Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.510
Filtrar
1.
Proc Biol Sci ; 289(1976): 20220799, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35703050

RESUMO

In nature, confrontations between conspecifics are recurrent and related, in general, due to the lack of resources such as food and territory. Adequate defence against a conspecific aggressor is essential for the individual's survival and the group integrity. However, repeated social defeat is a significant stressor promoting several behavioural changes, including social defence per se. What would be the neural basis of these behavioural changes? To build new hypotheses about this, we here investigate the effects of repeated social stress on the neural circuitry underlying motivated social defence behaviour in male mice. We observed that animals re-exposed to the aggressor three times spent more time in passive defence during the last exposure than in the first one. These animals also show less activation of the amygdalar and hypothalamic nuclei related to the processing of conspecific cues. In turn, we found no changes in the activation of the hypothalamic dorsal pre-mammillary nucleus (PMD) that is essential for passive defence. Therefore, our data suggest that the balance between the activity of circuits related to conspecific processing and the PMD determines the pattern of social defence behaviour. Changes in this balance may be the basis of the adaptations in social defence after repeated social defeat.


Assuntos
Comportamento Animal , Comportamento Social , Tonsila do Cerebelo/fisiologia , Animais , Comportamento Animal/fisiologia , Encéfalo , Hipotálamo , Masculino , Camundongos , Estresse Psicológico
2.
Sci Rep ; 12(1): 6950, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680934

RESUMO

The dog (Canis familiaris) was the first domesticated animal and hundreds of breeds exist today. During domestication, dogs experienced strong selection for temperament, behaviour, and cognitive ability. However, the genetic basis of these abilities is not well-understood. We focused on ancient dog breeds to investigate breed-related differences in social cognitive abilities. In a problem-solving task, ancient breeds showed a lower tendency to look back at humans than other European breeds. In a two-way object choice task, they showed no differences in correct response rate or ability to read human communicative gestures. We examined gene polymorphisms in oxytocin, oxytocin receptor, melanocortin 2 receptor, and a Williams-Beuren syndrome-related gene (WBSCR17), as candidate genes of dog domestication. The single-nucleotide polymorphisms on melanocortin 2 receptor were related to both tasks, while other polymorphisms were associated with the unsolvable task. This indicates that glucocorticoid functions are involved in the cognitive skills acquired during dog domestication.


Assuntos
Cães , Domesticação , Interação Humano-Animal , Animais , Animais Domésticos , Comportamento Animal/fisiologia , Comunicação , Cães/genética , Gestos , Humanos , N-Acetilgalactosaminiltransferases/genética , Ocitocina , Polimorfismo de Nucleotídeo Único , Receptor Tipo 2 de Melanocortina/genética , Receptores de Ocitocina/genética
3.
Sci Rep ; 12(1): 7174, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35504947

RESUMO

Environmental factors acting on young animals affect neurodevelopmental trajectories and impact adult brain function and behavior. Psychiatric disorders may be caused or worsen by environmental factors, but early interventions can improve performance. Understanding the possible mechanisms acting upon the developing brain could help identify etiological factors of psychiatric disorders and enable advancement of effective therapies. Research has focused on the long-lasting effects of environmental factors acting during the perinatal period, therefore little is known about the impact of these factors at later ages when neurodevelopmental pathologies such as autism spectrum disorder (ASD) are usually diagnosed. Here we show that handling mice during the juvenile period can rescue a range of behavioral and cellular effects of prenatal valproic acid (VPA) exposure. VPA-exposed animals show reduced sociability and increased repetitive behaviors, along with other autism-related endophenotypes such as increased immobility in the forced swim test and increased neuronal activity in the piriform cortex (Pir). Our results demonstrate that briefly handling mice every other day between postnatal days 22 and 34 can largely rescue these phenotypes. This effect can also be observed when animals are analyzed across tests using an "autism" factor, which also discriminates between animals with high and low Pir neuron activity. Thus, we identified a juvenile developmental window when environmental factors can determine adult autism-related behavior. In addition, our results have broader implications on behavioral neuroscience, as they highlight the importance of adequate experimental design and control of behavioral experiments involving treating or testing young animals.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Efeitos Tardios da Exposição Pré-Natal , Animais , Transtorno do Espectro Autista/induzido quimicamente , Transtorno Autístico/induzido quimicamente , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Gravidez , Ácido Valproico/efeitos adversos
4.
Restor Neurol Neurosci ; 40(2): 109-124, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35527583

RESUMO

PURPOSE: In recent years, much effort has been focused on developing new strategies for the prevention and mitigation of adverse radiation effects on healthy tissues and organs, including the brain. The brain is very sensitive to radiation effects, albeit as it is highly plastic. Hence, deleterious radiation effects may be potentially reversible. Because radiation exposure affects dendritic space, reduces the brain's ability to produce new neurons, and alters behavior, mitigation efforts should focus on restoring these parameters. To that effect, environmental enrichment through complex housing (CH) and exercise may provide a plausible avenue for exploration of protection from brain irradiation. CH is a much broader concept than exercise alone, and constitutes exposure of animals to positive physical and social stimulation that is superior to their routine housing and care conditions. We hypothesized that CHs may lessen harmful neuroanatomical and behavioural effects of low dose radiation exposure. METHODS: We analyzed and compared cerebral morphology in animals exposed to low dose head, bystander (liver), and scatter irradiation on rats housed in either the environmental enrichment condos or standard housing. RESULTS: Enriched condo conditions ameliorated radiation-induced neuroanatomical changes. Moreover, irradiated animals that were kept in enriched CH condos displayed fewer radiation-induced behavioural deficits than those housed in standard conditions. CONCLUSIONS: Animal model-based environmental enrichment strategies, such as CH, are excellent surrogate models for occupational and exercise therapy in humans, and consequently have significant translational possibility. Our study may thus serve as a roadmap for the development of new, easy, safe and cost-effective methods to prevent and mitigate low-dose radiation effects on the brain.


Assuntos
Encéfalo , Habitação , Animais , Comportamento Animal/fisiologia , Neurônios , Ratos
5.
BMC Biol ; 20(1): 97, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501893

RESUMO

BACKGROUND: Aggression is an adaptive behaviour that animals use to protect offspring, defend themselves and obtain resources. Zebrafish, like many other animals, are not able to recognize themselves in the mirror and typically respond to their own reflection with aggression. However, mirror aggression is not an all-or-nothing phenomenon, with some individuals displaying high levels of aggression against their mirror image, while others show none at all. In the current work, we have investigated the genetic basis of mirror aggression by using a classic forward genetics approach - selective breeding for high and low mirror aggression zebrafish (HAZ and LAZ). RESULTS: We characterized AB wild-type zebrafish for their response to the mirror image. Both aggressive and non-aggressive fish were inbred over several generations. We found that HAZ were on average more aggressive than the corresponding LAZ across generations and that the most aggressive adult HAZ were less anxious than the least aggressive adult LAZ after prolonged selective breeding. RNAseq analysis of these fish revealed that hundreds of protein-encoding genes with important diverse biological functions such as arsenic metabolism (as3mt), cell migration (arl4ab), immune system activity (ptgr1), actin cytoskeletal remodelling (wdr1), corticogenesis (dgcr2), protein dephosphorylation (ublcp1), sialic acid metabolism (st6galnac3) and ketone body metabolism (aacs) were differentially expressed between HAZ and LAZ, suggesting a strong genetic contribution to this phenotype. DAVID pathway analysis showed that a number of diverse pathways are enriched in HAZ over LAZ including pathways related to immune function, oxidation-reduction processes and cell signalling. In addition, weighted gene co-expression network analysis (WGCNA) identified 12 modules of highly correlated genes that were significantly associated with aggression duration and/or experimental group. CONCLUSIONS: The current study shows that selective breeding based of the mirror aggression phenotype induces strong, heritable changes in behaviour and gene expression within the brain of zebrafish suggesting a strong genetic basis for this behaviour. Our transcriptomic analysis of fish selectively bred for high and low levels of mirror aggression revealed specific transcriptomic signatures induced by selective breeding and mirror aggression and thus provides a large and novel resource of candidate genes for future study.


Assuntos
Transcriptoma , Peixe-Zebra , Agressão/fisiologia , Animais , Comportamento Animal/fisiologia , Perfilação da Expressão Gênica , Peixe-Zebra/genética
6.
Proc Biol Sci ; 289(1974): 20212158, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35538776

RESUMO

The stress systems are powerful mediators between the organism's systemic dynamic equilibrium and changes in its environment beyond the level of anticipated fluctuations. Over- or under-activation of the stress systems' responses can impact an animal's health, survival and reproductive success. While physiological stress responses and their influence on behaviour and performance are well understood at the individual level, it remains largely unknown whether-and how-stressed individuals can affect the stress systems of other group members, and consequently their collective behaviour. Stressed individuals could directly signal the presence of a stressor (e.g. via an alarm call or pheromones), or an acute or chronic activation of the stress systems could be perceived by others (as an indirect cue) and spread via social contagion. Such social transmission of stress responses could then amplify the effects of stressors by impacting social interactions, social dynamics and the collective performance of groups. As the neuroendocrine pathways of the stress response are highly conserved among vertebrates, transmission of physiological stress states could be more widespread among non-human animals than previously thought. We therefore suggest that identifying the extent to which stress transmission modulates animal collectives represents an important research avenue.


Assuntos
Comportamento Social , Estresse Fisiológico , Animais , Comportamento Animal/fisiologia , Sistemas Neurossecretores , Estresse Fisiológico/fisiologia , Vertebrados
7.
Proc Biol Sci ; 289(1975): 20220399, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35582798

RESUMO

Bolder individuals have greater access to food sources and reproductive partners but are also at increased risk of predation. Boldness is believed to be consistent across time and contexts, but few studies have investigated the stability of this trait across variable environments, such as varying stress loads or long periods of time. Moreover, the underlying molecular components of boldness are poorly studied. Here, we report that boldness of 1154 European sea bass, evaluated using group risk-taking tests, is consistent over seven months and for individuals subjected to multiple environments, including a chronically stressful environment. Differences in risk-taking behaviour were further supported by differences observed in the responses to a novel environment test: shy individuals displayed more group dispersion, more thigmotaxic behaviour and lower activity levels. Transcriptomic analyses performed on extreme phenotypes revealed that bold individuals display greater expression for genes involved in social and exploration behaviours, and memory in the pituitary, and genes involved in immunity and responses to stimuli in the head kidney. This study demonstrates that personality traits come with an underpinning molecular signature, especially in organs involved in the endocrine and immune systems. As such, our results help to depict state-behaviour feedback mechanisms, previously proposed as key in shaping animal personality.


Assuntos
Bass , Animais , Bass/genética , Comportamento Animal/fisiologia , Personalidade , Assunção de Riscos , Comportamento Social , Transcriptoma
8.
Brain Behav Immun ; 103: 232-242, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35491004

RESUMO

There is comorbidity between anxiety disorders and gastrointestinal disorders, with both linked to adverse early life events. The microbiome gut-brain-axis, a bidirectional communication system, is plastic throughout the neonatal period and is a possible mediator of this relationship. Here, we used a well-established neonatal rodent immune activation model to investigate the long-term effect of neonatal lipopolysaccharide (LPS) exposure on adult behaviour and the relationship to microbiome composition. Wistar rats were injected with LPS (0.05 mg/kg) or saline (equivolume) on postnatal days 3 and 5. In adulthood, behavioural tests were performed to assess anxiety-like behaviour, and microbiota sequencing was performed on stool samples. There were distinctly different behavioural phenotypes for LPS-exposed males and females. LPS-exposed males displayed typical anxiety-like behaviours with significantly decreased social interaction (F(1,22) = 7.576, p = 0.009) and increased defecation relative to saline controls (F(1,23) = 8.623, p = 0.005). LPS-exposed females displayed a different behavioural phenotype with significantly increased social interaction (F(1,22) = 6.094, p = 0.018), and exploration (F(1,24) = 6.359, p = 0.015), compared to saline controls. With respect to microbiota profiling data, Bacteroidota was significantly increased for LPS-exposed females (F(1,14) = 4.931p = 0.035) and Proteobacteria was decreased for LPS-exposed rats of both sexes versus controls (F(1,30) = 4.923p = 0.035). Furthermore, alterations in predicted functional pathways for neurotransmitters in faeces were observed with a decrease in the relative abundance of D-glutamine and D-glutamate metabolism in LPS exposed females compared to control females (p < 0.05). This suggests that neonatal immune activation alters both later life behaviour and adult gut microbiota in sex-specific ways. These findings highlight the importance of sex in determining the impact of neonatal immune activation on social behaviour and the gut microbiota.


Assuntos
Lipopolissacarídeos , Microbiota , Animais , Ansiedade/metabolismo , Comportamento Animal/fisiologia , Feminino , Lipopolissacarídeos/farmacologia , Masculino , Ratos , Ratos Wistar
9.
Mol Autism ; 13(1): 19, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538503

RESUMO

BACKGROUND: The zinc finger domain containing transcription factor Myt1l is tightly associated with neuronal identity and is the only transcription factor known that is both neuron-specific and expressed in all neuronal subtypes. We identified Myt1l as a powerful reprogramming factor that, in combination with the proneural bHLH factor Ascl1, could induce neuronal fate in fibroblasts. Molecularly, we found it to repress many non-neuronal gene programs, explaining its supportive role to induce and safeguard neuronal identity in combination with proneural bHLH transcriptional activators. Moreover, human genetics studies found MYT1L mutations to cause intellectual disability and autism spectrum disorder often coupled with obesity. METHODS: Here, we generated and characterized Myt1l-deficient mice. A comprehensive, longitudinal behavioral phenotyping approach was applied. RESULTS: Myt1l was necessary for survival beyond 24 h but not for overall histological brain organization. Myt1l heterozygous mice became increasingly overweight and exhibited multifaceted behavioral alterations. In mouse pups, Myt1l haploinsufficiency caused mild alterations in early socio-affective communication through ultrasonic vocalizations. In adulthood, Myt1l heterozygous mice displayed hyperactivity due to impaired habituation learning. Motor performance was reduced in Myt1l heterozygous mice despite intact motor learning, possibly due to muscular hypotonia. While anxiety-related behavior was reduced, acoustic startle reactivity was enhanced, in line with higher sensitivity to loud sound. Finally, Myt1l haploinsufficiency had a negative impact on contextual fear memory retrieval, while cued fear memory retrieval appeared to be intact. LIMITATIONS: In future studies, additional phenotypes might be identified and a detailed characterization of direct reciprocal social interaction behavior might help to reveal effects of Myt1l haploinsufficiency on social behavior in juvenile and adult mice. CONCLUSIONS: Behavioral alterations in Myt1l haploinsufficient mice recapitulate several clinical phenotypes observed in humans carrying heterozygous MYT1L mutations and thus serve as an informative model of the human MYT1L syndrome.


Assuntos
Transtorno do Espectro Autista , Comportamento Animal , Proteínas do Tecido Nervoso , Obesidade , Fatores de Transcrição , Animais , Transtorno do Espectro Autista/genética , Comportamento Animal/fisiologia , Haploinsuficiência , Camundongos , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição/genética
10.
Neurobiol Dis ; 170: 105757, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35588989

RESUMO

Gut microbiota depletion may result in cognitive impairment and emotional disorder. This study aimed to determine the possible association between host gut microbiota, cognitive function, and emotion in various life stages and its related underlying mechanisms. Seventy-five neonatal mice were randomly divided into five groups (n = 15 per group). Mice in the vehicle group were administered distilled water from birth to death, and those in the last four groups were administered antibiotic cocktail from birth to death, from birth to postnatal day (PND) 21 (infancy), from PND 21 to 56 (adolescence), and from PND 57 to 84 (adulthood), respectively. Antibiotic exposure consistently altered the gut microbiota composition and decreased the diversity of gut microbiota. Proteobacteria were the predominant bacteria instead of Firmicutes and Bacteroidetes after antibiotic exposure in different life stages. Long-term and infant gut microbiota depletion resulted in anxiety- and depression-like behaviors, memory impairments, and increased expression of γ-aminobutyric acid type A receptor α1 of adult mice. Long-term antibiotic exposure also significantly decreased serum interleukin (IL)-1ß, IL-10, and corticosterone of adult mice. Gut microbiota depletion in adolescence resulted in anxiety-like behaviors, short-term memory decline, decreased serum interferon-γ (IFN-γ), mRNA expression of 5-hydroxytryptamine receptor 1A, and neuropeptide Y receptor Y2 in the prefrontal cortex of adult mice. Antibiotic exposure in adulthood damaged short-term memory and decreased serum IL-10, IFN-γ, and increased γ-aminobutyric acid type B receptor 1 mRNA expression of adult mice. These results suggest that antibiotic-induced gut microbiota depletion in the long term and infancy resulted in the most severe cognitive and emotional disorders followed by depletion in adolescence and adulthood. These results also suggest that gut microbes could influence host cognitive function and emotion in a life stage-dependent manner by affecting the function of the immune system, hypothalamic-pituitary-adrenal axis, and the expression of neurochemicals in the brain.


Assuntos
Disfunção Cognitiva , Microbioma Gastrointestinal , Adulto , Animais , Antibacterianos/farmacologia , Comportamento Animal/fisiologia , Disfunção Cognitiva/induzido quimicamente , Microbioma Gastrointestinal/fisiologia , Humanos , Sistema Hipotálamo-Hipofisário , Interleucina-10 , Camundongos , Sistema Hipófise-Suprarrenal , RNA Mensageiro , Ácido gama-Aminobutírico
11.
Behav Brain Res ; 430: 113929, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35595059

RESUMO

Spontaneous limb preferences exist in numerous species. To investigate the underlying mechanisms of these preferences, different methods, such as training, have been developed to shift preferences artificially. However, studies that systematically examine the effects of shifting preferences on behaviour and physiology are largely missing. Therefore, the aim of this study was to assess the impact of shifting paw preferences via training on spontaneous home cage behaviour, as well as anxiety-like behaviour and exploratory locomotion (Elevated plus maze test, Dark light test, Open field test, Free exploration test), learning performance (Labyrinth-maze) and stress hormones (fecal corticosterone metabolites) in laboratory mice (Mus musculus f. domestica). For this, we assessed spontaneous paw preferences of C57BL/6J females (Nambilateral = 23, Nleft = 23, Nright = 25). Subsequently, half of the individuals from each category were trained once a week for four weeks in a food-reaching task to use either their left or right paw, respectively, resulting in six groups: AL, AR, LL, LR, RL, RR. After training, a battery of behavioural tests was performed and spontaneous preferences were assessed again. Our results indicate that most mice were successfully trained and the effect of training was present days after training. However, a significant difference of preferences between RL and LL mice during training suggests a rather low training success of RL mice. Additionally, preferences of L mice differed from those of A and R mice after training, indicating differential long-term effects of training in these groups. Furthermore, left paw training led to higher levels of self-grooming, possibly as a displacement behaviour, and more time spent in the light compartment of the Dark light test. However, overall, there was no systematic influence of training on behavioural measures and stress hormones. Different explanations for this lack of influence, such as the link between training and hemispheric functioning or the intensity and ecological relevance of the training, are discussed.


Assuntos
Ansiedade , Comportamento Exploratório , Animais , Comportamento Animal/fisiologia , Comportamento Exploratório/fisiologia , Feminino , Hormônios , Camundongos , Camundongos Endogâmicos C57BL
12.
Behav Brain Res ; 430: 113930, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35609792

RESUMO

Evidence suggests that early life adversity, such as maternal immune activation (MIA), can alter brain development in the offspring and confer increased risk for psychopathology and psychiatric illness in later life. In this study, the long-term effects of MIA, post-weaning social isolation, and the combination were assessed on behavioural and immunological profiles in adult male and female offspring. On gestation day 12.5, pregnant mice were weighed and injected with either polyinosinic:polycytidylic acid (5 mg/kg) or saline and cytokines levels were assayed 3 hrs later to confirm immune activation. The behaviour and immunological profiles of male and female offspring were examined in adolescence (P34-36), and adulthood (P55-80). MIA induced an increase in the pro-inflammatory cytokine IL-6 in pregnant dams three hours after administration (p < 0.001) that correlated with a decrease in body temperature (p < 0.05). The effect of MIA on the immunological phenotype of the offspring was evident in adolescence, but not in adulthood. MIA selectively induced hypoactivity in adolescent males, a phenotype that persisted until adulthood, but had no effect on cognition in males or females. In contrast, social isolation stress from adolescence resulted in impaired sociability (p < 0.05) and increased anxiety (p < 0.05) particularly in adult females. There was no synergistic effect of the dual-hit on immune parameters, sociability, anxiety or cognitive behaviours. Given the negative impact and sex-dependent effects of SI stress on locomotor and anxiety-like behaviour, future investigations should examine whether the health risks of social isolation, such as that experience during the COVID-19 pandemic, are mediated through increased anxiety.


Assuntos
COVID-19 , Efeitos Tardios da Exposição Pré-Natal , Esquizofrenia , Adolescente , Adulto , Animais , Comportamento Animal/fisiologia , Citocinas/farmacologia , Modelos Animais de Doenças , Endofenótipos , Feminino , Humanos , Masculino , Camundongos , Pandemias , Poli I-C/farmacologia , Gravidez , Isolamento Social , Desmame
13.
Brain Res ; 1789: 147946, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35597326

RESUMO

Whiskers are highly developed tactile organs in mice. Here, we showed that mice with whisker trimming had a decreased anxiety behavior and activation of dorsomedial hypothalamus compared to control mice. Inhibition or damage of dorsomedial hypothalamus reversed the decrease of anxiety level induced by whisker trimming. These results expand the role of whiskers in regulating mouse behaviors to anxiety and suggest a novel function of dorsomedial hypothalamus. These findings indicate importance of normal sensory functions in modulating animal behavior.


Assuntos
Ansiedade , Vibrissas , Animais , Transtornos de Ansiedade , Comportamento Animal/fisiologia , Camundongos , Tato/fisiologia , Vibrissas/fisiologia
14.
Dev Psychobiol ; 64(5): e22278, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35603415

RESUMO

The mechanisms that link maternal immune activation (MIA) with the onset of neurodevelopmental disorders remain largely unclear. Accelerated puberty is also associated with a heightened risk for psychopathology in later life, but there is a dearth of evidence on the impacts of maternal infection on pubertal timing. We examined the effects of MIA on reproductive development, mechanical allodynia, and sensorimotor gating in juvenile, adolescent, and adult male and female mice. Moreover, we investigated hypothalamic neural markers associated with the reproductive and stress axes. Finally, we tested the mitigating effects of environmental enrichment (EE), which has clinical relevancy in human rehabilitation settings. Our results show that administration of polyinosinic-polycytidylic acid (poly(I:C)) on gestational day 12.5 led to early preputial separation, vaginal openings, and age of first estrus in offspring. MIA exposure altered pain sensitivity across development and modestly altered prepulse inhibition. The downregulation of Nr3c1 and Oprk mRNA in the hypothalamus of juvenile mice suggests that MIA's effects may be mediated through disruption of hypothalamic-pituitary-adrenal axis activity. In contrast, life-long housing with EE rescued many of these MIA-induced consequences. Overall, our findings suggest that accelerated puberty may be associated with the deleterious effects of infection during pregnancy and the onset of psychopathology.


Assuntos
Sistema Hipotálamo-Hipofisário , Efeitos Tardios da Exposição Pré-Natal , Adolescente , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Feminino , Humanos , Hiperalgesia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sistema Hipófise-Suprarrenal , Poli I-C/efeitos adversos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Puberdade
15.
Proc Biol Sci ; 289(1974): 20220135, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35506226

RESUMO

Learning and decision-making are greatly influenced by context. When navigating a complex social world, individuals must quickly ascertain where to gain important resources and which group members are useful sources of such information. Such dynamic behavioural processes require neural mechanisms that are flexible across contexts. Here we examine how the social context influences the learning response during a cue discrimination task and the neural activity patterns that underlie acquisition of this novel information. Using the cichlid fish, Astatotilapia burtoni, we show that learning of the task is faster in social groups than in a non-social context. We quantify the neural activity patterns by examining the expression of Fos, an immediate-early gene, across brain regions known to play a role in social behaviour and learning (such as the putative teleost homologues of the mammalian hippocampus, basolateral amygdala and medial amygdala/BNST complex). We find that neural activity patterns differ between social and non-social contexts. Taken together, our results suggest that while the same brain regions may be involved in the learning of a cue association, the activity in each region reflects an individual's social context.


Assuntos
Comportamento Animal , Ciclídeos , Animais , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Ciclídeos/fisiologia , Aprendizagem , Mamíferos , Comportamento Social
16.
Development ; 149(9)2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35552393

RESUMO

Nervous system assembly relies on a diversity of cellular processes ranging from dramatic tissue reorganization to local, subcellular changes all driven by precise molecular programs. Combined, these processes culminate in an animal's ability to plan and execute behaviors. Animal behavior can, therefore, serve as a functional readout of nervous system development. Benefitting from an expansive and growing set of molecular and imaging tools paired with an ever-growing number of assays of diverse behaviors, the zebrafish system has emerged as an outstanding platform at the intersection of nervous system assembly, plasticity and behavior. Here, we summarize recent advancements in the field, including how developing neural circuits are refined to shape complex behaviors and plasticity.


Assuntos
Sistema Nervoso , Peixe-Zebra , Animais , Comportamento Animal/fisiologia , Plasticidade Neuronal/fisiologia
17.
Sci Rep ; 12(1): 8819, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614188

RESUMO

In laboratory animal facilities, it is a common code of practice to house female mice in groups. However, some experimental conditions require to house them individually, even though social isolation may impair their well-being. Therefore, we introduced a separated pair housing system and investigated whether it can refine single housing of adult female C57BL/6JRj mice. Individually ventilated cages (IVC) were divided by perforated transparent walls to separate two mice within a cage. The cage divider allowed visual, acoustic, and olfactory contact between the mice but prevented interindividual body-contact or food sharing. Short- and long-term effects of the separated pair housing system on the well-being of the mice were compared with single and group housing using a range of behavioral and physiological parameters: Nest building behavior was assessed based on the complexity of nests, the burrowing performance was measured by the amount of food pellets removed from a bottle, and trait anxiety-related behavior was tested in the free exploratory paradigm. For the evaluation of the ease of handling, interaction with the experimenter's hand was monitored. Social interaction with unknown conspecifics and locomotor activity were investigated in a test arena. Moreover, body weight and stress hormone (metabolites) were measured in feces and hair. After the mice spent a day under the respective housing conditions, concentrations of fecal corticosterone metabolites were higher in separated pair-housed mice, and they built nests of a higher complexity when compared to single-housed mice. The latter effect was still observable eight weeks later. In week 8, separated pair-housed mice showed less locomotor activity in the social interaction arena compared to mice from the other housing systems, i.e., single and group housing. Regardless of the time of testing, pair housing improved the burrowing performance. Separated pair-housed mice were more difficult to catch than group-housed mice. Hair corticosterone, progesterone, and dehydroepiandrosterone concentrations changed with increasing age independently of the housing system. There were no effects of the housing systems on trait anxiety-related behavior in the free exploratory paradigm, voluntary interaction with the experimenter's hand, and body weight. Overall, the transfer to the separated pair housing system caused short-term stress responses in female C57BL/6JRj mice. Long-term effects of separated pair housing were ambiguous. On one hand, separated pair housing increased nesting and burrowing behavior and may therefore be beneficial compared to single housing. But on the other hand, locomotor activity decreased. The study underlined that the effects of the housing conditions on physiological and behavioral parameters should be considered when analyzing and reporting animal experiments.


Assuntos
Corticosterona , Abrigo para Animais , Animais , Comportamento Animal/fisiologia , Peso Corporal/fisiologia , Corticosterona/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Isolamento Social
18.
Sci Rep ; 12(1): 8782, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610298

RESUMO

According to pharmacological theory, the magnitude of an agonist-induced response is related to the number of receptors occupied. If there is a receptor reserve, when the number of receptors is altered the fractional occupancy required to maintain this set number of receptors will change. Therefore, any change in dopamine receptor number will result in a change in the concentration of cocaine required to induce the satiety response. Rats that self-administered cocaine were treated with the irreversible monoamine receptor antagonist, EEDQ, or were infused continuously for 14 days with the D1-like antagonist, SCH23390, treatments known to decrease or increase, respectively, the number of dopamine receptors with a concomitant decrease or increase in response to dopaminergic agonists. The rate of cocaine maintained self-administration increased or decreased in rats treated with EEDQ or withdrawn from chronic SCH23390 infusion, respectively. After EEDQ treatment, the effect ratio of a single dose of SCH23390 or eticlopride were unchanged, indicating that the same SCH23390- and eticlopride-sensitive receptor populations (presumably dopamine) mediated the accelerated cocaine self-administration. Changing the receptor reserve is a key determinant of the rate of cocaine self-administration because the resulting increased or decreased concentration of cocaine results in an accelerated or decelerated rate of cocaine elimination as dictated by first-order kinetics.


Assuntos
Cocaína , Animais , Comportamento Animal/fisiologia , Benzazepinas/farmacologia , Cocaína/farmacologia , Antagonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1 , Autoadministração/métodos
19.
Sensors (Basel) ; 22(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35591170

RESUMO

In recent decades, zebrafish have become an increasingly popular laboratory organism in several fields of research due to their ease of reproduction and rapid maturation. In particular, shoaling behavior has attracted the attention of many researchers. This article presents a fully printed robotic model used to sense and stimulate shoaling behavior in zebrafish (Danio rerio). Specifically, we exposed laboratory-fabricated replicated materials to critical acid/base/salt environments and evaluated the mechanical, optical, and surface properties after a three-month immersion period. Focusing on weatherability, these test samples maintained high tensile strength (~45 MPa) and relatively similar transmission (>85%T in the visible region), as determined by UV-vis/FTIR spectroscopy. Three-dimensional (3D) printing technology allowed printing of models with different sizes and appearances. We describe the sense of zebrafish responses to replicas of different sizes and reveal that replicas approximating the true zebrafish size (3 cm) are more attractive than larger replicas (5 cm). This observation suggests that larger replicas appear as predators to the zebrafish and cause fleeing behavior. In this study, we determined the weatherability of a high-transparency resin and used it to fabricate a fully printed driving device to induce shoaling by zebrafish. Finally, we demonstrate a weathering-resistant (for three months) 3D-printed decoy model with potential utility for future studies of outdoor shoaling behavior, and the result has the potential to replace the traditional metal frame devices used in outdoor experiments.


Assuntos
Procedimentos Cirúrgicos Robóticos , Peixe-Zebra , Animais , Comportamento Animal/fisiologia , Impressão Tridimensional , Comportamento Social
20.
J Am Assoc Lab Anim Sci ; 61(3): 241-247, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35512999

RESUMO

Rodents used for research can be humanely housed in a variety of ways. As such, a vast number of different housing environments are used, but are often not described in research publications. However, many elements of housing environments, including bedding, diet, water bottles, and cage material, can expose rodents to natural and synthetic compounds that can have lasting effects on the body, brain, and behavior. Some environmental items contain endocrine-disrupting compounds (EDCs), which can affect many commonly assessed physiological and behavioral endpoints in rodents. Here, we compare the effects of 2 commonly used housing environments for male and female Long Evans rats on body weight, pubertal onset, and a battery of behavioral tests measuring activity, anxiety-like behavior, and cognition. One standard environment was comparatively high in EDCs (standard rodent chow, plastic cages, plastic water bottles, and corncob bedding), while the other was a relatively low-EDC environment (phytoestrogen-free chow, polysulfone cages, glass water bottles, and wood-chip bedding). As compared with the Standard group, rats raised in the Low-EDC environment reached puberty earlier, displayed less anxiety-like behavior in the elevated plus maze and open field test, and showed less overall object exploration in the novel object recognition task. These effects occurred only if rats had been raised in these conditions since conception. An acute change from one environment to the other in adulthood did not yield these same effects. These results provide further evidence for the effects of common housing environments on development and behavior and highlight the importance of reporting environmental conditions in the literature to promote reproducibility in research using animal subjects.


Assuntos
Ansiedade , Abrigo para Animais , Adulto , Animais , Comportamento Animal/fisiologia , Feminino , Humanos , Masculino , Plásticos , Ratos , Ratos Long-Evans , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...