Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.305
Filtrar
1.
J Environ Sci (China) ; 108: 44-57, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34465436

RESUMO

Zhengzhou is one of the most haze-polluted cities in Central China with high organic carbon emission, which accounts for 15%-20% of particulate matter (PM2.5) in winter and causes significantly adverse health effects. Volatile organic compounds (VOCs) are the precursors of secondary PM2.5 and O3 formation. An investigation of characteristics, sources and health risks assessment of VOCs was carried out at the urban area of Zhengzhou from 1st to 31st December, 2019. The mean concentrations of total detected VOCs were 48.8 ± 23.0 ppbv. Alkanes (22.0 ± 10.4 ppbv), halocarbons (8.1 ± 3.9 ppbv) and aromatics (6.5 ± 3.9 ppbv) were the predominant VOC species, followed by alkenes (5.1 ± 3.3 ppbv), oxygenated VOCs (3.6 ± 1.8 ppbv), alkyne (3.5 ± 1.9, ppbv) and sulfide (0.5 ± 0.9 ppbv). The Positive Matrix Factorization model was used to identify and apportion VOCs sources. Five major sources of VOCs were identified as vehicular exhaust, industrial processes, combustion, fuel evaporation, and solvent use. The carcinogenic and non-carcinogenic risk values of species were calculated. The carcinogenic and non-carcinogenic risks of almost all air toxics increased during haze days. The total non-carcinogenic risks exceeded the acceptable ranges. Most VOC species posed no non-carcinogenic risk during three haze events. The carcinogenic risks of chloroform, 1,2-dichloroethane, 1,2-dibromoethane, benzyl chloride, hexachloro-1,3-butadiene, benzene and naphthalene were above the acceptable level (1.0  ×  10-6) but below the tolerable risk level (1.0  ×  10-4). Industrial emission was the major contributor to non-carcinogenic, and solvent use was the major contributor to carcinogenic risks.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Ozônio/análise , Estações do Ano , Compostos Orgânicos Voláteis/análise
2.
Talanta ; 235: 122722, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34517590

RESUMO

In-vehicle air pollution has become a major concern to public health in recent years. The traditional analytical methods for detection of volatile organic compounds (VOCs) pollutants in air are based on gas chromatography - mass spectrometry (GC-MS) or high-performance liquid chromatography (HPLC), including complicated pretreatment and separation procedures, which are not only time-consuming and labor-intensive, but also incapable of simultaneously measuring both aldehydes and benzenes. In this work, a new photoionization-induced NO+ chemical ionization time-of-flight mass spectrometry (PNCI-TOFMS) was developed for real-time and continuous measurement of aldehydes and benzenes in vehicles. High-intensity NO+ reactant ions could be generated by photoionization of NO reagent gas, and efficient chemical ionization between NO+ reactant ions and analyte molecules occurred to produce adduct ions M·NO+ at an elevated ion source pressure of 800 Pa. Consequently, the achieved LODs for aldehydes and benzenes were down to sub-ppbv within 60 s. The analytical capacity of this system was demonstrated by continuous and online monitoring of in-vehicle VOCs in a used car, exhibiting broad potential applications of the PNCI-TOFMS in air pollutants monitoring and in-vehicle air quality analysis.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Aldeídos , Benzeno , Cromatografia Gasosa-Espectrometria de Massas , Compostos Orgânicos Voláteis/análise
3.
Talanta ; 235: 122786, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34517644

RESUMO

In this study, we identify 11 mouse pup volatiles putatively involved in maternal care induction in adult females. For this purpose, we have adapted the dynamic headspace methodology to extract the volatolome of whole alive animals. Untargeted metabolomic methodology was used to compare the volatolome of neonatal (4-6 days) with elder pups until the age of weaning (21-23 days old). Pup volatolome was analyzed by gas chromatography (GC) coupled to single quadrupole mass spectrometry (MS) using automated thermal desorption for sample introduction. After data processing and multivariate statistical analysis, comparison with NIST spectral library allowed identifying compounds secreted preferentially by neonatal pups: di(propylen glycol) methyl ether, 4-nonenal, di(ethylene glycol) monobutyl ether, 2-phenoxyethanol, isomethyl ionone, tridecanal, 1,3-diethylbenzene, 1,2,4,5-tetramethylbenzene, 2-ethyl-p-xylene and tri(propylene glycol) methyl ether. Palmitic acid was enriched in the volatolome of fourth week youngsters compared to neonatal pups. The results demonstrated the great potential of the new sampling procedure combined with GC-MS based untargeted volatolomics to identify volatile pheromones in mammals.


Assuntos
Compostos Orgânicos Voláteis , Animais , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas , Metabolômica , Camundongos , Feromônios , Compostos Orgânicos Voláteis/análise
4.
Food Res Int ; 147: 110457, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34399457

RESUMO

Aroma profiles and aroma-active compounds of "Yulu" peach from Fenghua (the peach known for the best flavor and quality in China) were investigated by headspace solid-phase microextraction (HS-SPME), solvent-assisted flavor evaporation (SAFE), gas chromatography-olfactometry (GC-O), gas chromatography-mass spectrometry (GC-MS), and flame photometric detection (FPD). The combination of these methods improved the analysis and identification of aroma substances compared to the combination of a single aroma extraction method and GC-MS. A total of 85 aroma-active compounds, including 10 sulfur compounds were detected. Methional, methyl 3-(methylthio)propionate, methionol, and benzothiazole were first detected in peaches. These aroma compounds cannot only supplement the database of aroma substances of peaches, but also provide data support for traceability of the origins of "Yulu" peaches. In addition, the odor activity value (OAV) was used to identify the contributions of the most important compounds. The results indicated that hexanal, 3-methylbutanal, (E)-2-hexen-1-ol, 3-mercaptohexyl acetate, (E,E)-2,4-decadienal, 2-methylpropanal, γ-decalactone, 2-methylbutanal, theaspirane, and δ-decalactone were the key aroma-active compounds. The key characteristic aroma components were further ascertained by aroma reconstitution and omission experiments, which showed that the fruity, floral, sulfur, and sour notes could be well simulated. Finally, the perceptual interactions between different sulfur compounds and fruity recombination (FR) were explored. 3-mercaptohexanol and 4-methyl-4-mercaptopentan-2-one could significantly decrease the threshold of FR. The possible reason was that these two sulfur compounds had synergistic effects with the aroma compounds in FR, with the U model confirming the results of these synergistic effects. The perceptual interactions provide a basis for the regulation of characteristic fruity aroma of peach products.


Assuntos
Prunus persica , Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas , Norisoprenoides , Odorantes/análise , Olfatometria , Compostos Orgânicos Voláteis/análise
5.
Molecules ; 26(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34443558

RESUMO

The volatile profiles of 51 samples from 12 monofloral-labelled Portuguese honey types were assessed. Honeys of bell heather, carob tree, chestnut, eucalyptus, incense, lavender, orange, rape, raspberry, rosemary, sunflower and strawberry tree were collected from several regions from mainland Portugal and from the Azores Islands. When available, the corresponding flower volatiles were comparatively evaluated. Honey volatiles were isolated using two different extraction methods, solid-phase microextraction (SPME) and hydrodistillation (HD), with HD proving to be more effective in the number of volatiles extracted. Agglomerative cluster analysis of honey HD volatiles evidenced two main clusters, one of which had nine sub-clusters. Components grouped by biosynthetic pathway defined alkanes and fatty acids as dominant, namely n-nonadecane, n-heneicosane, n-tricosane and n-pentacosane and palmitic, linoleic and oleic acids. Oxygen-containing monoterpenes, such as cis- and trans-linalool oxide (furanoid), hotrienol and the apocarotenoid α-isophorone, were also present in lower amounts. Aromatic amino acid derivatives were also identified, namely benzene acetaldehyde and 3,4,5-trimethylphenol. Fully grown classification tree analysis allowed the identification of the most relevant volatiles for discriminating the different honey types. Twelve volatile compounds were enough to fully discriminate eleven honey types (92%) according to the botanical origin.


Assuntos
Mel/análise , Compostos Orgânicos Voláteis/análise , Análise de Alimentos , Qualidade dos Alimentos
6.
Molecules ; 26(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34443564

RESUMO

The higher alcohols 2-phenylethanol, tryptophol, and tyrosol are a group of yeast-derived compounds that have been shown to affect the aroma and flavour of fermented beverages. Five variants of the industrial wine strain AWRI796, previously isolated due to their elevated production of the 'rose-like aroma' compound 2-phenylethanol, were characterised during pilot-scale fermentation of a Chardonnay juice. We show that these variants not only increase the concentration of 2-phenylethanol but also modulate the formation of the higher alcohols tryptophol, tyrosol, and methionol, as well as other volatile sulfur compounds derived from methionine, highlighting the connections between yeast nitrogen and sulfur metabolism during fermentation. We also investigate the development of these compounds during wine storage, focusing on the sulfonation of tryptophol. Finally, the sensory properties of wines produced using these strains were quantified at two time points, unravelling differences produced by biologically modulating higher alcohols and the dynamic changes in wine flavour over aging.


Assuntos
Álcoois/análise , Odorantes/análise , Paladar , Vinho/análise , Fermentação , Saccharomyces cerevisiae/metabolismo , Fatores de Tempo , Compostos Orgânicos Voláteis/análise
7.
J Environ Sci (China) ; 107: 38-48, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34412786

RESUMO

Emissions derived from the consumption of organic solvents have been proven to be the primary industrial source of volatile organic compounds (VOCs). In conjunction with epidemiologic studies, water-based paints (WBPs) and solvent-based paints (SBPs) were selected as representatives of newly developed solvents and traditional solvents, respectively, to simulate the effects of consuming solvents emitted during industrial production. And non-carcinogenic and carcinogenic risks to residents near emission sources were studied in detail. The results showed that the spatial distribution of health risks varied with meteorological conditions and type of emission source, and the prevailing wind direction strongly affected the distribution range and shape of the influenced area. The areas of influence maximized on heavy-polluting days for both WBP and SBP emission sources with the total span reaching 804 m and 16 km, respectively; meanwhile, the areas of influence for carcinogenic risk resulting from WBP emission sources were 1.2 and 2.3 times greater than those measured on fine and rainy days, respectively, and 1.8 and 2.9 times greater for SBP emission sources. Compared with WBPs, the total spans of negatively influenced regions resulting from SBP emission sources were 10.4, 12.5 and 19.9 times greater on fine, rainy and heavy-polluting days, respectively. Therefore, carcinogenic risk was the dominant health threat for populations residing close to solvent-consuming industrial emission sources. The findings suggest that newly developed solvents are capable of significantly reducing consequent health threats, nevertheless, they could still pose occasional threats to nearby residents under specific meteorological conditions.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Indústrias , Solventes , Compostos Orgânicos Voláteis/análise
8.
Huan Jing Ke Xue ; 42(9): 4191-4201, 2021 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-34414717

RESUMO

As an important precursor of ozone, volatile organic compounds (VOCs) have attracted much attention. This study analyzed the temporal variation and composition of atmospheric VOCs in the coastal background of the Pearl River Delta, using real-time online monitoring data of VOCs obtained at the Yangmeikeng Ecological Environment Monitoring Station from August 2019 to July 2020. The major sources of VOCs were identified using a receptor model based on the PMF (positive matrix factorization) and HYSPLIT (hybrid single particle Lagrangian integrated trajectory) models. The results showed that the annual mean concentration of anthropogenic VOCs in the coastal background area of the Pearl River Delta was 9.30×10-9(volume fraction). There was obvious seasonal variation of VOCs in this area, with higher values in autumn and winter and lower values in summer. The coastal background area of the Pearl River Delta exhibited a different diurnal variation pattern to that of cities and other backgrounds. While the peak of VOCs concentration mainly occurred in the morning, from 10:00 to 11:00, concentration remained at a low level during the early morning and after 15:00. Ethylene, propylene, toluene, isopentane, isoprene, m/p-xylene, n-butane, and acetylene were the key species that affected the chemical composition of VOCs. The air masses affecting the coastal background area of the Pearl River Delta were mainly short-distance air masses from elsewhere in the province (25%), ocean air masses (27%), coastal air masses (31%), and inland air masses outside the province (17%). Among them, the average concentration of VOCs was lowest under the influence of ocean air masses, which is mainly affected by the mixed source of ship emissions and aging VOCs, gasoline volatilization, and vehicle emissions. In comparison, the concentration level of VOCs increased by 70.1% to 148.8% under the influence of other air masses. The transmission effects of industrial sources, LNG and LPG volatiles, and petrochemical sources were more prominent. Generally, the atmosphere of coastal background areas was severely affected by anthropogenic pollution, especially by air pollution masses transported from the land, while the impact of pollution by ships near shore and tourist traffic cannot be ignored.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Rios , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise
9.
J Agric Food Chem ; 69(33): 9716-9724, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34375116

RESUMO

Mechanical damage to fruit causes flavor changes during post-harvest supply chains. It is important to identify the main volatiles and explore their biosynthesis mechanism. In this study, the volatile changes in apples caused by mechanical damage were analyzed by gas chromatography-ion mobility spectrometry. Hexanal and ethyl acetate were accumulated and identified as potential volatile biomarkers to detect damaged apples. The study on the lipoxygenase (LOX) pathway and transcription factors (TFs) shows that mechanical damage up-regulated the expression of MdLOX-like, MdLOX3b, MdLOX7b, MdLOX7c, MdLOX2a, and MdAAT in the LOX pathway and that of one MYB TF (MdMYB-like), five ERF TFs (MdERF073, MdERF003, MdERF114, MdERF15, and MdERF2), and five WRKY TFs (MdWRKY23, MdWRKY17, MdWRKY46, MdWRKY48, and MdWRKY71). Notably, MdAAT was significantly correlated to MdMYB-like, MdWRKY23, MdWRKY71, MdERF15, and MdERF2. Thus, TFs may attribute to the accumulation of hexanal and ethyl acetate by regulating the expression of LOX pathway-related genes.


Assuntos
Malus , Compostos Orgânicos Voláteis , Frutas/química , Frutas/genética , Cromatografia Gasosa-Espectrometria de Massas , Malus/genética , Fatores de Transcrição/genética , Compostos Orgânicos Voláteis/análise
10.
Talanta ; 234: 122616, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364425

RESUMO

Comprehensive two-dimensional gas chromatography (GC×GC) has been an important technique used to acquire as much information as possible from a wide variety of samples. Qualitative contour plots analysis provides useful information and in daily use it ends up being handled as images of the volatile organic compounds by analysts. Cachaça samples are used in this paper to showcase the use of two-dimensional chromatographic images as the main source for authentication purposes through one-class classifiers, such as data-driven soft independent modeling of class analogy (DD-SIMCA). The proposed workflow summarizes this fast and easy process, which can be used to certify a specific brand in comparison to other brands, as well as to authenticate if samples have been adulterated. Lower quality cachaças, non-aged cachaças and cachaças aged in different wooden barrels were tested as adulterants. Chromatographic images allowed for the distinction of all brands and nearly every adulteration tested. Sensitivity was estimated at 100% for all models and specificity ranged from 96% to 100%. Different approaches were used, alternating from working with whole-sized images to working with smaller resized versions of those images. Resized chromatographic images could be potentially useful to easily compensate for slight chromatographic misalignments, allowing for faster calculations and the use of simpler software. Reductions to 50% and 25% of the original size were tested and the results did not greatly differ from whole images model. As such, 2D chromatographic images have been found to be an interesting form of evaluating a product's authenticity.


Assuntos
Compostos Orgânicos Voláteis , Cromatografia Gasosa , Cromatografia Gasosa-Espectrometria de Massas , Compostos Orgânicos Voláteis/análise
11.
Environ Pollut ; 285: 117523, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34380222

RESUMO

Volatile organic compounds (VOCs) are important precursors of photochemical pollution. However, a substantial fraction of VOCs, namely, oxygenated VOCs (OVOCs), have not been sufficiently characterized to evaluate their sources in air pollution in China. In this study, a total of 119 VOCs, including 60 OVOCs in particular, were monitored to provide a more comprehensive picture based on different online measurement techniques, proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS) and online gas chromatography/mass spectrometry (GC/MS), at a receptor site in southeastern China during a photochemically active period. Positive matrix factorization (PMF) and photochemical age-based parameterization were combined to identify and quantify different sources of major VOCs during daytime hours, with the advantage of including VOC decay processes. The results revealed the unexpected role of biomass burning (21%) in terms of ozone (O3) formation potential (OFP) when including the contributions of OVOCs and large contributions (30-32%) of biomass burning to aldehydes, as more OVOCs were measured in this study. We argue that biomass burning could significantly enhance the continental atmospheric oxidizing capacity, in addition to the well-recognized contributions of primary pollutants, which should be seriously considered in photochemical models and air pollution control strategies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Biomassa , China , Monitoramento Ambiental , Oxirredução , Ozônio/análise , Compostos Orgânicos Voláteis/análise
12.
Sci Total Environ ; 790: 148149, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34380266

RESUMO

Volatile organic compounds (VOCs) from anthropogenic sources are deleterious to air quality, climate, human health and vegetation. However, research on VOCs source profiles of the non-solvent use in some industries and the emission characteristics of motor vehicles under actual road conditions is limited in China. In this research, VOCs source profiles of industries (wood-based panel manufacturing and pharmacy) based on all product processes were constructed, and those of light and medium duty vehicles exhaust based on actual road conditions at different speeds were acquired in Chengdu, a megacity in southwest China. The results show that VOCs groups of various sources were dominated by oxygenated VOCs (OVOCs), which accounted for 27-84% of the total VOCs emission. Due to the great contribution of OVOCs to industrial source reactivity (SR), attention should be paid to the control over the emissions of the species with high reactivity, such as aromatics and alkenes, but also to the production processes with relatively large proportions of OVOCs species emission. VOCs emissions from gasoline and diesel vehicles running at a speed ranging from 0 to 40 km/h have approximately the same ozone formation potential (OFP), while the contribution of VOCs emission from diesel vehicles to the formation of urban ozone pollution deserves further attention. It is found that VOCs emission characteristics of some industries in China have changed as the upgrading of production processes in automobile manufacturing and other industries, such as the extensive use of water-based coatings instead of outdated solvent-based coatings, which increased the uncertainty of judgment parameters (B/T ratio, etc.) in source apportionment research. The ranges of B/T ratio of industrial process sources, solvent use sources and motor vehicles are 0.00-0.23, 0.01-0.75 and 0.35-0.92, respectively. Therefore, updating existing source profiles and further understanding the emission constitutions of characteristic species in these source profiles (such as BTEX ratio) will be conducive to further research on emission inventory, source apportionment for O3 pollution control effectively.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Humanos , Ozônio/análise , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise
13.
Molecules ; 26(16)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34443387

RESUMO

Sorghum is the major raw material for the production of Chinese Baijiu (Chinese liquor) and has a great effect on the flavor of Baijiu. Volatiles in cooked glutinous and non-glutinous sorghum samples were extracted using solid-phase microextraction (SPME) and analyzed via comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOFMS) and gas chromatography-olfactometry/mass spectrometry (GC-O/MS). A total of 145 volatile compounds and 52 potent odorant compounds were identified from both sorghum types according to the retention index, MS, aroma, and standards. Based on their aroma features, the compounds were grouped into eight general categories, and the intensities of each aroma group were summed. Moreover, most of the compounds detected in the cooked sorghums were also detected in commercial Chinese Baijiu, indicating that the aroma compounds produced during the sorghum cooking process have a direct and significant influence on the final flavor quality of Baijiu.


Assuntos
Culinária , Cromatografia Gasosa-Espectrometria de Massas , Odorantes/análise , Olfatometria , Sorghum/química , Microextração em Fase Sólida , Temperatura , Fatores de Tempo , Compostos Orgânicos Voláteis/análise
14.
Molecules ; 26(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34443695

RESUMO

Wine aroma is an important quality trait in wine, influenced by its volatile compounds. Many factors can affect the composition and levels (concentration) of volatile aromatic compounds, including the water status of grapevines, canopy management, and the effects of climate change, such as increases in ambient temperature and drought. In this study, a low-cost and portable electronic nose (e-nose) was used to assess wines produced from grapevines exposed to different levels of smoke contamination. Readings from the e-nose were then used as inputs to develop two machine learning models based on artificial neural networks. Results showed that regression Model 1 displayed high accuracy in predicting the levels of volatile aromatic compounds in wine (R = 0.99). On the other hand, Model 2 also had high accuracy in predicting smoke aroma intensity from sensory evaluation (R = 0.97). Descriptive sensory analysis showed high levels of smoke taint aromas in the high-density smoke-exposed wine sample (HS), followed by the high-density smoke exposure with in-canopy misting treatment (HSM). Principal component analysis further showed that the HS treatment was associated with smoke aroma intensity, while results from the matrix showed significant negative correlations (p < 0.05) were observed between ammonia gas (sensor MQ137) and the volatile aromatic compounds octanoic acid, ethyl ester (r = -0.93), decanoic acid, ethyl ester (r = -0.94), and octanoic acid, 3-methylbutyl ester (r = -0.89). The two models developed in this study may offer winemakers a rapid, cost-effective, and non-destructive tool for assessing levels of volatile aromatic compounds and the aroma qualities of wine for decision making.


Assuntos
Nariz Eletrônico , Aprendizado de Máquina , Fumaça , Vitis/química , Compostos Orgânicos Voláteis/análise , Vinho/análise , Cromatografia Gasosa-Espectrometria de Massas , Análise Multivariada , Redes Neurais de Computação , Odorantes/análise , Análise de Componente Principal
15.
J Agric Food Chem ; 69(32): 9362-9375, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34342975

RESUMO

Glycosidically bound volatiles (GBVs) are flavorless compounds in fruits and may undergo hydrolysis during fruit maturation, storage, and processing, releasing free aglycones that are odor active. However, the contribution of glycosidic aglycones to the sensory attributes of fruits remains unclear. Herein, the key odor-active aglycones in tamarillo fruits were elucidated through the molecular sensory approach. We extracted GBVs from three cultivars of tamarillo fruits using solid-phase extraction and subsequently prepared aglycone isolates by enzymatic hydrolysis of GBVs. Gas chromatography-mass spectrometry-olfactometry (GC-MS-O) coupled with odor activity value (OAV) calculation, comparative aroma extract dilution analysis (cAEDA), and omission tests were used to identify key aromatic aglycones. A total of 42 odorants were determined by GC-MS-O analysis. Among them, trans-2,cis-6-nonadienal, 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF), linalool, 4-vinylguaiacol, geraniol, and α-terpineol showed high OAVs. The cultivar Amber had more aglycones with flavor dilution (FD) factors >16 than the Mulligan cultivar (27 vs 21, respectively), and the Laird's Large fruit showed the highest FD of 1024 for glycosidic DMHF. Omission tests indicated 14 aglycones as essential odorants related to GBVs in tamarillo fruits. Moreover, the enzymatic liberation of aglycones affected the sensory attributes of the tamarillo juice, resulting in an intensified odor profile with noticeable fruity and sweet notes. This study gives insights into the role of endogenous aroma during tamarillo-flavor perception, which lays the groundwork for developing tamarillo-based products with improved sensory properties.


Assuntos
Solanum , Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas , Odorantes/análise , Olfatometria , Compostos Orgânicos Voláteis/análise
16.
Artigo em Inglês | MEDLINE | ID: mdl-34360380

RESUMO

Indoor air pollution has obtained more attention in a moment where "stay at home" is a maximum repeated for the entire world. It is urgent to know the sources of pollutants indoors, to improve the indoor air quality. This study presents some results obtained for twelve incense products, used indoors, at home, and in temples, but also in spa centers or yoga gymnasiums, where the respiratory intensity is high, and the consequences on health could be more severe. The focus of this study was the gaseous emissions of different types of incense, performing a VOC screening and identifying some specific VOCs different from the usual ones, which are known or suspected to cause severe chronic health effects: carcinogenic, mutagenic, and reprotoxic. Thirteen compounds were selected: benzene, toluene, styrene, naphthalene, furfural, furan, isoprene, 2-butenal, phenol, 2-furyl methyl ketone, formaldehyde, acetaldehyde, and acrolein. The study also indicated that incense cone type shows a higher probability of being more pollutant than incense stick type, as from the 12 products tested, four were cone type, and three of them were in the group of the four higher polluters. Benzene and formaldehyde presented worrying levels in the major part of the products, above guideline values established by the WHO. Unfortunately, there are no limit values established for indoor air for all the compounds studied, but this fact should not exempt us from taking action to alert the population to the potential dangers of using those products. From this study, acetaldehyde, acrolein, furfural, and furan emerge as compounds with levels to deserve attention.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluentes Ambientais , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar em Ambientes Fechados/análise , Benzeno/análise , Formaldeído/análise , Formaldeído/toxicidade , Humanos , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/toxicidade
17.
Sensors (Basel) ; 21(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34450881

RESUMO

Electronic noses (e-nose) offer potential for the detection of cancer in its early stages. The ability to analyse samples in real time, at a low cost, applying easy-to-use and portable equipment, gives e-noses advantages over other technologies, such as Gas Chromatography-Mass Spectrometry (GC-MS). For diseases such as cancer with a high mortality, a technology that can provide fast results for use in routine clinical applications is important. Colorectal cancer (CRC) is among the highest occurring cancers and has high mortality rates, if diagnosed late. In our study, we investigated the use of portable electronic nose (PEN3), with further analysis using GC-TOF-MS, for the analysis of gases and volatile organic compounds (VOCs) to profile the urinary metabolome of colorectal cancer. We also compared the different cancer stages with non-cancers using the PEN3 and GC-TOF-MS. Results obtained from PEN3, and GC-TOF-MS demonstrated high accuracy for the separation of CRC and non-cancer. PEN3 separated CRC from non-cancerous group with 0.81 AUC (Area Under the Curve). We used data from GC-TOF-MS to obtain a VOC profile for CRC, which identified 23 potential biomarker VOCs for CRC. Thus, the PEN3 and GC-TOF-MS were found to successfully separate the cancer group from the non-cancer group.


Assuntos
Neoplasias Colorretais , Compostos Orgânicos Voláteis , Neoplasias Colorretais/diagnóstico , Nariz Eletrônico , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Metaboloma , Compostos Orgânicos Voláteis/análise
18.
Sensors (Basel) ; 21(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34451101

RESUMO

Personal exposure to volatile organic compounds (VOCs) from indoor sources including consumer products is an understudied public health concern. To develop and evaluate methods for monitoring personal VOC exposures, we performed a pilot study and examined time-resolved sensor-based measurements of geocoded total VOC (TVOC) exposures across individuals and microenvironments (MEs). We integrated continuous (1 min) data from a personal TVOC sensor and a global positioning system (GPS) logger, with a GPS-based ME classification model, to determine TVOC exposures in four MEs, including indoors at home (Home-In), indoors at other buildings (Other-In), inside vehicles (In-Vehicle), and outdoors (Out), across 45 participant-days for five participants. To help identify places with large emission sources, we identified high-exposure events (HEEs; TVOC > 500 ppb) using geocoded TVOC time-course data overlaid on Google Earth maps. Across the 45 participant-days, the MEs ranked from highest to lowest median TVOC were: Home-In (165 ppb), Other-In (86 ppb), In-Vehicle (52 ppb), and Out (46 ppb). For the two participants living in single-family houses with attached garages, the median exposures for Home-In were substantially higher (209, 416 ppb) than the three participant homes without attached garages: one living in a single-family house (129 ppb), and two living in apartments (38, 60 ppb). The daily average Home-In exposures exceeded the estimated Leadership in Energy and Environmental Design (LEED) building guideline of 108 ppb for 60% of the participant-days. We identified 94 HEEs across all participant-days, and 67% of the corresponding peak levels exceeded 1000 ppb. The MEs ranked from the highest to the lowest number of HEEs were: Home-In (60), Other-In (13), In-Vehicle (12), and Out (9). For Other-In and Out, most HEEs occurred indoors at fast food restaurants and retail stores, and outdoors in parking lots, respectively. For Home-In HEEs, the median TVOC emission and removal rates were 5.4 g h-1 and 1.1 h-1, respectively. Our study demonstrates the ability to determine individual sensor-based time-resolved TVOC exposures in different MEs, in support of identifying potential sources and exposure factors that can inform exposure mitigation strategies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Sistemas de Informação Geográfica , Humanos , Projetos Piloto , Compostos Orgânicos Voláteis/análise
19.
BMC Plant Biol ; 21(1): 315, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215189

RESUMO

BACKGROUND: Plant-produced specialised metabolites are a powerful part of a plant's first line of defence against herbivorous insects, bacteria and fungi. Wild ancestors of present-day cultivated tomato produce a plethora of acylsugars in their type-I/IV trichomes and volatiles in their type-VI trichomes that have a potential role in plant resistance against insects. However, metabolic profiles are often complex mixtures making identification of the functionally interesting metabolites challenging. Here, we aimed to identify specialised metabolites from a wide range of wild tomato genotypes that could explain resistance to vector insects whitefly (Bemisia tabaci) and Western flower thrips (Frankliniella occidentalis). We evaluated plant resistance, determined trichome density and obtained metabolite profiles of the glandular trichomes by LC-MS (acylsugars) and GC-MS (volatiles). Using a customised Random Forest learning algorithm, we determined the contribution of specific specialised metabolites to the resistance phenotypes observed. RESULTS: The selected wild tomato accessions showed different levels of resistance to both whiteflies and thrips. Accessions resistant to one insect can be susceptible to another. Glandular trichome density is not necessarily a good predictor for plant resistance although the density of type-I/IV trichomes, related to the production of acylsugars, appears to correlate with whitefly resistance. For type VI-trichomes, however, it seems resistance is determined by the specific content of the glands. There is a strong qualitative and quantitative variation in the metabolite profiles between different accessions, even when they are from the same species. Out of 76 acylsugars found, the random forest algorithm linked two acylsugars (S3:15 and S3:21) to whitefly resistance, but none to thrips resistance. Out of 86 volatiles detected, the sesquiterpene α-humulene was linked to whitefly susceptible accessions instead. The algorithm did not link any specific metabolite to resistance against thrips, but monoterpenes α-phellandrene, α-terpinene and ß-phellandrene/D-limonene were significantly associated with susceptible tomato accessions. CONCLUSIONS: Whiteflies and thrips are distinctly targeted by certain specialised metabolites found in wild tomatoes. The machine learning approach presented helped to identify features with efficacy toward the insect species studied. These acylsugar metabolites can be targets for breeding efforts towards the selection of insect-resistant cultivars.


Assuntos
Resistência à Doença/genética , Variação Genética , Hemípteros/fisiologia , Metaboloma/genética , Solanum/genética , Tisanópteros/fisiologia , Tricomas/genética , Tricomas/metabolismo , Algoritmos , Animais , Ecótipo , Genótipo , Fenótipo , Compostos Orgânicos Voláteis/análise
20.
Molecules ; 26(13)2021 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-34198992

RESUMO

Wet coffee processing generates a large amount of coffee pulp waste that is mostly disposed of in the processing units. To reduce this waste and the associated environmental burden, an alternative strategy would be to exploit the coffee pulp to produce a durable and stable consumable product. Accordingly, a puree produced from Robusta coffee pulp was investigated in relation to its physicochemical and sensory properties. After thermal and chemical stabilization, the obtained puree (pH 3.6) was found to exhibit a multimodal particle size distribution, shear-thinning behavior, and lower discoloration, as well as an antioxidant capacity of 87.9 µmolTE/gDM. The flavor of the puree was examined by sensory evaluation and the corresponding analyses of aroma-active volatile compounds, as determined using aroma extract dilution analyses (AEDA) and gas chromatography-mass spectrometry/olfactometry (GC-MS/O). The puree was characterized by dominant fruity (4.4), floral (3.4), citrusy (3.3) and hay-like (3.3) odor impressions. The aroma-active compounds were predominantly aldehydes, acids, and lactones, whereby (E)-ß-damascenone, geraniol, 4-methylphenol, 3-hydroxy-4,5-dimethylfuran-2(5H)-one, and 4-hydroxy-3-methoxybenzaldehyde exhibited the highest flavor dilution (FD) factor (1024), thereby indicating their high impact on the overall aroma of the puree. This study demonstrates an approach to stabilize coffee pulp to produce a sweet, fruity puree with comparable physical properties to other fruit purees and that can be used as a new and versatile flavoring ingredient for various food applications.


Assuntos
Café/química , Odorantes/análise , Compostos Orgânicos Voláteis/análise , Café/classificação , Cromatografia Gasosa-Espectrometria de Massas , Estrutura Molecular , Olfatometria , Extratos Vegetais/análise , Extratos Vegetais/química , Compostos Orgânicos Voláteis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...