Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.565
Filtrar
1.
Chem Commun (Camb) ; 56(3): 399-402, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31820751

RESUMO

A combinatorial approach using a one-bead-one-compound method and a screening based on a SOD-activity assay was set up for the discovery of an efficient peptidyl copper complex. The complex exhibited good stability constants, suitable redox potentials and excellent intrinsic activity. This complex was further assayed in cells for its antioxidant properties and showed beneficial effects when cells were subjected to oxidative stress.


Assuntos
Materiais Biocompatíveis/metabolismo , Cobre/química , Peptídeos/química , Sequência de Aminoácidos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Colo/citologia , Colo/efeitos dos fármacos , Colo/metabolismo , Cobre/metabolismo , Células HT29 , Humanos , Interleucina-8/metabolismo , Lipopolissacarídeos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Peptídeos/metabolismo , Superóxido Dismutase/metabolismo
2.
J Agric Food Chem ; 68(1): 147-159, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31826616

RESUMO

This study was aimed at investigating the hypoglycemic and hypolipidemic effects of a polysaccharide (RTFP) isolated from Rosa roxburghii Tratt fruit on type-2 diabetic db/db mice. The results indicated that the oral administration of RTFP could significantly decrease the body weight, fat, and liver hypertrophy and the levels of fasting blood glucose, serum insulin, and serum lipids of the db/db mice. Histopathological observation showed that RTFP could effectively protect the pancreas, liver, and epididymal fat against damage and dysfunction. Real-time quantitative polymerase chain reaction analysis confirmed that the gene expression levels of peroxisome proliferator-activated receptors-γ (PPAR-γ), sterol regulatory element-binding protein-1 (SREBP-1c), acetyl-CoA carboxylase-1 (ACC-1), fatty acid synthase (FAS), and glucose-6-phosphatase (G6 Pase) were significantly down-regulated in the liver of db/db mice after treatment with RTFP. Moreover, RTFP treatment reversed gut dysbiosis by lowering the Firmicutes-to-Bacteroidetes ratio and enhancing the relative abundances of beneficial bacteria including Bacteroidaceae, Bacteroidaceae S24-7 group, and Lactobacillaceae. These findings suggest that RTFP can be used as a promising functional supplement for the prevention and treatment of type-2 diabetes mellitus.


Assuntos
Colo/microbiologia , Hiperglicemia/tratamento farmacológico , Hiperlipidemias/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Hipolipemiantes/administração & dosagem , Extratos Vegetais/administração & dosagem , Polissacarídeos/administração & dosagem , Rosa/química , Animais , Colo/metabolismo , Modelos Animais de Doenças , Frutas/química , Microbioma Gastrointestinal , Humanos , Hiperglicemia/metabolismo , Hiperglicemia/microbiologia , Hiperlipidemias/metabolismo , Hiperlipidemias/microbiologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Triglicerídeos/metabolismo
3.
J Agric Food Chem ; 68(1): 106-116, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31841325

RESUMO

In vitro colonic fermentation of saponin-rich extracts from quinoa, lentil, and fenugreek was performed. Production of sapogenins by human fecal microbiota and the impact of extracts on representative intestinal bacterial groups were evaluated. The main sapogenins were found after fermentation (soyasapogenol B for lentil; oleanolic acid, hederagenin, phytolaccagenic acid, and serjanic acid for quinoa; and sarsasapogenin, diosgenin, and neotigogenin acetate for fenugreek). Interindividual differences were observed, but the highest production of sapogenins corresponded to quinoa (90 µg/mL) and fenugreek (70 µg/mL) extracts, being minor for lentil (4 µg/mL). Lentil and quinoa extracts showed a general antimicrobial effect, mainly on lactic acid bacteria and Lactobacillus spp. Significant increases of Bifidobacterium spp. and Lactobacillus spp. were observed for fenugreek in one volunteer. Thus, the transformation of saponin-rich extracts of quinoa, lentil, and fenugreek to sapogenins by human gut microbiota is demonstrated, exhibiting a modulatory effect on the growth of selected intestinal bacteria.


Assuntos
Bactérias/metabolismo , Chenopodium quinoa/metabolismo , Colo/microbiologia , Microbioma Gastrointestinal , Extratos Vegetais/metabolismo , Sapogeninas/metabolismo , Saponinas/metabolismo , Trigonella/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Colo/metabolismo , Fermentação , Humanos , Lens (Planta)/metabolismo
4.
Clin Lab ; 65(12)2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31854959

RESUMO

BACKGROUND: The current study aims to detect the expression of miR-142-5p and T-cell lymphoma invasion and metastasis 1 (Tiam1) in colon cancer tissues and adjacent normal tissues, thereby exploring their association with clinical stage and lymph node metastasis of colon cancer. METHODS: Thirty specimens of colon cancer tissues and adjacent tissues were collected. The expressions of miR-142-5p and Tiam1 were detected by RT-PCR. The correlation between them and clinical pathology was analyzed using person correlation assay. RESULTS: The expression of miR-142-5p in colon cancer tissues (0.46 ± 0.25) was lower than that in adjacent tissues (1.00 ± 0.23), and the difference was statistically significant. The expression of Tiam1 gene in colon cancer tissues (5.46 ± 2.34) was higher than that in adjacent tissues (1.00 ± 0.43). There was a significant negative correlation between miR-142-5p and Tiam1 (r = -0.873, p < 0.01). The expression level of miR-142-5p (0.22 ± 0.07) in stage III and IV colon cancer tissues was significantly lower than that in stage I and II colon cancer tissues (0.71 ± 0.21, p < 0.05), while the expression level of Tiam1 mRNA (6.37 ± 1.98) in stage III and IV colon cancer tissues was significantly higher than that in stage I and II colon cancer tissues (2.86 ± 1.32, p < 0.05). Furthermore, the expression of miR-142-5p in colon cancer with lymph node metastasis was significantly lower than that in colon cancer without lymph node metastasis, while the expression of Tiam1 was contrary to that in colon cancer without lymph node metastasis. CONCLUSIONS: In summary, miR-142-5p and Tiam-1 may be potential diagnostic markers for colon cancer.


Assuntos
Colo/metabolismo , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Proteínas de Ligação a RNA/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Colo/patologia , Neoplasias do Colo/diagnóstico , Neoplasias do Colo/metabolismo , Feminino , Células HT29 , Humanos , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Proteínas de Ligação a RNA/metabolismo
5.
J Agric Food Chem ; 67(46): 12796-12805, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31659898

RESUMO

Whole-grain dietary fiber is rich in bound-form phenolics, and the biological activity of this special structural feature has attracted increasing attention. In this study, rice bran dietary fiber (RBDF) was subjected to in vitro gastrointestinal digestion and colonic fermentation to investigate the liberation of bound phenolics and their potential activities. Bound phenolics were released at a higher ratio during colonic fermentation (27.57%) than gastrointestinal digestion (2.68%). Nine phenolic compounds were detected from the fermentation supernatants. The released phenolics showed radical scavenging activity (DPPH and ABTS assays) and α-glucosidase inhibitory activity (IC50 = 19.11 µg GAE/mL). Compared with phenolics-removed RBDF (PR-RBDF), RBDF had a significantly stronger prebiotic effect on the microbes associated with diabetes (Lactobacillus spp., Akkermansia muciniphila, and Faecalibacterium prausnitzii). These findings indicate that bound phenolics may act as important functional components that could contribute to the health benefits of whole-grain dietary fiber.


Assuntos
Colo/metabolismo , Fibras na Dieta/análise , Trato Gastrointestinal/metabolismo , Oryza/metabolismo , Fenóis/química , Compostos Fitoquímicos/química , Prebióticos/análise , Adulto , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Colo/microbiologia , Fibras na Dieta/metabolismo , Feminino , Fermentação , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Humanos , Masculino , Oryza/química , Fenóis/metabolismo , Compostos Fitoquímicos/metabolismo , Adulto Jovem
6.
J Enzyme Inhib Med Chem ; 34(1): 1590-1596, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31581863

RESUMO

Oral colon administration system has become a new method to treat intestinal diseases. The implementation of colon drug delivery system is restricted by many aspects, including physical and chemical properties, drug delivery mode, gastrointestinal physiological factors, and so on. Delivery methods to overcome these challenges revolve around the mechanisms of drug delivery, including the use of rational dosage forms to avoid the complex pH environment, and the prevention of drug release and absorption in the upper digestive tract.


Assuntos
Colo , Portadores de Fármacos/química , Administração Oral , Animais , Colo/metabolismo , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Portadores de Fármacos/administração & dosagem , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Microbioma Gastrointestinal , Humanos , Concentração de Íons de Hidrogênio , Enteropatias/tratamento farmacológico , Polímeros/química
7.
J Agric Food Chem ; 67(43): 12094-12104, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31566978

RESUMO

A large portion of Maillard reaction products (MRPs) cannot be absorbed in the upper gut and therefore may be further decomposed and utilized by colonic microbiota (CM). This work reported the stability of UV-absorbent MRPs, fluorescent MRPs and peptide-bound N(ε)-(carboxymethyl)-lysine (CML) in high molecular weight (HMW, >10 kDa), medium molecular weight (MMW, 1-10 kDa), and low molecular weight (LMW, <1 kDa) gastrointestinal digests of glyoxal-glycated casein in the presence of CM. Fluorescent MRPs showed high stability, whereas UV-absorbent MRPs may be partially decomposed. A higher depletion rate of CML was found in the LMW fraction (38.7%) than in the MMW (21.7%) and HMW (9.6%) fractions. The 16S rRNA sequencing results revealed both beneficial and detrimental changes in CM composition induced by the glycated fractions. Generation of short-chain and branched-chain fatty acids in fermentation solutions with glycated fractions was significantly suppressed compared with that in fermentation solution with unglycated digests. This work revealed the possible interplay between peptide-bound MRPs and CM.


Assuntos
Caseínas/metabolismo , Colo/microbiologia , Microbioma Gastrointestinal , Produtos Finais de Glicação Avançada/metabolismo , Glioxal/metabolismo , Peptídeos/metabolismo , Adulto , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Caseínas/química , Colo/metabolismo , Ácidos Graxos Voláteis/metabolismo , Feminino , Produtos Finais de Glicação Avançada/química , Glioxal/química , Humanos , Reação de Maillard , Masculino , Peptídeos/química , Adulto Jovem
8.
Nat Commun ; 10(1): 4368, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31554819

RESUMO

The colonic epithelial turnover is driven by crypt-base stem cells that express the R-spondin receptor Lgr5. Signals that regulate epithelial regeneration upon stem cell injury are largely unknown. Here, we explore the dynamics of Wnt signaling in the colon. We identify two populations of cells with active Wnt signaling: highly proliferative Lgr5+/Axin2+ cells, as well as secretory Lgr5-/Axin2+ cells. Upon Lgr5+ cell depletion, these cells are recruited to contribute to crypt regeneration. Chemical injury induced by DSS leads to a loss of both Lgr5+ cells and Axin2+ cells and epithelial regeneration is driven by Axin2- cells, including differentiated Krt20+ surface enterocytes. Regeneration requires stromal Rspo3, which is present at increased levels upon injury and reprograms Lgr5- but Lgr4+ differentiated cells. In contrast, depletion of stromal Rspo3 impairs crypt regeneration, even upon mild injury. We demonstrate that Rspo3 is essential for epithelial repair via induction of Wnt signaling in differentiated cells.


Assuntos
Colo/fisiologia , Mucosa Intestinal/fisiologia , Regeneração/fisiologia , Células-Tronco/metabolismo , Trombospondinas/metabolismo , Animais , Proteína Axina/genética , Proteína Axina/metabolismo , Diferenciação Celular/genética , Colite/genética , Colite/metabolismo , Colo/metabolismo , Enterócitos/metabolismo , Perfilação da Expressão Gênica/métodos , Mucosa Intestinal/metabolismo , Queratina-20/genética , Queratina-20/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Receptores Acoplados a Proteínas-G/genética , Receptores Acoplados a Proteínas-G/metabolismo , Regeneração/genética , Células-Tronco/citologia , Trombospondinas/genética , Via de Sinalização Wnt/genética
9.
Nat Commun ; 10(1): 4306, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31541089

RESUMO

The mucus layer is the first line of innate host defense in the gut that protects the epithelium by spatially separating commensal bacteria. MUC2 mucin is produced and stored by goblet cells that is constitutively exocytosed or hyper secreted upon sensing a threat. How coordinated mucus exocytosis maintains homeostasis in the intestinal epithelium and modulates the immunological landscape remains elusive. Here we describe how the vesicle SNARE protein VAMP8 coordinates mucin exocytosis from goblet cells. Vamp8-/- exhibit a mild pro-inflammatory state basally due to an altered mucus layer and increased encounters with microbial antigens. Microbial diversity shifts to a detrimental microbiota with an increase abundance of pathogenic and mucolytic bacteria. To alleviate the heavy microbial burden and inflammatory state basally, Vamp8-/- skews towards tolerance. Despite this, Vamp8-/- is highly susceptible to both chemical and infectious colitis demonstrating the fragility of the intestinal mucosa without proper mucus exocytosis mechanisms.


Assuntos
Colo/metabolismo , Exocitose/fisiologia , Células Caliciformes/metabolismo , Mucosa Intestinal/metabolismo , Mucina-2/metabolismo , Proteínas R-SNARE/metabolismo , Animais , Biodiversidade , Colo/patologia , Citocinas/metabolismo , Células Caliciformes/patologia , Homeostase , Humanos , Intestinos/patologia , Camundongos Knockout , Microbiota , Mucina-2/genética , Muco/metabolismo , Fenótipo , Proteínas R-SNARE/genética , Proteínas SNARE/metabolismo
10.
Gastroenterology ; 157(6): 1544-1555.e3, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31473225

RESUMO

BACKGROUND & AIMS: Sperm flagellar 1 (also called CLAMP) is a microtubule-associated protein that regulates microtubule dynamics and planar cell polarity in multi-ciliated cells. We investigated the localization and function of sperm flagellar 1, or CLAMP, in human intestinal epithelia cells (IECs). METHODS: We performed studies with SKCO-15 and human intestinal enteroids established from biopsies from different intestinal segments (duodenal, jejunum, ileal, and colon) of a single donor. Enteroids were induced to differentiation after incubation with growth factors. The distribution of endogenous CLAMP in IECs was analyzed by immunofluorescence microscopy using total internal reflection fluorescence-ground state depletion and confocal microscopy. CLAMP localization was followed during the course of intestinal epithelial cell polarization as cells progressed from flat to compact, confluent monolayers. Protein interactions with endogenous CLAMP were determined in SKCO-15 cells using proximity ligation assays and co-immunoprecipitation. CLAMP was knocked down in SKCO-15 monolayers using small hairpin RNAs and cells were analyzed by immunoblot and immunofluorescence microscopy. The impact of CLAMP knock-down in migrating SKCO-15 cells was assessed using scratch-wound assays. RESULTS: CLAMP bound to actin and apical junctional complex proteins but not microtubules in IECs. In silico analysis predicted the calponin-homology domain of CLAMP to contain conserved amino acids required for actin binding. During IEC polarization, CLAMP distribution changed from primarily basal stress fibers and cytoplasm in undifferentiated cells to apical membranes and microvilli in differentiated monolayers. CLAMP accumulated in lamellipodia and filopodia at the leading edge of migrating cells in association with actin. CLAMP knock-down reduced the number of filopodia, perturbed filopodia polarity, and altered the organization of actin filaments within lamellipodia. CONCLUSIONS: CLAMP is an actin-binding protein, rather than a microtubule-binding protein, in IECs. CLAMP distribution changes during intestinal epithelial cell polarization, regulates the formation of filopodia, and appears to assist in the organization of actin bundles within lamellipodia of migrating IECs. Studies are needed to define the CLAMP domains that interact with actin and whether its loss from IECs affects intestinal function.


Assuntos
Actinas/metabolismo , Movimento Celular , Mucosa Intestinal/citologia , Proteínas dos Microfilamentos/metabolismo , Pseudópodes/metabolismo , Animais , Células COS , Linhagem Celular Tumoral , Colo/citologia , Colo/metabolismo , Células Epiteliais , Humanos , Mucosa Intestinal/metabolismo , Microtúbulos/metabolismo
11.
J Pharm Biomed Anal ; 175: 112768, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31398630

RESUMO

Recent data clearly show that the gut microbiota plays a significant role in the biotransformation of many endogenous molecules and xenobiotics, leading to a potential influence of this microbiotic metabolism on activation, inactivation and possible toxicity of these compounds. To study the colonic biotransformation of xenobiotics by the gut microbiome, in vitro models are often used as they allow dynamic and multiple sampling overtime. However, the pre-analytical phase should be carefully optimized to enable biotransformation product identification representative for the in vivo situation. During this study, chlorogenic acid was used as a model compound to optimize a ready-to-use gut microbiome biotransformation platform using an in vitro gastrointestinal dialysis-model with colon phase together with an instrumental platform using liquid chromatography coupled to high resolution mass spectrometry (LC-QTOF-MS). Identification of the biotransformation products of chlorogenic acid was performed using complementary suspect and non-targeted data analysis approaches (MZmine + R and MPP workflow). Concerning the pre-analytical phase, (i) the influence of different incubation media (Wilkins-Chalgren Anaerobic Broth (WCB) and (versus) phosphate buffer) and different incubation times (prior to implementation in the colonic stage of the dialysis model) on fecal bacterial composition and concentration were investigated and (ii) four different sample preparation methods (centrifugation, extraction, sonication and freeze-drying) were evaluated targeting colonic biotransformation of chlorogenic acid. WCB as incubation medium showed to introduce substantial variation in the bacterial composition of the fecal samples, while the sterile phosphate buffer guaranteed a closer resemblance to the in vivo composition. Furthermore, incubation during 24 h in sterile phosphate buffer as medium showed no significant increase or decrease in anaerobic bacterial concentration, concluding that incubation prior to the colonic stage is not needed. Concerning sample preparation, centrifugation, sonication and extraction gave similar results, while freeze-drying appeared to be inferior. The extraction method was selected as an optimal sample preparation method given the quick execution together with a good instrumental sensitivity. This study optimized a ready-to-use platform to investigate colonic biotransformation of xenobiotics by using chlorogenic acid as a model compound. This platform can be used in the future to study differences in colonic biotransformation of xenobiotics using fecal samples of different patient groups.


Assuntos
Bactérias/metabolismo , Biotransformação/fisiologia , Ácido Clorogênico/metabolismo , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/metabolismo , Adulto , Cromatografia Líquida/métodos , Colo/metabolismo , Fezes/microbiologia , Feminino , Humanos , Espectrometria de Massas/métodos , Pessoa de Meia-Idade , Diálise Renal/métodos , Xenobióticos/metabolismo
12.
J Agric Food Chem ; 67(35): 9831-9839, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31407897

RESUMO

Probiotic lactobacilli and their exopolysaccharides (EPS) are thought to modulate mucosal homeostasis; however, their mechanisms remain elusive. Thus, we tried to clarify the role of exopolysaccharides from Lactobacillus plantarum NCU116 (EPS116) in the intestinal mucosal homeostasis. Our results indicated that EPS116 regulated the colon mucosal healing and homeostasis, enhanced the goblet cell differentiation, and promoted the expression of Muc2 gene in vivo and in vitro. Further experiments showed that EPS116 promoted the expression and phosphorylation of transcription factor c-Jun and facilitated its binding to the promoter of Muc2. Moreover, knocking down c-Jun or inhibiting its function in LS 174T cells treated with EPS116 led to decreased expression of Muc2, implying that EPS116 promoted the colonic mucosal homeostasis and Muc2 expression via c-Jun. Therefore, our study uncovered a novel model where EPS116 enhanced colon mucosal homeostasis by controlling the epithelial cell differentiation and c-Jun/Muc2 signaling.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Colo/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Lactobacillus plantarum/química , Mucina-2/metabolismo , Polissacarídeos Bacterianos/farmacologia , Proteínas Proto-Oncogênicas c-jun/metabolismo , Animais , Linhagem Celular Tumoral , Colo/citologia , Colo/metabolismo , Colo/fisiopatologia , Homeostase/efeitos dos fármacos , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mucina-2/genética , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-jun/genética , Transdução de Sinais/efeitos dos fármacos
13.
Integr Cancer Ther ; 18: 1534735419864434, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31370719

RESUMO

Objective: To identify prognostic biomarkers and drugs that target them in colon adenocarcinoma (COAD) based on the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus databases. Methods: The TCGA dataset was used to identify the top 50 upregulated differentially expressed genes (DEGs), and Gene Expression Omnibus profiles were used for validation. Survival analyses were conducted with the TCGA dataset using the RTCGAToolbox package in the R software environment. Drugs targeting the candidate prognostic biomarkers were searched in the DrugBank and herbal databases. Results: Among the top 50 upregulated DEGs in patients with COAD in the TCGA dataset, the Wnt signaling pathway and cytokine-cytokine receptor interactions and pathways in cancer Kyoto Encyclopedia of Genes and Genomes pathway analysis were enriched in DEGs. Tissue development and regulation of cell proliferation were the main Gene Ontology biological processes associated with upregulated DEGs. MYC and KLK6 were overexpressed in tumors validated in the TCGA, GSE41328, and GSE113513 databases (all P < .001) and were significantly associated with overall survival in patients with COAD (P = .021 and P = .047). Nadroparin and benzamidine were identified as inhibitors of MYC and KLK6 in DrugBank, and 8 herbs targeting MYC, including Da Huang (Radix Rhei Et Rhizome), Hu Zhang (Polygoni Cuspidati Rhizoma Et Radix), Huang Lian (Coptidis Rhizoma), Ban Xia (Arum Ternatum Thunb), Tu Fu Ling (Smilacis Glabrae Rhixoma), Lei Gong Teng (Tripterygii Radix), Er Cha (Catechu), and Guang Zao (Choerospondiatis Fructus), were identified. Conclusion: MYC and KLK6 may serve as candidate prognostic predictors and therapeutic targets in patients with COAD.


Assuntos
Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Biomarcadores Tumorais/metabolismo , Colo/metabolismo , Colo/patologia , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Calicreínas/metabolismo , Prognóstico , Análise de Sobrevida , Transcriptoma/fisiologia , Regulação para Cima/fisiologia , Via de Sinalização Wnt/fisiologia
14.
Cell Prolif ; 52(6): e12673, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31418947

RESUMO

OBJECTIVE: Inflammatory bowel disease (IBD) is a disorder intestinal inflammation and impaired barrier function, associated with increased epithelial expression of monocarboxylate transporter 4 (MCT4). However, the specific non-metabolic function and clinical relevance of MCT4 in IBD remain to be fully elucidated. METHODS: Lentivirus-mediated overexpression of MCT4 was used to assess the role of MCT4 in transcriptionally regulating ZO-1 and IL-6 expression by luciferase assays, WB and ChIP. IP was used to analyse the effect of MCT4 on the interaction NF-κB-CBP or CREB-CBP, and these MCT4-mediated effects were confirmed in vivo assay. RESULTS: We showed that ectopic expression of MCT4 inhibited ZO-1 expression, while increased pro-inflammatory factors expression, leading to destroy intestinal epithelial barrier function in vitro and in vivo. Mechanistically, MCT4 contributed NF-κB p65 nuclear translocation and increased the binding of NF-κB p65 to the promoter of IL-6, which is attributed to MCT4 enhanced NF-κB-CBP interaction and dissolved CREB-CBP complex, resulting in reduction of CREB activity and CREB-mediated ZO-1 expression. In addition, treatment of experimental colitis with MCT4 inhibitor α-cyano-4-hydroxycinnamate (CHC) ameliorated mucosal intestinal barrier function, which was due to attenuation of pro-inflammation factors expression and enhancement of ZO-1 expression. CONCLUSION: These findings suggested a novel role of MCT4 in controlling development of IBD and provided evidence for potential targets of IBD.


Assuntos
Epitélio/efeitos dos fármacos , Interleucina-6/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Células CACO-2 , Colo/metabolismo , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Fator de Transcrição RelA/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Proteína da Zônula de Oclusão-1/efeitos dos fármacos
15.
Anal Chim Acta ; 1081: 120-130, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31446949

RESUMO

Mass spectrometry-based approaches enable us to capture changes in the metabolome in biological systems with high sensitivity and resolution. But global MS-based profiling of the bile acids (BAs) submetabolome is still a challenging task. Particularly for unconjugated BAs, the collision-induced dissociation (CID) fragment ions showed low ion intensities which were insufficient for analysis. This study is aimed at the development of an anion attachment MS-based approach for pseudotargeted profiling of the BAs submetabolome. We demonstrated that anion attachment MS with the combination use of ammonia fluoride (NH4F) and formate could provide stable anionic adduct ([M + HCOO]-) with good MS responses for unconjugated BAs. A mechanistic study revealed that the underlying rationale is due to the NH4F-induced approximate matching of attractions between BAs and anion for the 24-carboxyl hydrogen. This 24-carboxyl hydrogen regioselectivity is useful to screen for potential unconjugated BAs from the biological matrix. The stability and regioselectivity of anion attachment allowed the establishment of SRM transitions for unconjugated BAs for the first time. To profile conjugated BAs that come from the conjugation of glycine or taurine at 24-carboxyl hydrogen, specific precursor/fragment ion transitions were used for the detection. Finally, SRM-based UPLC-MS/MS method was developed for the pseudotargeted profiling of the BAs submetabolome with good linearity (r2 > 0.995) and high sensitivity (0.20-1.37 ng mL-1 for LLOQ). With this method, a total of 83 BAs, covering 45 unconjugated BAs and 38 conjugated BAs, were successfully determined in different biosamples from experimental colitis mice. The BAs metabolism homeostasis was disrupted by colitis, characterized by the decreased BAs levels in serum and excessive BAs accumuation in the gall bladder and colon. Overall, the present anion attachment MS-based approach is sufficiently sensitive and robust to comprehensively measure various BAs.


Assuntos
Compostos de Amônio/química , Ácidos e Sais Biliares/análise , Fluoretos/química , Metabolômica/métodos , Animais , Bile/química , Ácidos e Sais Biliares/química , Cromatografia Líquida de Alta Pressão/métodos , Colite/induzido quimicamente , Colite/metabolismo , Colo/metabolismo , Vesícula Biliar/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Dodecilsulfato de Sódio , Espectrometria de Massas por Ionização por Electrospray/métodos , Sulfassalazina/farmacologia
16.
Immunology ; 158(1): 35-46, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31429085

RESUMO

Chronic inflammation may drive development of cancer as observed in inflammation-induced colorectal cancer (CRC). Though immune cells can infiltrate the tumour microenvironment, cancer cells seem to evade anti-tumour responses, which is one of the established hallmarks of cancer. Targeting the programmed cell death protein-1 (PD-1)/PD-L1 signalling pathway is currently at the forefront in the development of anti-tumour immunity-based therapies for multiple malignancies. By blocking the immune-checkpoint of activated T-cells, it is possible to rewire the adaptive resistance induced by the PD-1 ligands expressed in the tumour microenvironment. However, adverse immunotherapy-modulated events could complicate the treatment of individuals with preexisting chronic inflammatory conditions. In this study, we investigated the expression of different systemic and mucosal T-cell subsets during the course of azoxymethane (AOM)/dextran sulphate sodium (DSS)-induced colitis and colitis-associated CRC. In addition, we examined the expression of PD-1 and its ligands PD-L1 and PD-L2 as well as other molecular targets related to T-cell exhaustion. We found a significant increase in PD-1 expression on all examined mucosal T-cell subsets of the colon and the ileum, which correlated with disease progression. We also observed an upregulation of PD-L1 and PD-L2 mRNA expression throughout the AOM/DSS regime. Blocking PD-1 signalling with an anti-PD1 antibody did not affect the tumour burden in the AOM/DSS-treated mice, but did potentiate the weight loss in the third DSS cycle, indicating possible immune-mediated toxicity. This raises a concern for patients with colitis-associated CRCs and should be further investigated.


Assuntos
Azoximetano , Colite/metabolismo , Colo/metabolismo , Neoplasias Colorretais/metabolismo , Sulfato de Dextrana , Mucosa Intestinal/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T/metabolismo , Animais , Antígeno B7-H1/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/imunologia , Transformação Celular Neoplásica/metabolismo , Colite/induzido quimicamente , Colite/genética , Colite/imunologia , Colo/imunologia , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Mucosa Intestinal/imunologia , Ativação Linfocitária , Camundongos Endogâmicos C57BL , Fenótipo , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/genética , Transdução de Sinais , Linfócitos T/imunologia , Regulação para Cima
17.
PLoS Pathog ; 15(8): e1008031, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31465434

RESUMO

Enterohemorrhagic E. coli (EHEC) is a human intestinal pathogen that causes hemorrhagic colitis and hemolytic uremic syndrome. No vaccines or specific therapies are currently available to prevent or treat these infections. EHEC tightly attaches to the intestinal epithelium by injecting the intimin receptor Tir into the host cell via a type III secretion system (T3SS). In this project, we identified a camelid single domain antibody (nanobody), named TD4, that recognizes a conserved Tir epitope overlapping the binding site of its natural ligand intimin with high affinity and stability. We show that TD4 inhibits attachment of EHEC to cultured human HeLa cells by preventing Tir clustering by intimin, activation of downstream actin polymerization and pedestal formation. Furthermore, we demonstrate that TD4 significantly reduces EHEC adherence to human colonic mucosa in in vitro organ cultures. Altogether, these results suggest that nanobody-based therapies hold potential in the development of much needed treatment and prevention strategies against EHEC infection.


Assuntos
Aderência Bacteriana/fisiologia , Colo/metabolismo , Escherichia coli Êntero-Hemorrágica/fisiologia , Infecções por Escherichia coli/metabolismo , Proteínas de Escherichia coli/antagonistas & inibidores , Receptores de Superfície Celular/antagonistas & inibidores , Anticorpos de Domínio Único/farmacologia , Sequência de Aminoácidos , Animais , Aderência Bacteriana/efeitos dos fármacos , Sítios de Ligação , Camelus , Colo/microbiologia , Colo/patologia , Escherichia coli Êntero-Hemorrágica/efeitos dos fármacos , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Proteínas de Escherichia coli/imunologia , Proteínas de Escherichia coli/metabolismo , Células HeLa , Humanos , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/metabolismo , Homologia de Sequência , Anticorpos de Domínio Único/imunologia
18.
J Physiol Pharmacol ; 70(2)2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31443089

RESUMO

Crohn's Disease (CD), one of the types of inflammatory bowel disease, poses a significant challenge to modern healthcare. This condition severely impacts patients' quality of life, and its incidence is continuously rising. Despite constant research, current treatment options are limited and largely unsuccessful and result in serious side effects, therefore new therapy alternatives are needed. Liposomal formulation provides a new hope for disease management. In our study, we characterized the anti-inflammatory activity of mesalazine (5-ASA) and chlorogenic acid (CGA) encapsulated in liposomal formulation in the animal model of CD. Liposomes were obtained by thin film hydration method and characterized in terms of suspension stability and particle size and distribution. Colitis was induced in mice by intracolonic (i.c.) administration of 2,4,6-trinitrobenzenesulfonic acid (TNBS). The effect of treatment with liposomal suspensions of 5-ASA and CGA was evaluated macroscopically and by measuring myeloperoxidase (MPO) activity. We observed that liposome-encapsulated 5-ASA (5 mg/kg), but not CGA (20 mg/kg) attenuated colitis as evidenced by a decreased macroscopic and microscopic scores. It may be hypothesized that the composition of liposomal lipid bilayer as well as the switch in macrophage populations leading to unfavorable accumulation of anti-inflammatory agents in the cells may underly the efficiency of obtained liposomes and need to be taken into consideration in further studies on drug delivery.


Assuntos
Ácido Clorogênico/química , Ácido Clorogênico/farmacologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Lipossomos/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Colite/metabolismo , Colo/efeitos dos fármacos , Colo/metabolismo , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Masculino , Mesalamina/química , Mesalamina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Peroxidase/metabolismo , Qualidade de Vida , Ácido Trinitrobenzenossulfônico
19.
Biomed Pharmacother ; 117: 109182, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31387175

RESUMO

Bisphenol A (BPA), a widely used industrial compound worldwide, was recently classified as an environmental toxicant. The intestines and liver are responsible for detoxification in humans and animals, and functional damage to these organs adversely affects the health of the body. However, the effect of BPA on intestinal and liver function remains unclear. In this study, we investigated the effects of dietary BPA uptake on oxidative stress, inflammatory response, apoptosis and mitochondrial function in the colons and livers of mice. Dietary BPA uptake significantly reduced the body weights of mice as well as their colon and liver weights. Dietary BPA uptake increased the levels of oxidative stress indicators such as reactive oxygen species, reactive nitrogen species, malondialdehyde and hydrogen peroxide in mouse serum, colon and liver tissues. Antioxidant indicators, such as superoxide dismutase, glutathione peroxidase, catalase and total antioxidant capacity, as well as proinflammatory cytokines (interleukin-1ß, interleukin-6, interleukin-8 and tumor necrosis factor-α) were also significantly reduced in the serum, colon, and liver tissues in the BPA group. Moreover, mitochondria-encoded genes and mitochondrial copy numbers were significantly reduced in the colon and liver tissues of the BPA mice. Dietary BPA uptake also increased gene abundance and enzyme activity of caspase-3, -8, -9 and -10. Our study found that dietary BPA induced oxidative stress, inflammatory response, apoptosis and mitochondrial dysfunction in mouse colons and livers.


Assuntos
Apoptose/efeitos dos fármacos , Compostos Benzidrílicos/efeitos adversos , Colo/efeitos dos fármacos , Inflamação/induzido quimicamente , Fígado/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fenóis/efeitos adversos , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Colo/metabolismo , Glutationa Peroxidase/metabolismo , Inflamação/metabolismo , Fígado/metabolismo , Masculino , Malondialdeído/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
20.
Nutrients ; 11(8)2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31362373

RESUMO

BACKGROUND: In this study, we investigate the impact of epigallocatechin gallate (EGCG), the most abundant and potent catechin in green tea, on a mouse model of inflammatory bowel disease (IBD) and the underlying mechanisms of action. METHODS: C57BL/6J mice were subjected to dextran sulfate sodium (DSS)-induced IBD-like disease and then randomly divided into three groups: Model group (MD), low-dose EGCG group (LE, 20 mg/kg/d), and high-dose EGCG group (HE, 50 mg/kg/d). DSS-induced clinical and macroscopic changes were monitored daily. Intestinal permeability was assessed by FITC-Dextran assay. RESULTS: Both high- and low-dose EGCG treatment alleviated clinical manifestations including body weight loss and disease activity index (DAI) of DSS-induced colitis. The DAI score was significantly improved after two days of EGCG treatment. At the end of the study, the macroscopic severity score (MSS) of HE and LE treatment groups were 2.4 ± 1.2, and 2.2 ± 1.0, respectively, significantly lower than that of the controls (5.0 ± 2.1). EGCG treatment also prevented colon shortening, and improved intestinal permeability and histopathological changes. In addition, EGCG treatment attenuated colon inflammation by suppressing colonic levels of pro-inflammatory cytokines IL-6, MCP-1, and TNF-alpha, and inhibited CD3+ T cell and CD68+ macrophage infiltration. CONCLUSION: EGCG is effective in inflammatory colitis because it reduces cellular and molecular inflammation, and reduces intestinal permeability.


Assuntos
Anti-Inflamatórios/administração & dosagem , Catequina/análogos & derivados , Colite/prevenção & controle , Colo/efeitos dos fármacos , Citocinas/metabolismo , Fármacos Gastrointestinais/administração & dosagem , Mediadores da Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Animais , Catequina/administração & dosagem , Colite/imunologia , Colite/metabolismo , Colite/patologia , Colo/imunologia , Colo/metabolismo , Colo/patologia , Citocinas/imunologia , Sulfato de Dextrana , Modelos Animais de Doenças , Mediadores da Inflamação/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Permeabilidade , Linfócitos T/imunologia , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA