Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.632
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(37): 23158-23164, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32868421

RESUMO

The recently discovered, chlorophyll-f-containing, far-red photosystem II (FR-PSII) supports far-red light photosynthesis. Participation and kinetics of spectrally shifted far-red pigments are directly observable and separated from that of bulk chlorophyll-a We present an ultrafast transient absorption study of FR-PSII, investigating energy transfer and charge separation processes. Results show a rapid subpicosecond energy transfer from chlorophyll-a to the long-wavelength chlorophylls-f/d The data demonstrate the decay of an ∼720-nm negative feature on the picosecond-to-nanosecond timescales, coinciding with charge separation, secondary electron transfer, and stimulated emission decay. An ∼675-nm bleach attributed to the loss of chl-a absorption due to the formation of a cation radical, PD1 +•, is only fully developed in the nanosecond spectra, indicating an unusually delayed formation. A major spectral feature on the nanosecond timescale at 725 nm is attributed to an electrochromic blue shift of a FR-chlorophyll among the reaction center pigments. These time-resolved observations provide direct experimental support for the model of Nürnberg et al. [D. J. Nürnberg et al., Science 360, 1210-1213 (2018)], in which the primary electron donor is a FR-chlorophyll and the secondary donor is chlorophyll-a (PD1 of the central chlorophyll pair). Efficient charge separation also occurs using selective excitation of long-wavelength chlorophylls-f/d, and the localization of the excited state on P720* points to a smaller (entropic) energy loss compared to conventional PSII, where the excited state is shared over all of the chlorin pigments. This has important repercussions on understanding the overall energetics of excitation energy transfer and charge separation reactions in FR-PSII.


Assuntos
Clorofila/metabolismo , Transferência de Energia/fisiologia , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Transporte de Elétrons/fisiologia , Cinética , Luz , Análise Espectral/métodos
2.
Ecotoxicol Environ Saf ; 203: 111019, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888606

RESUMO

Sulfur dioxide (SO2) is one of the most common and harmful air pollutants. High concentrations of SO2 can induce a series of defensive responses in Arabidopsis plants. However, the role of photosynthesis in the plant response to SO2 stress is not clear. Here, we report the photosynthetic responses of Arabidopsis plants to SO2 stress. Exposure to 30 mg/m3 SO2 decreased stomatal conductance (Gs) and transpiration rate (Tr) but increased photosynthetic pigments and net photosynthetic rate (Pn). The contents of carbohydrates and sucrose were not altered. The transcript levels of most genes related to photosystem II (PSII), cytochrome b6/f (Cytb6f), photosystem I (PSI) and carbon fixation were upregulated, revealing one important regulatory circuit for the maintenance of chloroplast homeostasis under SO2 stress. Exposure to SO2 triggered reactive oxygen species (ROS) generation, accompanied by increases in superoxide dismutase (SOD) activity and the contents of cysteine (Cys), glutathione (GSH) and non-protein thiol (NPT), which maintained cellular redox homeostasis. Together, our results indicated that chloroplast photosynthesis was involved in the plant response to SO2 stress. The photosynthetic responses were related to photosynthetic pigments, photosynthesis gene expression and redox regulation.


Assuntos
Poluentes Atmosféricos/toxicidade , Arabidopsis/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Pigmentos Biológicos/metabolismo , Dióxido de Enxofre/toxicidade , Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Regulação para Baixo , Fotossíntese/genética , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Regulação para Cima
3.
Ecotoxicol Environ Saf ; 204: 111136, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32798755

RESUMO

High temperature can lead to increased production of excess light energy, thus reducing photosynthetic capacity in plants. Photosynthetic cyclic electron flow (CEF) in photosystem I (PSI) can effectively protect photosystems, but its physiological mechanism under high temperature is poorly understood. In this study, antimycin A (AA) and thenoyltrifluoroacetone (TTFA) were used to inhibit PGR5-and NDH-dependent CEF pathways, respectively, to reveal the photoprotective functions of CEF for PSII in tobacco leaves under high temperature stress (37 °C, HT). High temperatures caused decreases in maximal photochemistry efficiency (Fv/Fm) and damaged photosystem II (PSII) in tobacco leaves. Under AA inhibition of PGR5-dependent CEF, high temperature increased the fluorescence intensity of point O (Fo) in OJIP curves, i.e., the energy absorption per active reaction center (ABS/RC), the trapping rate of the reaction center (TRo/RC), and the electron transport efficiency per reaction center (ETo/RC) in tobacco leaves. High temperature induced an increase in the hydrogen peroxide content and a decrease in pigment content in tobacco leaves. Under the high temperature treatment, inhibition of PGR5-dependent CEF reduced the activities of the PSII reaction center significantly, destroyed the oxygen-evolving complex (OEC), and impeded photosynthetic electron transfer from PSII to the plastoquinone (PQ) pool in tobacco leaves. The TTFA treatment inhibited the NDH-dependent pathway under high temperature conditions, with the relative fluorescence intensity of point I (VI) decreased significantly, and the content of hydrogen peroxide and superoxide anion increased significantly. Additionally, Fo and the redox degree of the PSII donor side (Wk) increased, and pigment content decreased compared to the control, but with little change compared to high temperature treatment, indicating that the inhibition of the NDH-dependent pathway directly weakened the capacity of the PQ pool to lead to the accumulation of reactive oxygen species (ROS) in tobacco leaves. In conclusion, CEF alleviated damage to the photosynthetic apparatus in tobacco leaves by increasing PSII heat dissipation, reducing ROS production, and maintaining the stability of the PQ pool to accommodate photosynthetic electron flow.


Assuntos
Temperatura Alta , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/metabolismo , Tabaco/metabolismo , Clorofila/metabolismo , Transporte de Elétrons , Elétrons , Fluorescência , Oxirredução , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Temperatura , Tabaco/fisiologia
4.
PLoS One ; 15(8): e0237173, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32845897

RESUMO

Gentian is an important ornamental flower in Japan. The corolla of the majority of cultivated Japanese gentians have green spots, which are rarely encountered in flowers of other angiosperms. Little information is available on the functional traits of the green spots. In this study, we characterized the green spots in the Japanese gentian corolla using a number of microscopic techniques. Opto-digital microscopy revealed that a single visible green spot is composed of approximately 100 epidermal cells. The epidermal cells of a green spot formed a dome-like structure and the cell lumen contained many green structures that were granular and approximately 5 µm in diameter. The green structures emitted red autofluorescence when irradiated with 488 nm excitation light. Transmission electron microscopy revealed that the green structures contained typical thylakoids and grana, thus indicating they are chloroplasts. No grana were observed and the thylakoids had collapsed in the plastids of epidermal cells surrounding green spots. To estimate the rate of photosynthetic electron transfer of the green spots, we measured chlorophyll fluorescence using the MICROSCOPY version of an Imaging-PAM (pulse-amplitude-modulated) fluorometer. Under actinic light of 449 µmol m-2 s-1, substantial electron flow through photosystem II was observed. Observation of green spot formation during corolla development revealed that immature green spots formed at an early bud stage and developed to maturity associated with chloroplast degradation in the surrounding epidermal cells. These results confirmed that the Japanese gentian corolla contains functional chloroplasts in restricted areas of epidermal cells and indicated that a sophisticated program for differential regulation of chloroplast formation and degradation is operative in the epidermis.


Assuntos
Flores/citologia , Flores/metabolismo , Gentiana/anatomia & histologia , Tilacoides/metabolismo , Clorofila/metabolismo , Transporte de Elétrons , Japão , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Folhas de Planta/metabolismo
5.
PLoS One ; 15(8): e0237569, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32817667

RESUMO

Several 'super-complexes' of individual hetero-oligomeric membrane protein complexes, whose function is to facilitate intra-membrane electron and proton transfer and harvesting of light energy, have been previously characterized in the mitochondrial cristae and chloroplast thylakoid membranes. We report the presence of an intra-membrane super-complex dominated by the ATP-synthase, photosystem I (PSI) reaction-center complex and the ferredoxin-NADP+ Reductase (FNR) in the thylakoid membrane. The presence of the super-complex has been documented by mass spectrometry, clear-native PAGE and Western Blot analyses. This is the first documented presence of ATP synthase in a super-complex with the PSI reaction-center located in the non-appressed stromal domain of the thylakoid membrane.


Assuntos
Cloroplastos/metabolismo , Ferredoxina-NADP Redutase/metabolismo , Óxido Nítrico Sintase/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Tilacoides/metabolismo , Trifosfato de Adenosina/metabolismo , Transporte de Elétrons , Fotossíntese , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Spinacia oleracea/crescimento & desenvolvimento , Spinacia oleracea/metabolismo
6.
Proc Natl Acad Sci U S A ; 117(33): 19705-19712, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747579

RESUMO

Photosystem II (PS II) captures solar energy and directs charge separation (CS) across the thylakoid membrane during photosynthesis. The highly oxidizing, charge-separated state generated within its reaction center (RC) drives water oxidation. Spectroscopic studies on PS II RCs are difficult to interpret due to large spectral congestion, necessitating modeling to elucidate key spectral features. Herein, we present results from time-dependent density functional theory (TDDFT) calculations on the largest PS II RC model reported to date. This model explicitly includes six RC chromophores and both the chlorin phytol chains and the amino acid residues <6 Å from the pigments' porphyrin ring centers. Comparing our wild-type model results with calculations on mutant D1-His-198-Ala and D2-His-197-Ala RCs, our simulated absorption-difference spectra reproduce experimentally observed shifts in known chlorophyll absorption bands, demonstrating the predictive capabilities of this model. We find that inclusion of both nearby residues and phytol chains is necessary to reproduce this behavior. Our calculations provide a unique opportunity to observe the molecular orbitals that contribute to the excited states that are precursors to CS. Strikingly, we observe two high oscillator strength, low-lying states, in which molecular orbitals are delocalized over ChlD1 and PheD1 as well as one weaker oscillator strength state with molecular orbitals delocalized over the P chlorophylls. Both these configurations are a match for previously identified exciton-charge transfer states (ChlD1 +PheD1 -)* and (PD2 +PD1 -)*. Our results demonstrate the power of TDDFT as a tool, for studies of natural photosynthesis, or indeed future studies of artificial photosynthetic complexes.


Assuntos
Proteínas de Bactérias/química , Cianobactérias/metabolismo , Complexo de Proteína do Fotossistema II/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clorofila/química , Clorofila/metabolismo , Cianobactérias/química , Cianobactérias/genética , Cinética , Modelos Moleculares , Fotossíntese , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo
7.
Ecotoxicol Environ Saf ; 203: 111024, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32741747

RESUMO

Pontederia cordata can tolerate heavy metal toxicity and possesses great potential for phytoremediation of heavy-metal-contaminated wetlands, yet how it copes with heavy metal stress has still not been determined. Hydroponic experiments were used to assess the effects of various levels of Cd2+ on the photosynthesis and activity of redox-regulatory systems in the plant leaves, and we also sought to elucidate the tolerance mechanism of the plant to Cd2+ by investigating Cd2+ enrichment characteristics and chemical forms. The plant can manage a low cadmium concentration (≤0.04 mM) with relatively stable biomass and photosynthetic performance. Cd2+ at the highest concentration (0.44 mM) decreased superoxide dismutase and peroxidase activities by 37.17% and 93.29%, respectively. Similar trends were demonstrated in the contents of ascorbic acid, carotenoids, lutein, glutathione, and non-protein thiol, as well as phytochelation in the leaves, exacerbating membrane peroxidation despite the significantly increased catalase activity observed. Moreover, the highest Cd2+ concentration disturbed the biosynthesis of chlorophyll precursors in the leaves, reduced chlorophyll a and b, as well as total chlorophyll contents by 60.47%, 67.47%, and 68.12%, respectively, which inhibited photosynthesis, leading to a decline in biomass. Compared with maximum quantum efficiency (Fv/Fm) and the potential activity (Fv/Fo) of photosystem II, the performance index for energy conservation from photons absorbed by PSII to the reduction of intersystem electron acceptors (PIabs), and of PSI end acceptors (PItotal), can indicate Cd2+ toxicity to the photosynthetic apparatus in the leaves. 49.95%-76.90% of the Cd2+ was sequestered in the plant roots, restraining translocation from roots to shoots, which is considered a tolerance mechanism, probably resulting from disturbed transpiration in leaves and increased Cd2+ content with low activity. Pontederia cordata is a candidate plant for phytoremediation of heavy-metal -contaminated wetlands.


Assuntos
Organismos Aquáticos/crescimento & desenvolvimento , Cádmio/toxicidade , Pontederiaceae/crescimento & desenvolvimento , Poluentes Químicos da Água/toxicidade , Áreas Alagadas , Organismos Aquáticos/metabolismo , Ácido Ascórbico/farmacologia , Biodegradação Ambiental , Biomassa , Cádmio/metabolismo , Carotenoides/metabolismo , Clorofila A/metabolismo , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Pontederiaceae/metabolismo , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/metabolismo
8.
Biochim Biophys Acta Bioenerg ; 1861(10): 148255, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32619427

RESUMO

Cyanobacteria can rapidly regulate the relative activity of their photosynthetic complexes photosystem I and II (PSI and PSII) in response to changes in the illumination conditions. This process is known as state transitions. If PSI is preferentially excited, they go to state I whereas state II is induced either after preferential excitation of PSII or after dark adaptation. Different underlying mechanisms have been proposed in literature, in particular i) reversible shuttling of the external antenna complexes, the phycobilisomes, between PSI and PSII, ii) reversible spillover of excitation energy from PSII to PSI, iii) a combination of both and, iv) increased excited-state quenching of the PSII core in state II. Here we investigated wild-type and mutant strains of Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803 using time-resolved fluorescence spectroscopy at room temperature. Our observations support model iv, meaning that increased excited-state quenching of the PSII core occurs in state II thereby balancing the photochemistry of photosystems I and II.


Assuntos
Synechococcus/metabolismo , Synechocystis/metabolismo , Temperatura , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Ficobilissomas/metabolismo , Ficocianina/metabolismo , Espectrometria de Fluorescência , Fatores de Tempo
9.
Proc Natl Acad Sci U S A ; 117(28): 16373-16382, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32601233

RESUMO

In photosynthetic reaction centers from purple bacteria (PbRC) and the water-oxidizing enzyme, photosystem II (PSII), charge separation occurs along one of the two symmetrical electron-transfer branches. Here we report the microscopic origin of the unidirectional charge separation, fully considering electron-hole interaction, electronic coupling of the pigments, and electrostatic interaction with the polarizable entire protein environments. The electronic coupling between the pair of bacteriochlorophylls is large in PbRC, forming a delocalized excited state with the lowest excitation energy (i.e., the special pair). The charge-separated state in the active branch is stabilized by uncharged polar residues in the transmembrane region and charged residues on the cytochrome c 2 binding surface. In contrast, the accessory chlorophyll in the D1 protein (ChlD1) has the lowest excitation energy in PSII. The charge-separated state involves ChlD1 •+ and is stabilized predominantly by charged residues near the Mn4CaO5 cluster and the proceeding proton-transfer pathway. It seems likely that the acquirement of water-splitting ability makes ChlD1 the initial electron donor in PSII.


Assuntos
Elétrons , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Água/metabolismo , Aminoácidos , Bacterioclorofilas/química , Bacterioclorofilas/metabolismo , Transporte de Elétrons , Oxigênio/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteobactérias/metabolismo , Água/química
10.
Ecotoxicol Environ Saf ; 202: 110856, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32629202

RESUMO

To explore the mechanisms underlying the action of the heavy metals Cd and Zn on the photosynthetic function of plant leaves, the effects of 100 µmol L-1 Cd and 200 µmol L-1 Zn stress (the exposure concentrations of Cd and Zn in the culture medium were 2.24 mg kg-1 and 5.36 mg kg-1) on the chlorophyll and carotenoid contents as well as the photosynthetic function of tobacco leaves (Long Jiang 911) were studied. The key proteins in these physiological processes were quantitatively analyzed using a TMT-based proteomics approach. Cd stress was found to inhibit the expression of key enzymes during chlorophyll synthesis in leaves, resulting in a decrease of the Chl content. However, Zn stress did not significantly influence the chlorophyll content. Leaves adapted to Zn stress by upregulating CAO expression and increase the Chl b content. Although the Car content in leaves did not significantly change under either Cd or Zn stress, the expressions of ZE and VDE during Car metabolism decreased significantly under Cd stress. This was accompanied by damages to the xanthophyll cycle and the NPQ-dependent energy dissipation mechanism. In contrast, under Zn stress, leaves adapted to Zn stress by increasing the expression of VDE, thus improving NPQ. Under Cd stress, the expressions of three sets of proteins were significantly down-regulated, including PSII donor-side proteins (PPD3, PPD6, OEE1, OEE2-1, OEE2-2, OEE2-3, and OEE3-2), receptor-side proteins (D1, D2, CP43, CP47, Cyt b559α, Cyt b559ß, PsbL, PsbQ, PsbR, Psb27-H1, and Psb28), and core proteins of the PSI reaction center (psaA, psaB, psaC, psaD, psaE-A, PsaE-B, psaF, psaG, psaH-1, psaK, psaL, psaN, and psaOL). In comparison, only eight of the above proteins (PPD6, OEE3-2, PsbL, PsbQ, Psb27-H1, psaL, and psaOL) were significantly down-regulated by Zn stress. Under Cd stress, both the donor side and the receptor side of PSII were damaged, and PSII and PSI experienced severe photoinhibition. However, Zn stress did not decrease either PSII or PSI activities in tobacco leaves. In addition, the expression of electron transport-related proteins (cytb6/f complex, PC, Fd, and FNR), ATPase subunits, Rubisco subunits, and RCA decreased significantly in leaves under Cd stress. However, no significant changes were observed in any of these proteins under Zn stress. Although Cd stress was found to up-regulate the expressions of PGRL1A and PGRL1B and induce an increase of PGR5/PGRL1-CEF in tobacco leaves, NDH-CEF was significantly inhibited. Under Zn stress, the expressions of ndhH and PGRL1A in leaves were significantly up-regulated, but there were no significant changes in either NDH-CEF or PGR5/PGRL-CEF. Under Cd stress, the expressions of proteins related to Fd-dependent nitrogen metabolism and reactive oxygen species (ROS) scavenging processes (e.g., FTR, Fd-NiR, and Fd-GOGAT) were significantly down-regulated in leaves. However, no significant changes of any of the above proteins were identified under Zn stress. In summary, Cd stress could inhibit the synthesis of chlorophyll in tobacco leaves, significantly down-regulate the expressions of photosynthesis-related proteins or subunits, and suppress both the xanthophyll cycle and NDH-CEF process. The expressions of proteins related to the Fd-dependent nitrogen metabolism and ROS scavenging were also significantly down-regulated, which blocked the photosynthetic electron transport, thus resulting in severe photoinhibition of both PSII and PSI. However, Zn stress had little effect on the photosynthetic function of tobacco leaves.


Assuntos
Cádmio/toxicidade , Carotenoides/metabolismo , Clorofila/metabolismo , Fotossíntese/efeitos dos fármacos , Tabaco/efeitos dos fármacos , Zinco/toxicidade , Cádmio/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Proteômica , Tabaco/metabolismo , Tabaco/fisiologia , Zinco/metabolismo
11.
Chemosphere ; 259: 127356, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32650176

RESUMO

Growth of the most important nitrogen fixing cyanobacterium Nostoc muscorum is reported to be badly affected by the application of insecticides. To overcome their damaging effects, several strategies are being used. Out of these, some works on kinetin (KN, a synthetic cytokinin) has been recognized that it can overcome toxicity of insecticides in cyanobacteria. Besides this, it is now known that every hormone needs certain second messengers such as nitric oxide (NO) for its action. But implication of NO in KN-mediated regulation of insecticide toxicity is yet to be investigated. Hence in the current study, we have investigated the possible involvement of NO in KN-mediated regulation of cypermethrin toxicity in the cyanobacterium Nostoc muscorum. Cypermethrin decreased growth of Nostoc muscorum which was accompanied by decreased pigment contents and altered photosystem II (PS II) photochemistry that resulted in inhibition of photosynthetic process but KN significantly ameliorated cypermethrin toxicity. Cypermethrin induced production of free radicals (in-vivo and in-vitro) and weakened defensive mechanism (enzymatic and non-enzymatic defense system) which was restored by KN. Further, the results revealed that NG-nitro-l-arginine methyl ester (l-NAME, an inhibitor of nitric oxide synthase) worsened the effect of cypermethrin toxicity even in the presence of KN while 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO, a scavenger of NO) reversed KN-mediated amelioration even in the presence of sodium nitroprusside (SNP, an NO donor), suggesting that endogenous NO is required for mitigation of cypermethrin toxicity. Overall, our results first time show that endogenous NO is essential for KN-mediated mitigation of cypermethrin toxicity in the Nostoc muscorum.


Assuntos
Citocininas/farmacologia , Nostoc muscorum/fisiologia , Reguladores de Crescimento de Planta/farmacologia , Polissacarídeos Bacterianos/metabolismo , Piretrinas/toxicidade , Cianobactérias/metabolismo , Homeostase/efeitos dos fármacos , Inseticidas/farmacologia , Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Nostoc muscorum/efeitos dos fármacos , Nostoc muscorum/metabolismo , Fotoquímica , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Espécies Reativas de Oxigênio/farmacologia
12.
PLoS One ; 15(7): e0236188, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32701995

RESUMO

Microalgae and cyanobacteria are considered as important model organisms to investigate the biology of photosynthesis; moreover, they are valuable sources of biomolecules for several biotechnological applications. Understanding the species-specific traits of photosynthetic electron transport is extremely important, because it contributes to the regulation of ATP/NADPH ratio, which has direct/indirect links to carbon fixation and other metabolic pathways and thus overall growth and biomass production. In the present work, a cuvette-based setup is developed, in which a combination of measurements of dissolved oxygen, pH, chlorophyll fluorescence and NADPH kinetics can be performed without disturbing the physiological status of the sample. The suitability of the system is demonstrated using a model cyanobacterium Synechocystis sp. PCC6803, as well as biofuel-candidate microalgae species, such as Chlorella sorokiniana, Dunaliella salina and Nannochloropsis limnetica undergoing inorganic carbon (Ci) limitation. Inorganic carbon limitation, induced by photosynthetic Ci uptake under continuous illumination, caused a decrease in the effective quantum yield of PSII (Y(II)) and loss of oxygen-evolving capacity in all species investigated here; these effects were largely recovered by the addition of NaHCO3. Detailed analysis of the dark-light and light-dark transitions of NADPH production/uptake and changes in chlorophyll fluorescence kinetics revealed species- and condition-specific responses. These responses indicate that the impact of decreased Calvin-Benson cycle activity on photosynthetic electron transport pathways involving several sections of the electron transport chain (such as electron transfer via the QA-QB-plastoquinone pool, the redox state of the plastoquinone pool) can be analyzed with high sensitivity in a comparative manner. Therefore, the integrated system presented here can be applied for screening for specific traits in several significant species at different stages of inorganic carbon limitation, a condition that strongly impacts primary productivity.


Assuntos
Carbono/farmacologia , Cianobactérias/fisiologia , Compostos Inorgânicos/farmacologia , Microalgas/fisiologia , Fotossíntese , Chlorella/efeitos dos fármacos , Chlorella/fisiologia , Clorofila/metabolismo , Cianobactérias/efeitos dos fármacos , Transporte de Elétrons/efeitos dos fármacos , Fluorescência , Cinética , Microalgas/efeitos dos fármacos , NADP/metabolismo , Oxigênio/metabolismo , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Teoria Quântica , Synechocystis/efeitos dos fármacos , Synechocystis/fisiologia
13.
Proc Natl Acad Sci U S A ; 117(26): 15354-15362, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32541018

RESUMO

In photosynthetic electron transport, large multiprotein complexes are connected by small diffusible electron carriers, the mobility of which is challenged by macromolecular crowding. For thylakoid membranes of higher plants, a long-standing question has been which of the two mobile electron carriers, plastoquinone or plastocyanin, mediates electron transport from stacked grana thylakoids where photosystem II (PSII) is localized to distant unstacked regions of the thylakoids that harbor PSI. Here, we confirm that plastocyanin is the long-range electron carrier by employing mutants with different grana diameters. Furthermore, our results explain why higher plants have a narrow range of grana diameters since a larger diffusion distance for plastocyanin would jeopardize the efficiency of electron transport. In the light of recent findings that the lumen of thylakoids, which forms the diffusion space of plastocyanin, undergoes dynamic swelling/shrinkage, this study demonstrates that plastocyanin diffusion is a crucial regulatory element of plant photosynthetic electron transport.


Assuntos
Magnoliopsida/fisiologia , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Plastocianina/metabolismo , Simulação por Computador , Transporte de Elétrons , Regulação da Expressão Gênica de Plantas/fisiologia , Modelos Biológicos
14.
Biochim Biophys Acta Bioenerg ; 1861(10): 148234, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32485158

RESUMO

Photosystem II (PS II) catalyzes the light-driven process of water splitting in oxygenic photosynthesis. Four core membrane-spanning proteins, including D1 that binds the majority of the redox-active co-factors, are surrounded by 13 low-molecular-weight (LMW) proteins. We previously observed that deletion of the LMW PsbT protein in the cyanobacterium Synechocystis sp. PCC 6803 slowed electron transfer between the primary and secondary plastoquinone electron acceptors QA and QB and increased the susceptibility of PS II to photodamage. Here we show that photodamaged ∆PsbT cells exhibit unimpaired rates of oxygen evolution if electron transport is supported by HCO3- even though the cells exhibit negligible variable fluorescence. We find that the protein environment in the vicinity of QA and QB is altered upon removal of PsbT resulting in inhibition of QA- oxidation in the presence of 2,5-dimethyl-1,4-benzoquinone, an artificial PS II-specific electron acceptor. Thermoluminescence measurements revealed an increase in charge recombination between the S2 oxidation state of the water-oxidizing complex and QA- by the indirect radiative pathway in ∆PsbT cells and this is accompanied by increased 1O2 production. At the protein level, both D1 removal and replacement, as well as PS II biogenesis, were accelerated in the ∆PsbT strain. Our results demonstrate that PsbT plays a key role in optimizing the electron acceptor complex of the acceptor side of PS II and support the view that repair and biogenesis of PS II share an assembly pathway that incorporates both de novo synthesis and recycling of the assembly modules associated with the core membrane-spanning proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Synechocystis/metabolismo , Synechocystis/efeitos da radiação , Estabilidade Enzimática/efeitos da radiação , Luz/efeitos adversos , Oxigênio Singlete/metabolismo
15.
Biochim Biophys Acta Bioenerg ; 1861(10): 148248, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32565079

RESUMO

Far-red light (FRL) Photosystem II (PSII) isolated from Chroococcidiopsis thermalis is studied using parallel analyses of low-temperature absorption, circular dichroism (CD) and magnetic circular dichroism (MCD) spectroscopies in conjunction with fluorescence measurements. This extends earlier studies (Nurnberg et al 2018 Science 360 (2018) 1210-1213). We confirm that the chlorophyll absorbing at 726 nm is the primary electron donor. At 1.8 K efficient photochemistry occurs when exciting at 726 nm and shorter wavelengths; but not at wavelengths longer than 726 nm. The 726 nm absorption peak exhibits a 21 ±â€¯4 cm-1 electrochromic shift due to formation of the semiquinone anion, QA-. Modelling indicates that no other FRL pigment is located among the 6 central reaction center chlorins: PD1, PD2 ChlD1, ChlD2, PheoD1 and PheoD2. Two of these chlorins, ChlD1 and PD2, are located at a distance and orientation relative to QA- so as to account for the observed electrochromic shift. Previously, ChlD1 was taken as the most likely candidate for the primary donor based on spectroscopy, sequence analysis and mechanistic arguments. Here, a more detailed comparison of the spectroscopic data with exciton modelling of the electrochromic pattern indicates that PD2 is at least as likely as ChlD1 to be responsible for the 726 nm absorption. The correspondence in sign and magnitude of the CD observed at 726 nm with that predicted from modelling favors PD2 as the primary donor. The pros and cons of PD2 vs ChlD1 as the location of the FRL-primary donor are discussed.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Cianobactérias/enzimologia , Transporte de Elétrons , Complexo de Proteína do Fotossistema II/química , Ficocianina/química
16.
Ecotoxicol Environ Saf ; 199: 110727, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32446101

RESUMO

Sulfonamides (SAs) are antibiotics widely used in clinical practice, livestock and poultry production, and the aquaculture industry. The compounds enter the soil environment largely through livestock and poultry manure application to farmland. SAs not only affect plant growth, but also pose a potential threat to human health through SA residues in plant tissues. In particular, sulfamethoxazole (SMZ) has been classified as a Category 3 carcinogen by the World Health Organization, and thus its soil ecological toxicity and possible health risks are of concern. Using A. thaliana as a model plant, stress responses and biological residues of sulfadiazine (SD), sulfametoxydiazine (SMD), and SMZ were investigated in the present study. Root length and aboveground plant biomass were significantly inhibited by the three types of SA, whereas lateral roots exposed to SMD grew vigorously. The contents of chlorophyll a and chlorophyll b and photosystem II maximum photochemical quantum yield declined with increase in drug concentration, which indicated that exposure to SAs affected photosynthesis and inhibited chlorophyll synthesis in A. thaliana. With increase in drug concentration, reactive oxygen species (ROS) accumulation in the leaves increased significantly. Activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) were activated at low SA concentrations, but increased lipid peroxidation occurred with increase in SA concentration. Of the three compounds, SMZ was the most toxic to A. thaliana, followed by SD, and SMD was the least toxic. The results indicated that the risk of SMD entering an organism through the food chain is greater than that for SMZ and SD.


Assuntos
Antibacterianos/toxicidade , Arabidopsis/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Poluentes do Solo/toxicidade , Sulfanilamidas/toxicidade , Antioxidantes/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Clorofila/metabolismo , Clorofila A/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
17.
Proc Natl Acad Sci U S A ; 117(23): 12624-12635, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32434915

RESUMO

In oxygenic photosynthesis, light-driven oxidation of water to molecular oxygen is carried out by the oxygen-evolving complex (OEC) in photosystem II (PS II). Recently, we reported the room-temperature structures of PS II in the four (semi)stable S-states, S1, S2, S3, and S0, showing that a water molecule is inserted during the S2 → S3 transition, as a new bridging O(H)-ligand between Mn1 and Ca. To understand the sequence of events leading to the formation of this last stable intermediate state before O2 formation, we recorded diffraction and Mn X-ray emission spectroscopy (XES) data at several time points during the S2 → S3 transition. At the electron acceptor site, changes due to the two-electron redox chemistry at the quinones, QA and QB, are observed. At the donor site, tyrosine YZ and His190 H-bonded to it move by 50 µs after the second flash, and Glu189 moves away from Ca. This is followed by Mn1 and Mn4 moving apart, and the insertion of OX(H) at the open coordination site of Mn1. This water, possibly a ligand of Ca, could be supplied via a "water wheel"-like arrangement of five waters next to the OEC that is connected by a large channel to the bulk solvent. XES spectra show that Mn oxidation (τ of ∼350 µs) during the S2 → S3 transition mirrors the appearance of OX electron density. This indicates that the oxidation state change and the insertion of water as a bridging atom between Mn1 and Ca are highly correlated.


Assuntos
Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Hidrogênio/metabolismo , Magnésio/metabolismo , Oxirredução , Oxigênio/metabolismo , Fótons , Complexo de Proteína do Fotossistema II/química , Quinonas/metabolismo , Água/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-32283468

RESUMO

Ecologically relevant low UV-B is reported to alter reactive oxygen species metabolism and anti-oxidative systems through an up-regulation of enzymes of the phenylpropanoid pathway. However, little is known about low UV-B-induced changes in carotenoid profile and their impacts on light harvesting and photoprotection of photosystem II (PSII) in plants. We investigated carotenoids profile, chlorophyll pigments, phenolics, photosynthetic efficiency and growth in Arabidopsis thaliana (Col-0) plants grown under photosynthetically active radiation (PAR), PAR+ ultraviolet (UV)-A and PAR+UV-A+B regimes for 10 days in order to assess plant acclimation to low UV-B radiation. A chlorophyll fluorescence assay was used to examine UV-B tolerance in plants further exposed to acute high UV-B for 4 and 6 h following a 10-day growth under different PAR and UV regimes. We found that both PAR+ UV-A and PAR+UV-A+B regimes had no negative effect on quantum efficiency, electron transport rate, rosette diameter, relative growth rate and shoot dry weight of plants. Chronic PAR+ UV-A regime considerably (P < 0.05) increased violaxanthin (26 %) and neoxanthin (92 %) content in plants. Plant exposure to chronic PAR+UV-A+B significantly (P < 0.05) increased violaxanthin (48 %), neoxanthin (63 %), lutein (33 %), 9-cis ß-carotene (28 %), total ß-carotene (29 %) and total phenolics (108 %). The maximum photochemical efficiency (Fv/Fm) in leaves was found to be positively correlated with total phenolics (rho = 0.81 and rho = 0.91, P < 0.05 for 4 and 6 h, respectively) and non-photochemical quenching (qN) (rho = 0.81 and rho = 0.84, P < 0.05 for 4 and 6 h, respectively) in plants exposed to acute high UV-B for 4 and 6 h following a 10-day growth under chronic PAR+UV-A+B. There was also a significant positive correlation (rho = 0.93, P < 0.01) between qN and lutein content in the plants exposed to acute high UV-B stress for 4 h following plant exposure to chronic PAR+UV-A+B. The findings from our study indicate that plants grown under chronic PAR+UV-A+B displayed higher photoprotection of PSII against acute high UV-B stress than those grown under PAR and PAR+ UV-A regimes. An induction of phenolics and lutein-mediated development of qN were involved in the photoprotection of PSII against UV-B-induced oxidative stress.


Assuntos
Arabidopsis/efeitos da radiação , Carotenoides/metabolismo , Clorofila/metabolismo , Luteína/metabolismo , Fotossíntese/efeitos da radiação , Pigmentos Biológicos/metabolismo , Raios Ultravioleta , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/efeitos da radiação
19.
Biochim Biophys Acta Bioenerg ; 1861(8): 148212, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32320684

RESUMO

We develop a rapid "stroboscopic" fluorescence induction method, using the fast repetition rate fluorometry (FRRF) technique, to measure changes in the quantum yield of light emission from chlorophyll in oxygenic photosynthesis arising from competition with primary photochemical charge separation (P680* âž” P680+QA-). This method determines the transit times of electrons that pass through PSII during the successive steps in the catalytic cycle of water oxidation/O2 formation (S states) and plastoquinone reduction in any oxygenic phototroph (in vivo or in vitro). We report the first measurements from intact living cells, illustrated by a eukaryotic alga (Nannochloropsis oceanica). We demonstrate that S state transition times depend strongly on the redox state of the PSII acceptor side, at both QB and the plastoquinone pool which serve as the major locus of regulation of PSII electron flux. We provide evidence for a kinetic intermediate S3' state (lifetime 220 µs) following formation of S3 and prior to the release of O2. We compare the FRRF-detected kinetics to other previous spectroscopic methods (optical absorbance, EPR, and XES) that are applicable only to in vitro samples.


Assuntos
Fluorometria , Luz , Fotossíntese/efeitos da radiação , Água/metabolismo , Cinética , Oxirredução , Complexo de Proteína do Fotossistema II/metabolismo , Plantas/metabolismo , Plantas/efeitos da radiação
20.
J Phys Chem Lett ; 11(9): 3242-3248, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32271019

RESUMO

Photosystem II (PSII) converts light into chemical energy powering almost all life on Earth. The primary photovoltaic reaction in the PSII reaction center requires energy corresponding to 680 nm, which is significantly higher than in the case of the low-energy states in the antenna complexes involved in the harvesting of excitations driving PSII. Here we show that despite seemingly insufficient energy, the low-energy excited states can power PSII because of the activity of the thermally driven up-conversion. We demonstrate the operation of this mechanism both in intact leaves and in isolated pigment-protein complex LHCII. A mechanism is proposed, according to which the effective utilization of thermal energy in the photosynthetic apparatus is possible owing to the formation of LHCII supramolecular structures, leading to the coupled energy levels corresponding to approximately 680 and 700 nm, capable of exchanging excitation energy through the spontaneous relaxation and the thermal up-conversion.


Assuntos
Transferência de Energia , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Arabidopsis/metabolismo , Clorofila A/metabolismo , Temperatura Alta , Folhas de Planta/metabolismo , Reciclagem , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA