sennae-induced diarrhea.


Assuntos
Bacteroides , Colite , Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Nefropatias , Lactobacillus , Fator de Necrose Tumoral alfa , Animais , Camundongos , Ácido Acético/efeitos adversos , Adenina/efeitos adversos , Creatinina , Diarreia/induzido quimicamente , Ácidos Graxos Voláteis/metabolismo , Imunoglobulina A Secretora , Inflamação , Interleucina-6 , Rim , Extrato de Senna , Modelos Animais de Doenças , Bacteroides/fisiologia , Lactobacillus/fisiologia , Colite/microbiologia , Nefropatias/microbiologia
19.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 53(5): 834-841, 2022 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-36224686

RESUMO

Objective: To investigate the effects of using Bifidobacterium bifidum TMC3115 in early life on intestinal microbiota and immune functions and the long-term impact on inflammatory bowel disease. Methods: Fourteen pregnant BALB/c mice were purchased and 84 newborn BALB/c mice were subsequently obtained. Then, the newborn mice were randomly assigned to a normal saline (NS) group and a TMC3115 group, given via oral gavage normal saline and TMC3115, respectively, at a daily volume of 0.2 mL for each mouse. About 42 mice were assigned to each group. The gavage was stopped after 3 weeks. At this point, half of the mice in each group were sacrificed, and then the remaining mice in each group were randomly divided into NS-water group, NS-DSS group, TMC3115-water group, and TMC3115-DSS group, with about 10 mice in each group. The mice were given regular feed until the end of week 6 when they were given 3% dextran sulphate sodium (DSS) ad libitum for 4 days to establish the enteritis model, while the non-modeling groups were given pure water ad libitum. The experiment ended after 6 weeks and 4 days. The weekly body mass changes of the mice were documented. The intestinal tissue at the end of the experiment and the fecal samples, spleen and serum of the mice at 3 weeks and at the end of the experiment were collected to determine the pathology scores of colonic inflammation, the composition of fecal gut microbiota, spleen organ index and the mass concentration of serum cytokines. Results: 1) At the end of the experiment, the inflammatory pathology score was significantly lower in the TMC3115-DSS group compared with that of the Saline-DSS group ( P<0.05), with less disruption of colonic crypt structures and other structures, less inflammatory infiltration, and more intact epithelial structures. 2) At 3 weeks, in comparison with those of the NS group, the relative abundance of Bifidobacteriumwas significantly higher in the feces of the TMC3115 ( P<0.05), the relative abundance of both Enterococcusand Staphylococcuswas lower ( P<0.05), the splenic organ index was significantly higher ( P<0.05), and interleukin (IL)-10 was significantly decreased ( P<0.05), while there was no significant change in IL-6 or TNF-α ( P>0.05). At the end of the experiment, in comparison with those of the NS-DSS group that undergone DSS induction, the TMC3115-DSS group had reduced relative abundance of Staphylococcus, Staphylococcus tumefaciens and Escherichia/ Shigellain the feces ( P<0.05), while the splenic organ index was significantly higher ( P<0.05), and there were no significant changes in IL-6 or TNF-α ( P>0.05). Conclusion: The use of TMC3115 in early life promotes the construction of gut microbiota in neonatal mice, thereby producing a long-term effect that alleviates colitis in mice, but the mechanisms involved are still not fully understood.


Assuntos
Bifidobacterium bifidum , Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Animais , Colite/microbiologia , Colo , Citocinas , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Interleucina-6 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Solução Salina/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Água/farmacologia
20.
Int J Biol Macromol ; 222(Pt B): 2244-2257, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36220403

RESUMO

In the present study, the effects of a purified fraction of polysaccharides from the fruits of Lycium barbarum L. (LBPs), named LBPs-4, on the dextran sodium sulfate (DSS)-induced colitis in mice were evaluated. The results showed that LBPs-4 decreased disease activity index score, prevented colon shortening and reduced plasma levels of pro-inflammatory cytokines (tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), monocyte chemoattractant protein-1 (MCP-1) and prostaglandin E2) in mice with colitis. LBPs-4 could increase the relative abundances of Akkermansia and Bifidobacterium in gut microbiota, and it also mitigated the intestinal barrier damage by upregulating the level of tight junction protein ZO-1 and the number of goblet cells in colon. Moreover, the results of in vitro culture indicated that the growth of Bifidobacterium longum subsp. infantis CCX 19042 was promoted by LBPs-4, whereas the culture media of LBPs-4 by Bacteroides ovatus with or without addition of mucin could enhance the growth of Akkermansia muciniphila. Collectively, these results suggested that LBPs-4 should be potential prebiotics for the treatment of colitis.


Assuntos
Colite , Lycium , Camundongos , Animais , Sulfato de Dextrana/efeitos adversos , Frutas , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/microbiologia , Polissacarídeos/efeitos adversos , Colo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...