Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 748
Filtrar
2.
AAPS PharmSciTech ; 21(3): 112, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32236813

RESUMO

This study was aimed to design a simple and novel prototype device for the production of polymeric microparticles. To prove the effectiveness of this device, benznidazole microparticles using chitosan as carrier and NaOH, KOH, or SLS as counter ions were used. For comparison, benznidazole microparticles were prepared by the conventional dripping technique (syringe and gauge) using the same excipients. Microparticles were characterized in terms of encapsulation efficiency, particle shape, size and surface topography, crystallinity characteristics, thermal behavior, and dissolution rate. Then, the pharmacokinetic parameters were evaluated after the oral administration of the microparticles to healthy Wistar rats. The prepared formulations, by means of this device, showed good drug encapsulation efficiency (> 70%). Release studies revealed an increased dissolution of benznidazole from chitosan microparticles prepared using the novel device. It achieved more than 90% in 60 min, while those of the conventional microparticles and raw drug achieved 65% and 68%, respectively, during the same period. Almost spherical benznidazole microparticles with a smooth surface and size around 10-30 µm were observed using scanning electron microscopy. Thermal analysis and X-ray diffraction studies suggested a partial reduction of drug crystallinity. Moreover, the relative oral bioavailability of the novel benznidazole microparticles showed that the area under the curve for the microencapsulated drug was 10.3 times higher than the raw drug. Thus, these findings indicate that the designed glass prototype device is a useful alternative to formulate benznidazole polymeric microparticles with improved biopharmaceutical properties and could be useful for other therapeutic microparticulate systems.


Assuntos
Composição de Medicamentos/instrumentação , Nitroimidazóis/química , Animais , Quitosana/química , Liberação Controlada de Fármacos , Nitroimidazóis/farmacocinética , Ratos , Ratos Wistar
3.
J Food Sci ; 85(4): 1177-1185, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32144808

RESUMO

Polylactic acid (PLA) dissolved (15 wt.%) in ethyl acetate (EtAc): dimethyl sulfoxide (DMSO) binary systems (0:1; 1:3, and 2:3 v/v) was used as carrier to obtain carvacrol (CA)-loaded (20 wt.% with respect to PLA) matrices by electrospinning, in comparison with solvent casting. Field emission scanning electron microscopy (FESEM) observations showed that CA-loaded electrospun fibers were thinner than the CA-free ones, and their encapsulating efficiency (EE) increased when EtAc was present in the solvent. The cast films had higher EE (up to 89%) than the electrospun mats (maximum 68%). Thermogravimetric analysis and differential scanning calorimetry revealed that CA-free matrices retain more solvent than the samples with CA; this effect is being more noticeable in fibers rather than in cast films. The thermal analysis revealed stronger retention forces of CA in the fibers than in the cast material and the CA plasticizing effect in the PLA matrices, in accordance with its retained amount. PRACTICAL APPLICATION: The carvacrol-loaded polylactic acid materials obtained in this study are intended to serve as possible active layer in obtaining active (antimicrobial and/or antioxidant) multilayer materials for the packaging of foodstuffs, when applied onto a supporting polymer layer. Active properties of the material, as well as the potential carvacrol sensory impact, in packaged products should be assessed in further studies.


Assuntos
Cimenos/química , Composição de Medicamentos/métodos , Poliésteres/química , Varredura Diferencial de Calorimetria , Portadores de Fármacos/química , Composição de Medicamentos/instrumentação , Fenômenos Mecânicos , Microscopia Eletrônica de Varredura , Polímeros/química
4.
Soft Matter ; 16(12): 3082-3087, 2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32140697

RESUMO

Controlling the surface area, pore size and pore volume of microcapsules is crucial for modulating their activity in applications including catalytic reactions, delivery strategies or even cell culture assays, yet remains challenging to achieve using conventional bulk techniques. Here we describe a microfluidics-based approach for the formation of monodisperse silica-coated micron-scale porous capsules of controllable sizes. Our method involves the generation of gas-in water-in oil emulsions, and the subsequent rapid precipitation of silica which forms around the encapsulated gas bubbles resulting in hollow silica capsules with tunable pore sizes. We demonstrate that by varying the gas phase pressure, we can control both the diameter of the bubbles formed and the number of internal bubbles enclosed within the silica microcapsule. Moreover, we further demonstrate, using optical and electron microscopy, that these silica capsules remain stable under particle drying. Such a systematic manner of producing silica-coated microbubbles and porous microparticles thus represents an attractive class of biocompatible material for biomedical and pharmaceutical related applications.


Assuntos
Cápsulas/química , Emulsões/química , Óleos/química , Dióxido de Silício/química , Água/química , Materiais Biocompatíveis/química , Composição de Medicamentos/instrumentação , Desenho de Equipamento , Gases/química , Microbolhas , Porosidade
5.
J Pharm Biomed Anal ; 180: 113060, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31896522

RESUMO

Chromatographic media play a crucial role in the downstream processing of biotechnology products. The physical and chemical properties of these processing aids are mostly monitored by expensive and time-consuming preparative tests, but spectroscopic techniques may also be used to measure chromatographic media samples. In this study, chromatographic media formulations used in downstream processes were investigated using attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy. Samples were measured both in original suspension form and after drying to examine the possibilities of a potential spectroscopic method without sample preparation. Principal component analysis (PCA) was employed to identify the spectral differences among the formulations with distinct support matrices and functional groups and soft independent modeling of class analogy (SIMCA) was performed to creating classification models for identification of chromatography media. To increase the number of samples in the SIMCA, simulated spectra were generated based on the experimental spectra. PCA models indicated that spectra of samples in original suspension form and after drying contained similar information about the chemical properties of chromatographic media samples. Moreover, during the classification of spectra based on SIMCA, both measurement techniques gave high sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) results. These results show that ATR FT-IR could be applied as a simple alternative method for monitoring the chromatography media samples. This technique is also feasible without sample preparation. Thereby the multi-hours drying steps may be omitted, the measurements can be performed in a few minutes, and the potential effects of sample preparations can be eliminated.


Assuntos
Biotecnologia/métodos , Composição de Medicamentos/métodos , Modelos Químicos , Análise de Componente Principal , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Biotecnologia/instrumentação , Composição de Medicamentos/instrumentação
6.
Biochimie ; 169: 88-94, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31881257

RESUMO

Triglyceride is the main lipid class in nature, found as droplets in both living systems and man-made products (such as manufactured foods and drugs). Characterizing triglyceride droplets in situ in these systems is complex due to many environmental interactions. To answer basic research questions about droplet formation, structuration, stability, or degradation, microfluidic strategies were developed, allowing well-controlled droplets to be formed, manipulated, and studied. In this review, these strategies are described, starting with the presentation of droplet production devices, with applications essentially related to microencapsulation and delivery, then detailing methods to monitor droplet degradation in situ and in real time, finishing with microfluidic platforms allowing the investigation of many aspects of biological lipid droplets simultaneously.


Assuntos
Dispositivos Lab-On-A-Chip , Gotículas Lipídicas/química , Triglicerídeos/química , Composição de Medicamentos/instrumentação , Composição de Medicamentos/métodos , Emulsões , Hidrólise , Cinética , Gotículas Lipídicas/ultraestrutura
7.
Food Funct ; 11(1): 606-616, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31859303

RESUMO

The stability, in vitro digestion profile and phase behavior of Pickering emulsions stabilized by milled cellulose were evaluated to investigate their feasibility as food-grade formulations for encapsulation and delivery of lipophilic bioactive compounds. Curcumin encapsulated in Pickering emulsions exhibited good stability with less than 50% degraded after 30 days' storage. The digestion profiles of emulsions were markedly influenced by lipid type used and digestion buffer employed in simulated small intestinal experiments. The rate and extent of lipolysis of emulsions with medium chain triglycerides were greater than emulsions with long chain triglycerides (soy bean oil and canola oil), reaching complete hydrolysis under both fed and fasted conditions. For comparison, the digestion behaviors of curcumin encapsulated in conventional emulsions were also evaluated. Although the initial digestion rate of Pickering emulsions with long chain triglycerides was slower than the corresponding conventional emulsions stabilized by Tween/Span 80, their total extent of lipolysis was higher than that of conventional emulsions. The bioaccessibility of curcumin encapsulated in Pickering emulsions was higher than in corresponding small molecular weight surfactant stabilized conventional emulsions.


Assuntos
Celulose/química , Curcumina/química , Composição de Medicamentos/métodos , Curcumina/farmacologia , Digestão , Composição de Medicamentos/instrumentação , Estabilidade de Medicamentos , Emulsões/química , Humanos , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/fisiologia , Lipólise/efeitos dos fármacos , Modelos Biológicos , Tamanho da Partícula
8.
J Pharm Biomed Anal ; 177: 112846, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31522097

RESUMO

The ß-lactam core is a key structure responsible for inducing both IgE-mediated acute-onset hypersensitivity and T-cell-mediated delayed-onset hypersensitivity with penicillins in humans. There is essentially no clinically significant immunologic cross-reactivity noted between the ß-lactam cores of penicillins and cephalosporins based on challenge studies in humans. The side-chains appear to be more important in inducing IgE-mediated acute-onset hypersensitivity and T-cell delayed-onset hypersensitivity with cephalosporins in humans. Despite these clinical findings, the U. S. Food and Drug Administration (FDA) still requires the level of ß-lactam-related antibiotic residues to be controlled at very low levels in manufacturing facilities. Ceftolozane is Merck & Co., Inc., Kenilworth, NJ, USA's (MSD's) 5th generation broad spectrum cephalosporin antibiotic against gram-negative bacteria. In searching for the optimal decontamination method of ceftolozane, most methods were found to be very slow in opening the ß-lactam ring in ceftolozane. Moreover, most of the previously reported decontamination methods applied analytical methods that only monitored the disappearance of the parent molecule as the endpoint of degradation. In this way, many of the ß-lactam-containing degradation products could be overlooked. In order to develop an efficient decontamination solution for ceftolozane, a sensitive ultra high performance liquid chromatography-high resolution-electrospray ionization-tandem mass spectrometry (UHPLC-HRMS/MS) method was first developed to ensure the detection of the ß-lactam ring in all degradation products. Through online UHPLC-UV-HRMS monitoring, 2.5 N KOH in 50% aqueous MeOH or 50% aqueous EtOH was identified as the best condition to fully degrade the ß-lactam ring in ceftolozane. This decontamination could be done within 15 min, even at 100 mg/mL concentration, and thus enable a quick turnaround time for equipment cleaning in the ß-lactam manufacturing facility. This method was also successfully applied to 12 other commercially available ß-lactam antibiotics.


Assuntos
Antibacterianos/análise , Cefalosporinas/análise , Descontaminação/métodos , Composição de Medicamentos/instrumentação , Contaminação de Equipamentos/prevenção & controle , Antibacterianos/química , Antibacterianos/toxicidade , Cefalosporinas/química , Cefalosporinas/toxicidade , Cromatografia Líquida de Alta Pressão/métodos , Composição de Medicamentos/métodos , Composição de Medicamentos/normas , Etanol/química , Hidróxidos/química , Metanol/química , Compostos de Potássio/química , Solventes/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos
9.
AAPS PharmSciTech ; 21(1): 1, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31712905

RESUMO

The SeDeM diagram expert system has been applied to study Zidovudine and some excipients. From the obtained diagrams, a pharmaceutical formula has been designed. SeDeM diagram ascertains the critical parameters that are suitable for a direct compression. The formula is compressed using a rotary tablet press simulator which emulates rotary tablet press' compression profiles. From these compressions, we study the formula behavior under different industrial production conditions but saving a huge amount of material. The study is done at different compression forces and compression speeds and taking into account the influence of the pre-compression force. The differences observed between the compression profiles are hereby described. The results indicate that the formulation is able to be compressed adequately with the emulated compression profiles and no differences are observed between the final products. Therefore, we can assure that the SeDeM diagram expert system is accurate and robust. Moreover, its results are comparable with the compression results in a rotary tablet press, which has never been described in the pharmaceutical literature before. From the obtained results, it is possible to select the best rotary press to scale-up this formulation.


Assuntos
Fármacos Anti-HIV/administração & dosagem , Composição de Medicamentos/instrumentação , Composição de Medicamentos/métodos , Sistemas Especialistas , Comprimidos , Zidovudina/administração & dosagem , Composição de Medicamentos/normas , Indústria Farmacêutica , Excipientes , Testes de Dureza , Pós
10.
Pharm Res ; 36(12): 183, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31741058

RESUMO

Research conducted in microgravity conditions has the potential to yield new therapeutics, as advances can be achieved in the absence of phenomena such as sedimentation, hydrostatic pressure and thermally-induced convection. The outcomes of such studies can significantly contribute to many scientific and technological fields, including drug discovery. This article reviews the existing traditional microgravity platforms as well as emerging ideas for enabling microgravity research focusing on SpacePharma's innovative autonomous remote-controlled microgravity labs that can be launched to space aboard nanosatellites to perform drug research in orbit. The scientific literature is reviewed and examples of life science fields that have benefited from studies in microgravity conditions are given. These include the use of microgravity environment for chemical applications (protein crystallization, drug polymorphism, self-assembly of biomolecules), pharmaceutical studies (microencapsulation, drug delivery systems, behavior and stability of colloidal formulations, antibiotic drug resistance), and biological research, including accelerated models for aging, investigation of bacterial virulence , tissue engineering using organ-on-chips in space, enhanced stem cells proliferation and differentiation.


Assuntos
Simulação de Ausência de Peso/instrumentação , Simulação de Ausência de Peso/métodos , Ausência de Peso , Fatores Etários , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Cristalização/instrumentação , Cristalização/métodos , Dimerização , Composição de Medicamentos/instrumentação , Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/instrumentação , Sistemas de Liberação de Medicamentos/métodos , Descoberta de Drogas/instrumentação , Descoberta de Drogas/métodos , Resistência Microbiana a Medicamentos , Humanos , Microfluídica/instrumentação , Microfluídica/métodos , Pesquisa Farmacêutica/instrumentação , Pesquisa Farmacêutica/métodos , Fenômenos Físicos , Proteínas/química , Voo Espacial , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos
11.
Drug Dev Ind Pharm ; 45(12): 1907-1914, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31621436

RESUMO

The current study aimed to formulate gelatin/sodium alginate nanoparticles utilizing BÜCHI nano spray dryer B-90. Nanoparticles possess many of the advantages including new routes of drug administrations and sustained release properties. Utilizing B-90 technology, metformin hydrochloride (MET) nanoparticles were successfully developed. Preformulation studies such as atomization head mesh size, flow rate, head temperature, polymer viscosity, and surface tension, were adjusted. Additionally, post-formulation characters such as particle size, flowability, surface scan, and dissolution profiles, were evaluated. Spray head (7 µm hole), flow rate (3.5 ml/min) and head temperature (120 °C) were optimized. Polymer viscosity was less than 11.2 cP with a surface tension less than 70.1 dyne/cm. Moreover, anti-diabetic effects of MET formulations were evaluated in streptozotocin-induced diabetic rats. Here, discrete, non-aggregated free-flowing nanoparticle powders with a particle size less than 850 nm were generated. Gelatin/sodium-alginate (1:3) produced nanoparticles were successfully sustained by the in vitro release profile of the drug. In vivo evaluations of the previous formula showed a significant reduction of blood glucose level over 24 h. In conclusion, Nano Spray Dryer B-90 (Büchi Labortechnik AG, Flawil, Switzerland) offers a promising technology for nanoparticles formulation as controlled drug delivery systems enhancing compliance of type-II diabetic patients.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Portadores de Fármacos/química , Composição de Medicamentos/instrumentação , Hipoglicemiantes/administração & dosagem , Metformina/administração & dosagem , Alginatos/química , Animais , Glicemia/análise , Glicemia/efeitos dos fármacos , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/induzido quimicamente , Composição de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos , Liberação Controlada de Fármacos , Gelatina/química , Humanos , Hipoglicemiantes/farmacocinética , Masculino , Metformina/farmacocinética , Nanopartículas/química , Tamanho da Partícula , Ratos , Estreptozocina/toxicidade
12.
Int J Pharm ; 571: 118760, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31622742

RESUMO

The use of native starch as in situ binder in a continuous twin screw wet granulation process was studied. Gelatinization of pea starch occurred in the barrel of the granulator using a poorly soluble excipient (anhydrous dicalcium phosphate), but the degree of gelatinization depended on the liquid-to-solid ratio, the granule heating and the screw configuration. Furthermore, the degree of starch gelatinization was correlated with the granule quality: higher binder efficiency was observed in runs where starch was more gelatinized. SEM and PLOM images showed experimental runs which resulted in completely gelatinized starch. Other starch types (maize, potato and wheat starch) could also be gelatinized when processed above a critical barrel temperature for gelatinization. This barrel temperature was different for all starches. In situ starch gelatinization was also investigated in combination with a highly soluble excipient (mannitol). The lower granule friability observed using pure mannitol compared to a mannitol/starch mixture indicated that starch did not contribute to the binding, hence starch did not gelatinize during processing. The study showed that native starch can be considered as a promising in situ binder for continuous twin screw wet granulation of a poorly soluble formulation.


Assuntos
Veículos Farmacêuticos/química , Amido/química , Química Farmacêutica , Composição de Medicamentos/instrumentação , Gelatina/química , Manitol/química , Tamanho da Partícula , Ervilhas/química , Solanum tuberosum/química , Solubilidade , Comprimidos , Temperatura , Triticum/química , Zea mays/química
13.
Int J Pharm ; 571: 118761, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31622743

RESUMO

A novel ultrasonic instrumentation was successfully implemented in a compaction simulator. A through-transmission set-up was realised with longitudinal and transverse transducers being alternately positioned inside Euro-D-modified punches. Key features of the data acquisition are described. Considerable attention was paid to an accurate displacement measurement and a synchronic acquisition of the ultrasonic signal. Vivapur 102 and Di-Cafos A150 were chosen for evaluation. In contrast to other published instrumentations, production-relevant powder densification speeds were feasible whilst featuring outstanding measurement precision. Maximum ultrasonic speed was achieved at maximum density. Materials differed considerably regarding the slope of the decompression phase, which might be suitable for assessing elasticity and speed sensitivity of powders or formulations without compressing twice. The developed set-up furthermore enables in-die measurements of apparent Young's modulus and apparent Poisson's ratio (i.e. their change throughout the course of the tableting process). Young's modulus increased upon densification and values match with literature data. Poisson's ratio increased linearly as a function of solid fraction for plastically deforming Vivapur 102, whereas it was practically constant for brittle Di-Cafos A150. Increased mechanistic understanding of deformation factors (e.g. rearrangement, fragmentation, elasticity) and estimation of mechanical compatibility of mixtures, is feasible. Moreover, in-die Young's modulus and Poisson's ratio are valuable for compression simulations based on finite or discrete element method.


Assuntos
Força Compressiva , Composição de Medicamentos/instrumentação , Modelos Químicos , Comprimidos/química , Ondas Ultrassônicas , Química Farmacêutica , Composição de Medicamentos/métodos , Módulo de Elasticidade , Estudos de Viabilidade , Análise de Elementos Finitos , Pós
14.
J Food Sci ; 84(11): 3213-3221, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31589344

RESUMO

Vitamin D3 was encapsulated in 10% wt soybean oil-in-water (O/W) Pickering emulsions stabilized by either nanofibrillated cellulose (NFC) or whey protein isolate (WPI) at 0.3%, 0.5%, and 0.7% w/w. The vitamin D3 -enriched emulsions were tested for their stability against temperature (30 °C to 90 °C), pH (2 to 8), and ionic strength (0 to 500 mM NaCl). The mean particle diameter (d32 ), ζ-potential, and creaming stability of the oil droplets in the emulsions were measured, as well as their vitamin D3 encapsulation efficiency (EE). After preparation, the oil droplet size (d32 ) of the emulsions stabilized by NFC increased with increasing emulsifier concentration, whereas the droplet size of emulsions stabilized by WPI decreased. NFC provided good stability to the emulsions through a combination of steric and electrostatic repulsion. The EE of vitamin D3 increased with increasing emulsifier concentration. Heating or ionic strength did not significantly (P < 0.05) affect the emulsions properties and EE. On the other hand, the NFC-stabilized emulsions were sensitive to highly acidic conditions (pH 2), with an increase in particle size and decrease in EE. The WPI-stabilized emulsions aggregated around the isoelectric point of the adsorbed proteins (pI ≈ 4.8). Increasing NFC or WPI concentration improved the stability and EE of the emulsions against environmental stresses. NFC-stabilized emulsions had good long-term stability. The results show that NFC can be used as an effective emulsifier for creating vitamin-enriched emulsions with good stability. PRACTICAL APPLICATION: This study can be used to develop more effective encapsulation technologies for fat-soluble vitamins in emulsion-based food products. Encapsulation using nanofibrillated cellulose effectively protected the encapsulated vitamins against environmental stresses which occur in industrial food production (such as pH changes, salt addition, and thermal processing). Moreover, nanofibrillated cellulose extracted from mangosteen rind is a nature-derived emulsifier that is environmental friendly.


Assuntos
Celulose/química , Colecalciferol/química , Composição de Medicamentos/métodos , Emulsões/química , Garcinia mangostana/química , Composição de Medicamentos/instrumentação , Estabilidade de Medicamentos , Emulsificantes/química , Concentração Osmolar , Tamanho da Partícula , Cloreto de Sódio/química , Eletricidade Estática , Temperatura , Água/química
15.
J Food Sci ; 84(10): 2883-2897, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31553062

RESUMO

Quercetin is a hydrophobic flavonoid with high antioxidant activity. However, for biological applications, the bioavailability of quercetin is low due to physiological barriers. For this reason, an alternative is the protection of quercetin in matrices of biopolymers as zein. The objective of this work was to prepare and characterize quercetin-loaded zein nanoparticles by electrospraying and its study of in vitro bioavailability. The physicochemical parameters such as viscosity, density, and electrical conductivity of zein solutions showed a dependence of the ethanol concentration. In addition, rheological parameters demonstrated that solutions of zein in aqueous ethanol present Newtonian behavior, rebounding in the formation of nanoparticles by electrospraying, providing spherical, homogeneous, and compact morphologies, mainly at a concentration of 80% (v/v) of ethanol and of 5% (w/v) of zein. The size and shape of quercetin-loaded zein nanoparticles were studied by transmission electron microscopy (TEM), observing that it was entrapped, distributed throughout the nanoparticle of zein. Analysis by Fourier transform-infrared (FT-IR) of zein nanoparticles loaded with quercetin revealed interactions via hydrogen bonds. The efficacy of zein nanoparticles to entrap quercetin was particularly high for all quercetin concentration evaluated in this work (87.9 ± 1.5% to 93.0 ± 2.6%). The in vitro gastrointestinal release of trapped quercetin after 240 min was 79.1%, while that for free quercetin was 99.2%. The in vitro bioavailability was higher for trapped quercetin (5.9%) compared to free quercetin (1.9%), than of gastrointestinal digestion. It is concluded, that the electrospraying technique made possible the obtention of quercitin-loaded zein nanoparticles increasing their bioavailability. PRACTICAL APPLICATION: This type of nanosystems can be used in the food and pharmaceutical industry. Quercetin-loaded zein nanoparticles for its improvement compared to free quercetin can be used to decrease the prevalence of chronic degenerative diseases by increasing of the bioavailability of quercetin in the bloodstream. Other application can be as an antioxidant system in functional foods or oils to increase shelf life.


Assuntos
Composição de Medicamentos/métodos , Quercetina/química , Zeína/química , Antioxidantes/química , Antioxidantes/metabolismo , Disponibilidade Biológica , Biopolímeros/química , Linhagem Celular , Portadores de Fármacos/química , Composição de Medicamentos/instrumentação , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas/química , Nanopartículas/metabolismo , Tamanho da Partícula , Quercetina/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
16.
Kaku Igaku ; 56(1): 127-134, 2019.
Artigo em Japonês | MEDLINE | ID: mdl-31554771

RESUMO

OBJECTIVE: Obtaining the information on safety and effectiveness of radiopharmaceutical synthesizer NEPTIS plug - 01 and florbetapir (18F) injection solution synthesized by NEPTIS plug - 01 from the post marketing surveillance study. METHODS: Regarding the safety evaluation, failure of device and adverse events were recorded. Regarding the effectiveness evaluation, we assessed the quality of PET images and the impact on the clinical diagnosis. RESULT: During the study period, 12 patients were enrolled. No adverse event was reported from those 12 patients. Two events in 2 patients were reported as a failure of device (In a subsequent investigation, those failures were thought to be caused by inadequacy of procedure manual, which has been revised now). For the quality of PET images, all 12 cases were "good" or "excellent", regardless of the positive or negative of amyloid plaque. The attending physician's diagnosis was changed in 9 patients following the PET imaging. CONCLUSION: NEPTIS plug-01 and florbetapir (18F) were safe and has a favorable effectiveness profile in 12 patients under daily clinical setting.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides/metabolismo , Compostos de Anilina/síntese química , Composição de Medicamentos/instrumentação , Etilenoglicóis/síntese química , Vigilância de Produtos Comercializados , Compostos Radiofarmacêuticos/síntese química , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Compostos de Anilina/administração & dosagem , Compostos de Anilina/efeitos adversos , Etilenoglicóis/administração & dosagem , Etilenoglicóis/efeitos adversos , Feminino , Humanos , Injeções , Masculino , Pessoa de Meia-Idade , Placa Amiloide , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/efeitos adversos , Segurança
17.
J Microencapsul ; 36(7): 649-658, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31490709

RESUMO

Aim: To reduce the contamination arising from abuse of commercial pesticide formulations, the coaxial electrospray (CES) method was used for one-step microencapsulation and spraying of pesticides. Methods: After optimisation of process parameters, polymeric microcapsules with different structures were fabricated as the carriers of azoxystrobin (AZS). For the resultant microcapsules, the sustained pesticide release was verified in vitro and the adhesion properties were investigated through a normalised rinsing test. Results: The maximum encapsulation efficiency of the fabricated AZS-loaded microcapsules was 99.14%. Compared to commercial AZS aqueous suspension, the microcapsules fabricated by the CES method exhibited improved sustained release performance of AZS, which could be readily controlled by adjusting the shell thicknesses. Moreover, highly enhanced adhesion performance was observed for the AZS-loaded microcapsules directly sprayed in CES process. Conclusions: The CES process is promising to be applied as a one-step microencapsulation and spraying technology for improving pesticide utilisation and reducing environmental pollution.


Assuntos
Preparações de Ação Retardada/química , Praguicidas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Pirimidinas/química , Estrobilurinas/química , Adesividade , Cápsulas/química , Composição de Medicamentos/instrumentação , Desenho de Equipamento , Tamanho da Partícula
18.
J Agric Food Chem ; 67(40): 11066-11076, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31508948

RESUMO

The electrospinning of nanofibers (NFs) of cinnamaldehyde inclusion complexes (ICs) with two different hydroxypropylated cyclodextrins (CDs), hydroxypropyl-ß-cyclodextrin (HP-ß-CD) and hydroxypropyl-γ-cyclodextrin (HP-γ-CD), was successfully performed in order to produce cinnamaldehyde/CD-IC NFs without using an additional polymer matrix. The inclusion complexation between cinnamaldehyde and hydroxypropylated CDs was studied by computational molecular modeling, and the results suggested that HP-ß-CD and HP-γ-CD can be inclusion complexed with cinnamaldehyde at 1:1 and 2:1 (cinnamaldehyde/CD) molar ratios. Additionally, molecular modeling and phase solubility studies showed that water solubility of cinnamaldehyde dramatically increases with cyclodextrin inclusion complex (CD-IC) formation. The HP-ß-CD has shown slightly stronger binding with cinnamaldehyde when compared to HP-γ-CD for cinnamaldehyde/CD-IC. Although cinnamaldehyde is a highly volatile compound, it was effectively preserved with high loading by the cinnamaldehyde/CD-IC NFs. It was also observed that cinnamaldehyde has shown much higher temperature stability in cinnamaldehyde/CD-IC NFs compared to uncomplexed cinnamaldehyde because of the inclusion complexation state of cinnamaldehyde within the hydroxypropylated CD cavity. Moreover, cinnamaldehyde still has kept its antibacterial activity in cinnamaldehyde/CD-IC NF samples when tested against Escherichia coli. In addition, cinnamaldehyde/CD-IC NF mats were fast-dissolving in water, even though pure cinnamaldehyde has a water-insoluble nature. In brief, self-standing nanofibrous mats of electrospun cinnamaldehyde/CD-IC NFs are potentially applicable in food, oral-care, healthcare, and pharmaceutics because of their fast-dissolving character, enhanced water solubility, stability at elevated temperature, and promising antibacterial activity.


Assuntos
Acroleína/análogos & derivados , Antibacterianos/química , Antibacterianos/farmacologia , Composição de Medicamentos/métodos , Acroleína/química , Acroleína/farmacologia , Ciclodextrinas/química , Composição de Medicamentos/instrumentação , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Nanofibras/química , Solubilidade , Temperatura
19.
J Agric Food Chem ; 67(36): 9989-9999, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31430135

RESUMO

Zein's prevalent hydrophobic character is one of the major challenges associated with ineffective utilization as an aqueous nanocarrier for pesticides. Herein, we report an effective approach to hydrophilic modification of zein by phosphorylation using nontoxic sodium tripolyphosphate (STP), thereby improving the water-solubility, foliage wettability, and adhesion ability of zein as a nanocarrier for sustained release of pesticides. The procedure relied on zein grafted with STP via N- and O- phosphate bonds and encapsulation of avermectin (AVM) as a hydrophobic model drug using phosphorylated zein (P-Zein), which achieved pH sensitivity to controlled release of AVM in various applicable environments. The chemical interaction between zein and STP was confirmed by Fourier transform infrared, thermogravimetric analysis, and differential scanning calorimetric. Scanning electron microscopy, dynamic light scattering, and zeta potential technique were applied to investigate their structural characteristics and stability, from which it was found that AVM encapsulated in P-Zein (AVM@P-Zein) formed uniform nanoparticles with average sizes in the range of 174-278 nm under different conditions, and had an excellent stability in aqueous solution. Besides, AVM@P-Zein facilitated the wettability on the foliage surface evidenced from contact angle values owing to the amphiphilic character after phosphorylation as well as enhanced the adhesion ability between liquid and leaf, restricting the pesticide runoff. Ultraviolet-visible spectroscopy was employed to explore the anti-UV property and encapsulation as well as release behavior, which revealed that the presence of P-Zein like a shell protects AVM from UV photolysis with encapsulation efficiency of approximately 81.52%, and the release of AVM from P-Zein showed pH-responsive behavior ascribed to protonation and deprotonation of phosphate under various pH conditions fitting to Elovich kinetic model, achieving the relatively more rapid release under acidic conditions. More importantly, AVM@P-Zein retained the toxicity for insecticidal effect.


Assuntos
Preparações de Ação Retardada/química , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Inseticidas/química , Ivermectina/análogos & derivados , Nanopartículas/química , Zeína/química , Animais , Preparações de Ação Retardada/farmacologia , Portadores de Fármacos/efeitos da radiação , Composição de Medicamentos/instrumentação , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Inseticidas/farmacologia , Ivermectina/química , Ivermectina/farmacologia , Cinética , Mariposas/efeitos dos fármacos , Mariposas/crescimento & desenvolvimento , Nanopartículas/efeitos da radiação , Fosforilação , Polifosfatos/química , Raios Ultravioleta , Zeína/efeitos da radiação
20.
Pharm Dev Technol ; 24(10): 1250-1257, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31437082

RESUMO

Using instrumented roll technology, statistical models relating process parameters such as hydraulic pressure, roll speed and screw speed of Vector TF mini roller compactor to ribbon normal stress and density were developed for placebo blends. Normal stress was found to be directly proportional to hydraulic pressure, roll speed and inversely to screw to roll speed ratio. A power-law relationship between ribbon density and normal stress was observed for placebo blends. Models developed for placebo were found to predict ribbon densities of active blends with good accuracy. Standard optimization of roller compaction process parameters involves the investment of a large amount of time and active ingredient. These models can, therefore, be utilized to predict starting instrument settings required to generate a ribbon of desired solid fraction during early-stage development where material availability & time is limited.


Assuntos
Composição de Medicamentos/instrumentação , Modelos Estatísticos , Placebos/química , Carboximetilcelulose Sódica/química , Celulose/química , Composição de Medicamentos/métodos , Composição de Medicamentos/estatística & dados numéricos , Lactose/química , Pós , Pressão , Dióxido de Silício/química , Ácidos Esteáricos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA