Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
1.
PLoS One ; 15(6): e0235215, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32598372

RESUMO

Anthracnose (ANT) and angular leaf spot (ALS) caused by Colletotrichum lindemuthianum and Pseudocercospora griseola, respectively, are devastating diseases of common bean around the world. Therefore, breeders are constantly searching for new genes with broad-spectrum resistance against ANT and ALS. This study aimed to characterize the genetic resistance of California Dark Red Kidney (CDRK) to C. lindemuthianum races 73, 2047, and 3481 and P. griseola race 63-39 through inheritance, allelism testing, and molecular analyses. Genetic analysis of response to ANT and ALS in recombinant inbred lines (RILs) from a CDRK × Yolano cross (CY) showed that the resistance of CDRK cultivar is conferred by a single dominant loci, which we named CoPv01CDRK/PhgPv01CDRK. Allelism tests performed with race 3481showed that the resistance gene in CDRK is independent of the Co-1 and Co-AC. We conducted co-segregation analysis in genotypes of 110 CY RILs and phenotypes of the RILs in response to different races of the ANT and ALS pathogens. The results revealed that CoPv01CDRK and PhgPv01CDRK are coinherited, conferring resistance to all races. Genetic mapping of the CY population placed the CoPv01CDRK/PhgPv01CDRK loci in a 245 Kb genomic region at the end of Pv01. By genotyping 19 RILs from the CY population using three additional markers, we fine-mapped the CoPv01CDRK/PhgPv01CDRK loci to a smaller genomic region of 33 Kb. This 33 Kb region harbors five predicted genes based on the common bean reference genome. These results can be applied in breeding programs to develop bean cultivars with ANT and ALS resistance using marker-assisted selection.


Assuntos
Colletotrichum/fisiologia , Resistência à Doença/genética , Genes de Plantas , Ligação Genética , Marcadores Genéticos , Phaseolus/genética , Doenças das Plantas/genética , California , Mapeamento Cromossômico , Genótipo , Phaseolus/microbiologia , Fenótipo , Doenças das Plantas/microbiologia
2.
PLoS One ; 15(5): e0233916, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32470037

RESUMO

The olive tree (Olea europaea L.) is the most important oil-producing crop of the Mediterranean basin. However, although plant protection measures are regularly applied, disease outbreaks represent an obstacle towards the further development of the sector. Therefore, there is an urge for the improvement of plant protection strategies based on information acquired by the implementation of advanced methodologies. Recently, heavy fungal infections of olive fruits have been recorded in major olive-producing areas of Greece causing devastating yield losses. Thus, initially, we have undertaken the task to identify their causal agent(s) and assess their pathogenicity and sensitivity to fungicides. The disease was identified as the olive anthracnose, and although Colletotrichum gloeosporioides and Colletotrichum acutatum species complexes are the two major causes, the obtained results confirmed that in Southern Greece the latter is the main causal agent. The obtained isolates were grouped into eight morphotypes based on their phenotypes, which differ in their sensitivities to fungicides and pathogenicity. The triazoles difenoconazole and tebuconazole were more toxic than the strobilurins being tested. Furthermore, a GC/EI/MS metabolomics model was developed for the robust chemotaxonomy of the isolates and the dissection of differences between their endo-metabolomes, which could explain the obtained phenotypes. The corresponding metabolites-biomarkers for the discrimination between morphotypes were discovered, with the most important ones being the amino acids L-tyrosine, L-phenylalanine, and L-proline, the disaccharide α,α-trehalose, and the phytotoxic pathogenesis-related metabolite hydroxyphenylacetate. These metabolites play important roles in fungal metabolism, pathogenesis, and stress responses. The study adds critical information that could be further exploited to combat olive anthracnose through its monitoring and the design of improved, customized plant protection strategies. Also, results suggest the necessity for the comprehensive mapping of the C. acutatum species complex morphotypes in order to avoid issues such as the development of fungicide-resistant genotypes.


Assuntos
Colletotrichum/fisiologia , Olea/microbiologia , Doenças das Plantas/prevenção & controle , Colletotrichum/efeitos dos fármacos , Colletotrichum/crescimento & desenvolvimento , Colletotrichum/isolamento & purificação , Flores/microbiologia , Frutas/microbiologia , Fungicidas Industriais/farmacologia , Grécia , Metabolômica , Azeite de Oliva , Folhas de Planta/microbiologia , Especificidade da Espécie , Virulência/efeitos dos fármacos
3.
J Plant Physiol ; 246-247: 153129, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32050138

RESUMO

Micronutrients provide a potentially interesting alternative to fungicides for the protection of crops against fungal pathogens. Here we studied the effect of foliar-applied manganese (Mn) in the form of MnSO4 on severity of anthracnose disease, caused by Colletotrichum lagenarium in cucumber (Cucumis sativus L.) plant. The study was done aimed to characterize the optimum dose and application time of Mn fertilizer on disease suppression as well as to identify the defense mechanisms by which Mn-treated plants resist to fungal disease. In preliminary tests, Mn was applied at different concentrations (1.8, 4.5 and 7.2 mM) and various time points (three days before or two hours before inoculation, or three days after inoculation). Results showed that application of Mn either before or after inoculation suppressed the fungal infection in leaves and cotyledons, with a higher efficiency when applied three days prior to inoculation. However, all applied concentrations of Mn equally reduced the disease severity. Mn treatment in the absence of the pathogen promoted lignification and reactive oxygen species (ROS) accumulation. Also, pre-inoculation Mn treatment enhanced pathogen-induced lignification, callose or ROS production and reduced pathogen-induced cell death. The increase of lignin, callose and ROS induction by Mn application were 34, 30 and 31 % compared to control, respectively. Together, the results suggested the effectiveness of Mn treatments on anthracnose alleviation in cucumber plants. The findings here have a practical importance in plant physiology studies to identify the resistance-relevant mechanisms to pathogens and in sustainable agriculture to control the fungal diseases by a safe method.


Assuntos
Colletotrichum/fisiologia , Cucumis sativus/efeitos dos fármacos , Manganês/metabolismo , Doenças das Plantas/microbiologia , Cucumis sativus/metabolismo , Cucumis sativus/microbiologia , Resistência à Doença/efeitos dos fármacos , Manganês/administração & dosagem , Micronutrientes/administração & dosagem , Micronutrientes/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia
4.
J Agric Food Chem ; 68(5): 1198-1206, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31928001

RESUMO

In this study, three types of pyraclostrobin formulations (including emulsifiable concentrate (EC), suspension concentrate (SC), and microcapsules (MCs)) were used to control cucumber anthracnose. Pyraclostrobin EC had the highest inhibitory activity against Colletotrichum orbiculare in vitro. Much different from the bioactivity in vitro, pyraclostrobin MCs exhibited the highest control efficacy on cucumber anthracnose both in pot and field experiments. The physicochemical properties (particle size, surface tension) of the spray dilution, their interaction with target leaves (contact angle, adhesional tension, work of adhesion, retention, crystallization) and dissipation dynamic of the active ingredient were found to be highly potential factors that would significantly influence the control efficacy of pesticide formulations. Results showed that the control efficacies of different formulations of pyraclostrobin were determined mainly by the final behavior of the pesticides at the target interface, namely, the retention, crystallization, and dissipation dynamics of active ingredients. This study had revealed crucial factors that would influence the efficacy of different formulations of pyraclostrobin and thus could guide the rational and efficient use of different formulations of pesticides on target crops.


Assuntos
Colletotrichum/efeitos dos fármacos , Cucumis sativus/microbiologia , Composição de Medicamentos/métodos , Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , Doenças das Plantas/microbiologia , Estrobilurinas/química , Estrobilurinas/farmacologia , Colletotrichum/fisiologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/microbiologia
5.
Folia Microbiol (Praha) ; 65(2): 381-392, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31401763

RESUMO

Citrus black spot (CBS) and post-bloom fruit drop (PFD), caused by Phyllosticta citricarpa and Colletotrichum abscissum, respectively, are two important citrus diseases worldwide. CBS depreciates the market value and prevents exportation of citrus fruits to Europe. PFD under favorable climatic conditions can cause the abscission of flowers, thereby reducing citrus production by 80%. An ecofriendly alternative to control plant diseases is the use of endophytic microorganisms, or secondary metabolites produced by them. Strain LGMF1631, close related to Diaporthe cf. heveae 1, was isolated from the medicinal plant Stryphnodendron adstringens and showed significant antimicrobial activity, in a previous study. In view of the potential presented by strain LGMF1631, and the absence of chemical data for secondary metabolites produced by D. cf. heveae, we decided to characterize the compounds produced by strain LGMF1631. Based on ITS, TEF1, and TUB phylogenetic analysis, strain LGMF1631 was confirmed to belong to D. cf. heveae 1. Chemical assessment of the fungal strain LGMF1631 revealed one new seco-dihydroisocoumarin [cladosporin B (1)] along with six other related, already known dihydroisocoumarin derivatives and one monoterpene [(-)-(1S,2R,3S,4R)-p-menthane-1,2,3-triol (8)]. Among the isolated metabolites, compound 5 drastically reduced the growth of both phytopathogens in vitro and completely inhibited the development of CBS and PFD in citrus fruits and flowers. In addition, compound 5 did not show toxicity against human cancer cell lines or citrus leaves, at concentrations higher than used for the inhibition of the phytopathogens, suggesting the potential use of (-)-(3R,4R)-cis-4-hydroxy-5-methylmellein (5) to control citrus diseases.


Assuntos
Ascomicetos/efeitos dos fármacos , Citrus/microbiologia , Fungicidas Industriais/farmacologia , Isocumarinas/farmacologia , Saccharomycetales/química , Ascomicetos/fisiologia , Colletotrichum/efeitos dos fármacos , Colletotrichum/fisiologia , Fabaceae/microbiologia , Frutas/microbiologia , Fungicidas Industriais/química , Fungicidas Industriais/metabolismo , Isocumarinas/química , Isocumarinas/metabolismo , Filogenia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Saccharomycetales/classificação , Saccharomycetales/genética , Saccharomycetales/isolamento & purificação
6.
J Appl Microbiol ; 128(1): 225-231, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31566868

RESUMO

AIMS: Amorphophallus konjac is an important commercial crop grown in China because it is the only plant species which is rich in glucomannan concentration. Recently, an outbreak of anthracnose (incidence ranging from 10-15%) was observed in a field survey conducted from June to August 2018. This study aims to identify the causal agent of A. konjac anthracnose. METHODS AND RESULTS: The pathogen was isolated on potato dextrose agar (PDA) medium. The fungal colony on PDA was greyish to dark grey. Conidia were falcate, one-celled and hyaline. Based on the micro-morphological and cultural characteristics, the pathogen was identified as Colletotrichum sp. blast search and phylogenetic analysis of the ITS, GAPDH, CHS1, ACT, CAL and TUB2 genes revealed the pathogen as Colletotrichum siamense. Koch's postulates were conducted on 2-month konjac leaves with conidial suspension. Development of typical anthracnose disease was recorded 5 days after inoculation and the pathogen's identity was confirmed by re-isolation and molecular identification. CONCLUSIONS: Amorphophallus konjac anthracnose was caused by C. siamense in China. SIGNIFICANCE AND IMPACT OF THE STUDY: Identification of causal agent of A. konjac anthracnose will be helpful in designing effective disease control strategies.


Assuntos
Amorphophallus/microbiologia , Colletotrichum/classificação , Colletotrichum/fisiologia , Doenças das Plantas/microbiologia , China , Colletotrichum/citologia , Colletotrichum/genética , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Proteínas Fúngicas/genética , Filogenia , Folhas de Planta/microbiologia , Esporos Fúngicos/citologia
7.
Plant Dis ; 104(1): 137-146, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31730415

RESUMO

Mango anthracnose, caused by Colletotrichum spp., is the most significant disease of mango (Mangifera indica L.) in almost all production areas around the world. In Mexico, mango anthracnose has only been attributed to C. asianum and C. gloeosporioides. The aims of this study were to identify the Colletotrichum species associated with mango anthracnose symptoms in Mexico by phylogenetic inference using the ApMat marker, to determine the distribution of these species, and to test their pathogenicity and virulence on mango fruits. Surveys were carried out from 2010 to 2012 in 59 commercial orchards in the major mango growing states of Mexico, and a total of 118 isolates were obtained from leaves, twigs, and fruits with typical anthracnose symptoms. All isolates were tentatively identified in the C. gloeosporioides species complex based on morphological and cultural characteristics. The Bayesian inference phylogenetic tree generated with Apn2/MAT intergenic spacer sequences of 59 isolates (one per orchard) revealed that C. alienum, C. asianum, C. fructicola, C. siamense, and C. tropicale were associated with symptoms of mango anthracnose. In this study, C. alienum, C. fructicola, C. siamense, and C. tropicale are reported for the first time in association with mango tissues in Mexico. This study represents the first report of C. alienum causing mango anthracnose worldwide. The distribution of Colletotrichum species varied among the mango growing states from Mexico. Chiapas was the only state in which all five species were found. Pathogenicity tests on mango fruit cultivar Manila showed that all Colletotrichum species from this study could induce anthracnose lesions. However, differences in virulence were evident among species. C. siamense and C. asianum were the most virulent, whereas C. alienum and C. fructicola were considered the least virulent species.


Assuntos
Colletotrichum , Mangifera , Filogenia , Teorema de Bayes , Colletotrichum/classificação , Colletotrichum/genética , Colletotrichum/patogenicidade , Colletotrichum/fisiologia , DNA Fúngico/genética , Mangifera/microbiologia , México , Filipinas , Doenças das Plantas/microbiologia , Virulência
8.
Plant Dis ; 103(12): 3209-3217, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31657997

RESUMO

Glomerella leaf spot (GLS) of apple is caused by three different Colletotrichum species complexes. This study evaluated the dispersal of Colletotrichum spores related to GLS temporal progress and defoliation. Spores were monitored by air and water runoff in different plant heights, and the temporal progress of GLS and defoliation were assessed. Spores of the pathogen were first cached in the lower part of the tree closer to the ground, confirming the importance of dead leaves on the ground as main source of primary inoculum. In plots with high primary inoculum, the disease increases exponentially during favorable weather conditions. The highest initial inoculum was found in the lower part of the tree, but the highest rate of the disease progress in the upper.


Assuntos
Colletotrichum , Malus , Brasil , Colletotrichum/fisiologia , Malus/microbiologia , Doenças das Plantas/microbiologia
9.
J Plant Physiol ; 243: 153047, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31639538

RESUMO

Acyl-CoA oxidase (ACX; EC 1.3.3.6) plays a vital role in the biosynthesis of jasmonic acid (JA) in plant peroxisomes. We previously identified an herbivore-induced gene CsACX1 in tea plant (Camellia sinensis) and showed CsACX1 was involved in the wound-induced synthesis of jasmonic acid (JA). Here, another ACX gene CsACX3 was isolated from tea plant. CsACX3 was predicted to consist of 684 amino acid residues. CsACX3 can be induced by mechanical wounding, JA application, and infestation by the tea geometrid Ectropis obliqua Prout and the tea green leafhopper Empoasca (Matsumurasca) onukii Matsuda. These expression patterns are consistent with the previously reported expression pattern of CsACX1 under such treatments. Recombinant CsACX3 showed preference for medium-chain acyl-coA oxidase substrates (C8- to C14-CoA). CsACX3 expression could also be induced by the infection of a pathogen Colletotrichum gloeosporioides (Cgl), and the increased ACX activities in tea plants were correlated with the Cgl-induced CsACX3 expression. Cgl could not induce the expression of CsACX1, which showed preference for C12- to C16-CoA substrates. The constitutive expression of CsACX3 rescued wound-induced JA biosynthesis and enhanced the Cgl-induced JA biosynthesis in Arabidopsis mutant atacx1. However, constitutive expression of CsACX1 could not enhance the Cgl-induced JA biosynthesis in atacx1 plant. These results indicate that CsACX1 and CsACX3 functions overlap and have distinct roles in the wound- and pathogen-activated de novo JA synthesis via enzymatic routes that utilize different ACX isozymes in tea plant.


Assuntos
Acil-CoA Oxidase/genética , Camellia sinensis/genética , Ciclopentanos/metabolismo , Expressão Gênica , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Acil-CoA Oxidase/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Camellia sinensis/enzimologia , Camellia sinensis/metabolismo , Colletotrichum/fisiologia , Comportamento Alimentar , Cadeia Alimentar , Hemípteros/fisiologia , Isoenzimas/genética , Isoenzimas/metabolismo , Mariposas/fisiologia , Filogenia , Doenças das Plantas/microbiologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
Fungal Genet Biol ; 133: 103276, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31550526

RESUMO

For many filamentous fungi with pathogenic lifestyles, the presence of distinct asexual conidia has been described. However, the role of these spore types remains mostly obscure. Colletotrichum graminicola is a hemibiotrophic filamentous fungus, causing anthracnose on maize plants with a high potential of epidemic disease spreading. C. graminicola generates two types of conidia. Falcate shaped conidia formed in necrotic lesions on maize tissues are able to generate appressoria with high efficiency and are considered key disease spreading propagules. The second conidia type, the smaller oval conidia, is formed in the vascular system of the infected plant, probably causing the distribution of the disease in planta. Barely any knowledge exists about how these conidia are able to exhibit their specific functions in the life cycle and pathogenicity of C. graminicola. Here, we show that germlings derived from both falcate and oval conidia differ in the secretion of a germination inhibitor and signals for germling fusion. Germination experiments combined with HPLC and mass spectrometry analyses revealed that germination of falcate conidia is regulated by the self-inhibitor mycosporine-glutamine, whereas this compound is absent from oval conidia cultures. Additionally, germlings derived from oval conidia undergo germling fusions at high frequencies and are able to induce such a fusion when co-incubated with falcate conidia. Falcate conidia germlings alone, however, were never observed to fuse. Plant infection experiments showed a positive correlation between germling fusions and efficient leaf infection by oval conidia. However, this correlation was not observed for infection by falcate conidia. Together, our findings reveal significant differences of two types of conidia derived from the same pathogenic fungus with distinct roles in pathogenesis.


Assuntos
Colletotrichum/patogenicidade , Esporos Fúngicos/fisiologia , Forma Celular , Colletotrichum/fisiologia , Esporos Fúngicos/citologia , Zea mays/microbiologia
11.
Microbiol Res ; 229: 126328, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31521946

RESUMO

Endophytic bacteria-based biocontrol is regarded as a potential plant disease management strategy. Present study analyzed the diversity of mulberry endophytic bacteria basing on a culture-dependent approach and further evaluated their antimicrobial and plant growth-promoting (PGP) activities. A total of 608 cultivable endophytic bacteria, belonging to 4 phyla and 36 genera, were isolated from four mulberry cultivars having different resistance to sclerotiniosis in three seasons. Taxonomic compositional analysis results showed that Proteobacteria, Firmicutes, and Actinobacteria were the three dominant bacterial phyla in all communities, with the representative genera Pantoea, Bacillus, Pseudomonas, Curtobacterium, and Sphingomonas. Diversity analysis results indicated that the diversity of winter community was higher than that of spring or autumn, and higher diversities were detected in the resistant cultivar communities compared with the susceptible cultivar. Antagonism assays results showed that 33 isolates exhibited strong and stable activity against three phytopathogens which are Sclerotinia sclerotiorum, Botrytis cinerea, and Colletotrichum gloeosporioide. Eight endophytic bacteria were selected out from 33 antagonists based on the evaluation of antagonistic and PGP activities. Furthermore, pot experiment results revealed that all the 8 tested endophytes stimulated the growth of mulberry seedlings at different levels, and Bacillus sp. CW16-5 exhibited the highest promotion capacity, which the shoot length and the root fresh weight were increased by 83.37% and 217.70%, respectively. Altogether, present study revealed that mulberry harbors a large amount of diverse cultivable endophytic bacteria and they also serve as novel sources of beneficial bacteria and bioactive metabolites.


Assuntos
Antibiose , Bactérias/isolamento & purificação , Biodiversidade , Endófitos/isolamento & purificação , Morus/microbiologia , Ascomicetos/fisiologia , Bactérias/classificação , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Botrytis/fisiologia , Colletotrichum/fisiologia , Endófitos/classificação , Endófitos/genética , Endófitos/fisiologia , Morus/crescimento & desenvolvimento , Doenças das Plantas/microbiologia
12.
Proc Natl Acad Sci U S A ; 116(34): 17081-17089, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31387975

RESUMO

The avocado, Persea americana, is a fruit crop of immense importance to Mexican agriculture with an increasing demand worldwide. Avocado lies in the anciently diverged magnoliid clade of angiosperms, which has a controversial phylogenetic position relative to eudicots and monocots. We sequenced the nuclear genomes of the Mexican avocado race, P. americana var. drymifolia, and the most commercially popular hybrid cultivar, Hass, and anchored the latter to chromosomes using a genetic map. Resequencing of Guatemalan and West Indian varieties revealed that ∼39% of the Hass genome represents Guatemalan source regions introgressed into a Mexican race background. Some introgressed blocks are extremely large, consistent with the recent origin of the cultivar. The avocado lineage experienced 2 lineage-specific polyploidy events during its evolutionary history. Although gene-tree/species-tree phylogenomic results are inconclusive, syntenic ortholog distances to other species place avocado as sister to the enormous monocot and eudicot lineages combined. Duplicate genes descending from polyploidy augmented the transcription factor diversity of avocado, while tandem duplicates enhanced the secondary metabolism of the species. Phenylpropanoid biosynthesis, known to be elicited by Colletotrichum (anthracnose) pathogen infection in avocado, is one enriched function among tandems. Furthermore, transcriptome data show that tandem duplicates are significantly up- and down-regulated in response to anthracnose infection, whereas polyploid duplicates are not, supporting the general view that collections of tandem duplicates contribute evolutionarily recent "tuning knobs" in the genome adaptive landscapes of given species.


Assuntos
Colletotrichum/fisiologia , DNA Intergênico , Introgressão Genética , Genoma de Planta , Interações Hospedeiro-Patógeno/genética , Magnoliopsida , Persea , Filogenia , Doenças das Plantas , Duplicação Gênica , Magnoliopsida/genética , Magnoliopsida/microbiologia , Persea/genética , Persea/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
13.
Plant Dis ; 103(10): 2541-2547, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31432772

RESUMO

To prevent the spread of anthracnose in strawberry plants and characterize the metabolic changes occurring during plant-pathogen interactions, we developed a method for the early diagnosis of disease based on an analysis of the metabolome by gas chromatography-mass spectrometry. An examination of the metabolic profile revealed 189 and 202 total ion chromatogram peaks for the control and inoculated plants, respectively. A partial least squares discriminant analysis (PLS-DA) model was conducted for the reliable and accurate discrimination between healthy and diseased strawberry plants, even in the absence of disease symptoms (e.g., early stages of infection). ANOVA (analysis of variance) and orthogonal partial least squares analysis (OPLS) identified 20 metabolites as tentative biomarkers of Colletotrichum theobromicola infection (e.g., citric acid, d-xylose, erythrose, galactose, gallic acid, malic acid, methyl α-galactopyranoside, phosphate, and shikimic acid). At least some of these potential biomarkers may be applicable for the early diagnosis of anthracnose in strawberry plants. Moreover, these metabolites may be useful for characterizing pathogen infections and plant defense responses. This study confirms the utility of metabolomics research for developing diagnostic tools and clarifying the mechanism underlying plant-pathogen interactions. Furthermore, the data presented herein may be relevant for developing new methods for preventing anthracnose in strawberry seedlings cultivated under field conditions.


Assuntos
Biomarcadores , Colletotrichum , Fragaria , Cromatografia Gasosa-Espectrometria de Massas , Metabolômica , Biomarcadores/análise , Colletotrichum/fisiologia , Fragaria/microbiologia
14.
BMC Plant Biol ; 19(1): 289, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31262259

RESUMO

BACKGROUND: Banana anthracnose, caused by Colletotrichum musae, is one of the most severe postharvest diseases in banana. Melatonin is widely known for its role in enhancing plant stress tolerance. However, little is known about the control of melatonin on anthracnose in postharvest banana fruit. RESULTS: In this study, exogenous melatonin treatment could significantly reduce the incidence of anthracnose in ripe yellow banana fruit and delay fruit senescence. However, melatonin treatment did not affect the growth of Colletotrichum musae in vitro. Transcriptomic analysis of banana peel showed that 339 genes were up-regulated and 241 were down-regulated in the peel after melatonin treatment, compared with the control. Based on GO terms and KEGG pathway, these up-regulated genes were mainly categorized into signal transduction, cell wall formation, secondary metabolism, volatile compounds synthesis and response to stress, which might be related to the anti-anthracnose of banana fruit induced by melatonin treatment. This view was also supported by the increase of volatile compounds, cell wall components and IAA content in the melatonin-treated fruit peel via the metabolomic analysis. After melatonin treatment, auxin, ethylene and mitogen-activated protein kinase (MAPK) signaling pathways were enhanced, which might be involved in the enhanced fruit resistance by regulating physiological characteristics, disease-resistant proteins and metabolites. CONCLUSIONS: Our results provide a better understanding of the molecular processes in melatonin treatment delaying banana fruit senescence and anthracnose incidence.


Assuntos
Colletotrichum/fisiologia , Genes de Plantas , Melatonina/metabolismo , Metaboloma , Musa/microbiologia , Doenças das Plantas/microbiologia , Transcriptoma , Colletotrichum/efeitos dos fármacos , Frutas/microbiologia , Perfilação da Expressão Gênica , Melatonina/administração & dosagem , Metabolômica , Musa/genética
15.
Plant Dis ; 103(9): 2425-2432, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31306088

RESUMO

Almond anthracnose, caused by Colletotrichum spp., is a reemerging disease in Spain. To date, little research has been conducted on the factors affecting this disease development. In this study, the effects of cultivar, fruit wounding and maturity, leaf age, fungal isolate, and temperature on almond infection by Colletrotrichum spp. were evaluated under laboratory-controlled conditions. Inoculations were performed using conidial suspensions of Colletrotrichum acutatum or C. godetiae. Disease severity was higher in wounded than in unwounded fruit. Based on observations of inoculated fruit, Ferraduel and Nonpareil were the most tolerant cultivars, while Tarraco and Penta were the most susceptible cultivars. Four categories of susceptibility (highly susceptible, susceptible, moderately susceptible, and resistant) were distinguished by using the cluster analysis statistical approach. Differences in susceptibility between young and old leaves were observed, but Nonpareil was consistently the most tolerant cultivar. Significant differences in virulence between C. acutatum and C. godetiae were observed in inoculated fruit, with C. acutatum being the most virulent. Disease development was more severe when inoculations were performed at the fruitlet stage or when the fruit were incubated at approximately 25°C, with respect to other maturity stages and temperatures evaluated. Natural fruit infections were also assessed. Cultivar susceptibility data were compared between laboratory tests and field observations. A significant positive linear correlation was obtained between the susceptibility of the common cultivars evaluated under the two conditions.


Assuntos
Colletotrichum , Folhas de Planta , Prunus dulcis , Temperatura , Colletotrichum/fisiologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Prunus dulcis/microbiologia , Espanha
16.
Plant Sci ; 286: 68-77, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31300143

RESUMO

Apple (Malus domestica) is an important fruit worldwide; however, the development of the apple industry is limited by fungal disease. Apple bitter rot caused by the pathogen Colletotrichum gloeosporioides is one of the most devastating apple diseases, leading to large-scale losses in apple quality and production. WRKY transcription factors have important functions in the regulation of biotic and abiotic stresses. However, their biological and molecular functions in non-model plants, including apple, remain poorly understood. Here, we isolated MdWRKY100 from 'Hanfu' apple. The MdWRKY100 protein fused to green fluorescent protein localized to the nucleus, and MdWRKY100 in yeast cells displayed transcriptional activation activity, which is consistent with the function of a transcription factor. Additionally, several putative cis-acting elements involved in abiotic stress responsiveness were also identified in the MdWRKY100 promoter. Transcriptional analysis revealed that MdWRKY100 was expressed ubiquitously in all examined apple organs. Overexpression in apple increased resistance to Colletotrichum gloeosporioides, while RNAi silencing transgenic plants were more sensitive to Colletotrichum gloeosporioides. Collectively, our data demonstrate that MdWRKY100 is a positive regulator of Colletotrichum gloeosporioides resistance in apple.


Assuntos
Colletotrichum/fisiologia , Resistência à Doença/genética , Malus/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Malus/metabolismo , Malus/microbiologia , Filogenia , Doenças das Plantas/microbiologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
17.
Phytopathology ; 109(10): 1779-1792, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31179858

RESUMO

Colletotrichum tanaceti, the causal agent of anthracnose, is an emerging pathogen of commercially grown pyrethrum (Tanacetum cinerariifolium) in Australia. A microsatellite marker library was developed to understand the spatio-genetic structure over three sampled years and across two regions where pyrethrum is cultivated in Australia. Results indicated that C. tanaceti was highly diverse with a mixed reproductive mode; comprising both sexual and clonal reproduction. Sexual reproduction of C. tanaceti was more prevalent in Tasmania than in Victoria. Little differentiation was observed among field populations likely due to isolation by colonization but most of the genetic variation was occurring within populations. C. tanaceti was likely to have had a long-distance gene and genotype flow among distant populations within a state and between states. Anthropogenic transmission of propagules and wind dispersal of ascospores are the most probable mechanisms of long-distance dispersal of C. tanaceti. Evaluation of putative population histories suggested that C. tanaceti most likely originated in Tasmania and expanded from an unidentified host onto pyrethrum. Victoria was later invaded by the Tasmanian population. With the mixed mode of reproduction and possible long-distance gene flow, C. tanaceti is likely to have a high evolutionary potential and thereby has ability to adapt to management practices in the future.


Assuntos
Evolução Biológica , Chrysanthemum cinerariifolium , Colletotrichum , Variação Genética , Austrália , Chrysanthemum cinerariifolium/microbiologia , Colletotrichum/genética , Colletotrichum/fisiologia , Fluxo Gênico , Repetições de Microssatélites/genética , Doenças das Plantas , Tasmânia
18.
Plant Sci ; 283: 1-10, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31128679

RESUMO

Colletotrichum higginsianum causes anthracnose disease in a wide range of cruciferous crops and has been used as a model system to study plant-pathogen interactions and pathogenicity of hemibiotrophic plant pathogens. Conidiation, hyphae growth, appressorial development and appressorial penetration are significant steps during the infection process of C. higginsianum. However, the mechanisms of these important steps during infection remain incompletely understood. To further investigate the mechanisms of the plant-C. higginsianum interactions during infection progress, we characterized Cyclase-Associated Protein (ChCAP) gene. Deletion of the ChCAP gene resulted in reduction in conidiation and hyphal growth rate. The pathogenicity of ΔChCAP mutants was significantly reduced with much smaller lesion on the infected leaves compared to that of wild type strain with typically water-soaked and dark necrotic lesions on Arabidopsis leaves. Further study demonstrated that the appressorial formation rate, turgor pressure, penetration ability and switch from biotrophic to necrotrophic phases decreased obviously in ΔChCAP mutants, indicating that the attenuated pathogenicity of ΔChCAP mutants was due to these defective phenotypes. In addition, the ΔChCAP mutants sectored on PDA with abnormal, dark color, vesicle-like colony morphology and hyphae tip. Moreover, the ΔChCAP mutants had a reduced intracellular cAMP levels and exogenous cAMP can partially rescue the defects of ΔChCAP mutants in appressorial formation and penetration rate, but not in colony morphology, conidial shape and virulence, indicating that ChCAP is a key component in cAMP signaling pathway and likely play other roles in biology of C. higginsianum. In summary, our findings support the role of ChCAP in regulating conidiation, intracellular cAMP level, hyphal growth, appressorial formation, penetration ability and pathogenicity of this hemibiotrophic fungus.


Assuntos
Colletotrichum/crescimento & desenvolvimento , AMP Cíclico/metabolismo , Proteínas Fúngicas/fisiologia , Hifas/crescimento & desenvolvimento , Esporos Fúngicos/crescimento & desenvolvimento , Arabidopsis/microbiologia , Colletotrichum/metabolismo , Colletotrichum/patogenicidade , Colletotrichum/fisiologia , Proteínas Fúngicas/metabolismo , Hifas/fisiologia , Filogenia , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Esporos Fúngicos/fisiologia , Estresse Fisiológico
19.
Plant Dis ; 103(8): 1961-1966, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31124749

RESUMO

Anthracnose is one of the most important diseases of lima bean in Brazil. Previously, the disease was attributed exclusively to Colletotrichum truncatum. Therefore, this work aimed to characterize the diversity, prevalence, and virulence of Colletotrichum spp. associated with anthracnose in lima bean in Brazil. Here, we report the species C. truncatum, C. brevisporum, C. lobatum, C. plurivorum, and C. musicola in association with anthracnose of lima bean. All species were pathogenic to lima bean. In addition, several strains were found that represent novel lineages, presented here as Colletotrichum lineages 1 to 5. C. truncatum is the prevailing species and more virulent than all other species studied.


Assuntos
Biodiversidade , Colletotrichum , Phaseolus , Brasil , Colletotrichum/classificação , Colletotrichum/patogenicidade , Colletotrichum/fisiologia , Phaseolus/microbiologia , Filogenia , Doenças das Plantas/microbiologia , Prevalência , Virulência
20.
Plant Dis ; 103(7): 1464-1473, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30998450

RESUMO

Colletotrichum Corda, 1831 species are well-documented pathogens of citrus that are associated with leaf and fruit anthracnose diseases. However, their role in twig and shoot dieback diseases of citrus has recently become more prominent. Recent surveys of orchards in the Central Valley of California have revealed C. gloeosporioides and a previously undocumented species, C. karstii, to be associated with twig and shoot dieback. Pathogenicity tests using clementine (cv. 4B) indicated that both C. karstii and C. gloeosporioides are capable of producing lesions following inoculation of citrus stems. Pathogenicity tests also revealed C. karstii to be the most aggressive fungal species producing the longest lesions after 15 months. The majority of spores trapped during this study were trapped during or closely following a precipitation event with the majority of spores being trapped from January through May. These findings confirm C. karstii as a new pathogen of citrus in California.


Assuntos
Colletotrichum , Virulência , California , Colletotrichum/classificação , Colletotrichum/patogenicidade , Colletotrichum/fisiologia , Doenças das Plantas/microbiologia , Esporos Fúngicos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...