Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.481
Filtrar
1.
Nature ; 584(7819): 75-81, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32760044

RESUMO

Chemical reactions that reliably join two molecular fragments together (cross-couplings) are essential to the discovery and manufacture of pharmaceuticals and agrochemicals1,2. The introduction of amines onto functionalized aromatics at specific and pre-determined positions (ortho versus meta versus para) is currently achievable only in transition-metal-catalysed processes and requires halogen- or boron-containing substrates3-6. The introduction of these groups around the aromatic unit is dictated by the intrinsic reactivity profile of the method (electrophilic halogenation or C-H borylation) so selective targeting of all positions is often not possible. Here we report a non-canonical cross-coupling approach for the construction of anilines, exploiting saturated cyclohexanones as aryl electrophile surrogates. Condensation between amines and carbonyls, a process that frequently occurs in nature and is often used by (bio-)organic chemists7, enables a predetermined and site-selective carbon-nitrogen (C-N) bond formation, while a photoredox- and cobalt-based catalytic system progressively desaturates the cyclohexene ring en route to the aniline. Given that functionalized cyclohexanones are readily accessible with complete regiocontrol using the well established carbonyl reactivity, this approach bypasses some of the frequent selectivity issues of aromatic chemistry. We demonstrate the utility of this C-N coupling protocol by preparing commercial medicines and by the late-stage amination-aromatization of natural products, steroids and terpene feedstocks.


Assuntos
Compostos de Anilina/síntese química , Hidrogênio/química , Processos Fotoquímicos , Aminação , Aminas/química , Compostos de Anilina/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Catálise/efeitos da radiação , Cicloexanonas/química , Oxirredução/efeitos da radiação , Processos Fotoquímicos/efeitos da radiação , Esteroides/síntese química , Esteroides/química , Terpenos/síntese química , Terpenos/química
2.
J Chromatogr A ; 1625: 461307, 2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32709350

RESUMO

In this study, the ultrasonic-assisted dispersive solid phase extraction (UA-d-SPE) method coupled to gas chromatography-mass spectrometry (GC-MS) was applied for the analysis of phthalate esters in drinking water and distilled herbal beverages (Rosa, Mentha, Cichorium). A new nanocomposite based on layered double hydroxide supported on graphene oxide was synthesized and modified by sulfonated polyaniline via a simple one-pot in-situ polymerization method. The structure and morphology of the nanocomposite was confirmed by means of complementary techniques: Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, and transmission electron microscopy. The effects of key parameters including adsorbent mass, type and amount of back extraction solvent, extraction and desorption time, pH of the solution and ionic strength were optimized and good precision and sensitivity were achieved. Under the optimum conditions, the limits of detection were between 0.06-0.3 ng mL-1 in aqueous solutions. The hybrid nanomaterial exhibited good adsorption ability toward phthalates in drinking water and distilled herbal beverages. The relative standard deviations (RSD%) for beverage samples varied from 0.1% to 9.9% (n = 3). The relative recoveries varied from 54.5% to 112.6%.


Assuntos
Compostos de Anilina/química , Bebidas/análise , Grafite/química , Hidróxidos/química , Ácidos Ftálicos/isolamento & purificação , Extração em Fase Sólida/métodos , Ácidos Sulfônicos/química , Ultrassom/métodos , Adsorção , Ésteres/análise , Cromatografia Gasosa-Espectrometria de Massas , Concentração de Íons de Hidrogênio , Nanocompostos/química , Concentração Osmolar , Ácidos Ftálicos/análise , Preparações de Plantas/química , Reprodutibilidade dos Testes , Solventes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Fatores de Tempo , Difração de Raios X
3.
Int J Nanomedicine ; 15: 3903-3920, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32606657

RESUMO

Background: Researchers are trying to study the mechanism of neural stem cells (NSCs) differentiation to oligodendrocyte-like cells (OLCs) as well as to enhance the selective differentiation of NSCs to oligodendrocytes. However, the limitation in nerve tissue accessibility to isolate the NSCs as well as their differentiation toward oligodendrocytes is still challenging. Purpose: In the present study, a hybrid polycaprolactone (PCL)-gelatin nanofiber scaffold mimicking the native extracellular matrix and axon morphology to direct the differentiation of bone marrow-derived NSCs to OLCs was introduced. Materials and Methods: In order to achieve a sustained release of T3, this factor was encapsulated within chitosan nanoparticles and chitosan-loaded T3 was incorporated within PCL nanofibers. Polyaniline graphene (PAG) nanocomposite was incorporated within gelatin nanofibers to endow the scaffold with conductive properties, which resemble the conductive behavior of axons. Biodegradation, water contact angle measurements, and scanning electron microscopy (SEM) observations as well as conductivity tests were used to evaluate the properties of the prepared scaffold. The concentration of PAG and T3-loaded chitosan NPs in nanofibers were optimized by examining the proliferation of cultured bone marrow-derived mesenchymal stem cells (BMSCs) on the scaffolds. The differentiation of BMSCs-derived NSCs cultured on the fabricated scaffolds into OLCs was analyzed by evaluating the expression of oligodendrocyte markers using immunofluorescence (ICC), RT-PCR and flowcytometric assays. Results: Incorporating 2% PAG proved to have superior cell support and proliferation while guaranteeing electrical conductivity of 10.8 × 10-5 S/cm. Moreover, the scaffold containing 2% of T3-loaded chitosan NPs was considered to be the most biocompatible samples. Result of ICC, RT-PCR and flow cytometry showed high expression of O4, Olig2, platelet-derived growth factor receptor-alpha (PDGFR-α), O1, myelin/oligodendrocyte glycoprotein (MOG) and myelin basic protein (MBP) high expressed but low expression of glial fibrillary acidic protein (GFAP). Conclusion: Considering surface topography, biocompatibility, electrical conductivity and gene expression, the hybrid PCL/gelatin scaffold with the controlled release of T3 may be considered as a promising candidate to be used as an in vitro model to study patient-derived oligodendrocytes by isolating patient's BMSCs in pathological conditions such as diseases or injuries. Moreover, the resulted oligodendrocytes can be used as a desirable source for transplanting in patients.


Assuntos
Materiais Biomiméticos/farmacologia , Células da Medula Óssea/citologia , Diferenciação Celular , Nanofibras/química , Células-Tronco Neurais/citologia , Oligodendroglia/citologia , Tecidos Suporte/química , Compostos de Anilina/química , Animais , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Condutividade Elétrica , Gelatina/química , Grafite/química , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanofibras/ultraestrutura , Células-Tronco Neurais/metabolismo , Oligodendroglia/efeitos dos fármacos , Poliésteres/química , Ratos , Suínos , Tri-Iodotironina/farmacologia
4.
PLoS One ; 15(6): e0234815, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32584837

RESUMO

Nanocomposites (NCs) of crosslinked polyaniline (CPA)-coated oxidized carbon nanomaterials (OXCNMs) were fabricated as a very sensitive and simple electrochemical sensor to be utilized in 2,4-dichlorophenol (2,4-DCPH) detection. CPA/OXCNMs NCs were prepared by chemical copolymerization of polyaniline with triphenylamine and p-phenylenediamine in the presence of OXCNMs. The CPA/GO-OXSWCNTNCs exhibited a higher affinity for the oxidation of chlorophenols compared to the glassy carbon electrode (GCE), CPA/GCE, and other NCs. Cyclic voltammetry was performed to investigate and assess the electrocatalytic oxidation of 2,4-DCPH on the modified GCE. The compound yielded a well-defined voltammetric response in a Britton-Robinson buffer (pH 5) at 0.54 V (vs. silver chloride electrode). Quantitative determination of 2,4-DCPH was performed by differential pulse voltammetry under optimal conditions in the concentration range of 0.05 to 1.2 nmol L-1, and a linear calibration graph was obtained. The detection limit (S/N = 3) was found to be 4.2 nmol L-1. In addition, the results demonstrated that the CPA/GO-OXSWCNTs/GCE sensor exhibited a strong anti-interference ability, reproducibility, and stability. The prepared CPA/GO-OXSWCNTs/GCE sensor was used to rapidly detect 2,4-DCPH with a high degree of sensitivity in fish farm water with proven levels of satisfactory recoveries.


Assuntos
Compostos de Anilina/química , Carbono/química , Clorofenóis/análise , Eletroquímica/instrumentação , Limite de Detecção , Nanocompostos/química , Clorofenóis/química , Eletrodos , Oxirredução , Fatores de Tempo
5.
PLoS One ; 15(6): e0233952, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32498075

RESUMO

This study aimed to produce cellulose-based conductive fabrics with electrical conductivity and flexibility. Bacterial cellulose (BC) and three chemical cellulose (CC), namely methyl cellulose (MC), hydroxypropyl cellulose (HPMC) and carboxymethyl cellulose (CMC) were in situ polymerized with aniline and the four conductive cellulose fabrics were compared and evaluated. Matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy analysis confirmed that three CC-PANI composites displayed longer and more stable polymerization pattern than BC-PANI because of the different polymerization method: bulk polymerization for BC-PANI and emulsion polymerization for CC-PANI, respectively. The electrical conductivity of BC-PANI and CC-PANI were ranging from 0.962 × 10-2 S/cm to 2.840 × 10-2 S/cm. MC-PANI showed the highest electrical conductivity among the four conductive cellulose fabrics. The flexibility and crease recovery results showed that MC-PANI had the highest flexibility compared to BC-PANI, HPMC-PANI, and CMC-PANI. These results have confirmed that the electrical conductivity and flexibility were influenced by the type of cellulose, and MC-PANI was found to have the best performance in the electrical conductivity and flexibility.


Assuntos
Carboximetilcelulose Sódica/química , Celulose/análogos & derivados , Metilcelulose/química , Polissacarídeos Bacterianos/química , Têxteis , Compostos de Anilina/química , Celulose/química , Elasticidade , Condutividade Elétrica , Nanocompostos/química , Polimerização , Têxteis/análise , Dispositivos Eletrônicos Vestíveis
6.
Food Chem ; 328: 127097, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32470774

RESUMO

In this study, polyaniline modified polyacrylonitrile nanofibers mat (PANI NFsM) was prepared as a novel adsorbent for the solid-phase extraction (SPE) of non-steroidal anti-inflammatory drug residues in meat or egg samples. The solvent extracts of samples were simply diluted with water to perform the SPE, and then the eluent was directly analyzed. Significant reduction of the matrix effect was obtained after SPE using only 5 mg of PANI NFsM. The entire sample preparation time is 5-10 times lower than the existing methods. The limits of detection of the target analytes ranging from 0.6 to 12.2 µg kg-1 had already met the demand of food safety monitoring by only 1 g sample. The recoveries ranged from 85.18% to 107.31%, with the intra-day and inter-day relative standard deviations of 2.74% to 16.01%, revealing satisfactory accuracy and precision. Finally, real samples analyses were applied to verify the practicability of the method.


Assuntos
Compostos de Anilina/química , Ração Animal/análise , Resíduos de Drogas/análise , Resíduos de Drogas/isolamento & purificação , Nanofibras/química , Extração em Fase Sólida/métodos , Resinas Acrílicas/química , Animais , Anti-Inflamatórios não Esteroides/análise , Anti-Inflamatórios não Esteroides/isolamento & purificação , Química Verde , Limite de Detecção , Fatores de Tempo
7.
Chemosphere ; 255: 126983, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32402867

RESUMO

The instability and rapid consumption of H2O2 limit the application of UV/H2O2 in water treatment. Recently, calcium peroxide (CaO2) has been demonstrated as an effective source of H2O2. However, the performance and mechanism of UV/CaO2 are still unknown. Herein, UV/CaO2 and UV/H2O2 were compared for degradation of aniline. The removal efficiency of aniline by UV/CaO2 was slightly lower than that by UV/H2O2, which could be attributed to the light scavenger by CaO2 suspended particles. HO‧ was identified to participate in aniline degradation in both UV/CaO2 and UV/H2O2, while O2-· was only involved in UV/CaO2. The efficiency of aniline degradation in UV/CaO2 was affected by the released H2O2 in the system. The release and decomposition rate of H2O2 in UV/CaO2 system were influenced by the CaO2 dosage and reaction pH, but slightly related with water matrix. Excessive CaO2 would scavenge aniline degradation through the released H2O2 to react with HO‧. Acidic condition would enhance the concentration of H2O2 in UV/CaO2 and promote the degradation of aniline. Cl- showed slight and almost no effect on aniline degradation in UV/CaO2 and UV/H2O2 systems, respectively, while HCO3- scavenged aniline degradation in UV/CaO2. NO3- inhibited aniline degradation in both UV/CaO2 and UV/H2O2. Compared to UV/H2O2, UV/CaO2 shows the similar efficiency on organics removal but conquers the limitations in UV/H2O2, which is a promising alternative choice in water treatment.


Assuntos
Peróxido de Hidrogênio/química , Peróxidos , Raios Ultravioleta , Poluentes Químicos da Água/química , Purificação da Água/métodos , Compostos de Anilina/química , Compostos de Anilina/isolamento & purificação , Carcinógenos/química , Cinética , Oxirredução , Purificação da Água/normas
8.
J Chromatogr A ; 1621: 461084, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32303345

RESUMO

This work presents a new triptycene-based dicationic guanidinium ionic liquid (TPG) as the stationary phase for gas chromatography (GC). To our knowledge, this is the first example of employing a dicationic guanidinium ionic liquid (GIL) for chromatographic analyses. As a result, the TPG column exhibited moderate polarity and column efficiency of 3840 plates/m and 3120 plates/m measured by naphthalene and 1-octanol at 120 °C, respectively. Particularly, the TPG column exhibited distinctly advantageous performance for the challenging Grob test mixture and the isomer mixture of phenols and anilines over the monocationic GIL and its counterpart with dicationic immidazolium units (TP-2IL). Also, it showed higher selectivity towards the isomers of alkanes, alcohols, diethylbenzenes, bromotoluenes, bromonitrobenzenes than the commercial DB-35MS column. Moreover, the TPG column achieved improved thermal stability over the GIL column and excellent repeatability with the RSD values of 0.01-0.05% for run-to-run, 0.11-0.24% for day-to-day and 2.4-4.1% for column-to-column. Its application to GC-MS analysis of the essential oil of Mentha haplocalyx proved its good potential for analysis of complex samples.


Assuntos
Antracenos/química , Guanidina/química , Líquidos Iônicos/química , Alcanos/química , Compostos de Anilina/química , Cromatografia Gasosa-Espectrometria de Massas , Líquidos Iônicos/análise , Isomerismo , Mentha/química , Óleos Voláteis/análise , Fenóis/química , Reprodutibilidade dos Testes , Solventes , Temperatura
9.
Nat Commun ; 11(1): 1996, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332723

RESUMO

Small molecules that selectively kill senescent cells (SCs), termed senolytics, have the potential to prevent and treat various age-related diseases and extend healthspan. The use of Bcl-xl inhibitors as senolytics is largely limited by their on-target and dose-limiting platelet toxicity. Here, we report the use of proteolysis-targeting chimera (PROTAC) technology to reduce the platelet toxicity of navitoclax (also known as ABT263), a Bcl-2 and Bcl-xl dual inhibitor, by converting it into PZ15227 (PZ), a Bcl-xl PROTAC, which targets Bcl-xl to the cereblon (CRBN) E3 ligase for degradation. Compared to ABT263, PZ is less toxic to platelets, but equally or slightly more potent against SCs because CRBN is poorly expressed in platelets. PZ effectively clears SCs and rejuvenates tissue stem and progenitor cells in naturally aged mice without causing severe thrombocytopenia. With further improvement, Bcl-xl PROTACs have the potential to become safer and more potent senolytic agents than Bcl-xl inhibitors.


Assuntos
Envelhecimento/efeitos dos fármacos , Compostos de Anilina/farmacologia , Plaquetas/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Sulfonamidas/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Compostos de Anilina/química , Animais , Linhagem Celular , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Modelos Animais , Cultura Primária de Células , Proteólise/efeitos dos fármacos , Sulfonamidas/química , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/metabolismo
10.
Science ; 367(6484): 1372-1376, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32193327

RESUMO

The structural and functional complexity of multicellular biological systems, such as the brain, are beyond the reach of human design or assembly capabilities. Cells in living organisms may be recruited to construct synthetic materials or structures if treated as anatomically defined compartments for specific chemistry, harnessing biology for the assembly of complex functional structures. By integrating engineered-enzyme targeting and polymer chemistry, we genetically instructed specific living neurons to guide chemical synthesis of electrically functional (conductive or insulating) polymers at the plasma membrane. Electrophysiological and behavioral analyses confirmed that rationally designed, genetically targeted assembly of functional polymers not only preserved neuronal viability but also achieved remodeling of membrane properties and modulated cell type-specific behaviors in freely moving animals. This approach may enable the creation of diverse, complex, and functional structures and materials within living systems.


Assuntos
Compostos de Anilina/química , Ascorbato Peroxidases/genética , Engenharia Genética , Neurônios/fisiologia , Nitrocompostos/química , Fenilenodiaminas/química , Polímeros/química , Potenciais de Ação , Animais , Ascorbato Peroxidases/metabolismo , Caenorhabditis elegans , Membrana Celular/metabolismo , Sobrevivência Celular , Células Cultivadas , Condutividade Elétrica , Células HEK293 , Hipocampo , Humanos , Potenciais da Membrana , Camundongos , Neurônios Motores/fisiologia , Células Musculares/fisiologia , Neurônios/enzimologia , Técnicas de Patch-Clamp , Polímeros/metabolismo , Ratos , Transdução Genética
11.
Anal Bioanal Chem ; 412(8): 1769-1784, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32043201

RESUMO

Simultaneous speciation of benzenediol isomers (BDIs), 1,2-benzenediol (catechol, CC), 1,3-benzenediol (resorcinol, RS), and 1,4-benzenediol (hydroquinone, HQ), was investigated by differential pulse voltammetry (DPV) using a graphite paste electrode (GPE) modified with Prussian blue-polyaniline nanocomposite. The modified GPE showed good stability, sensitivity, and selectivity properties for all the three BDIs. Prussian blue-doped nanosized polyaniline (PBNS-PANI) was synthesized first by using mechanochemical reactions between aniline and ferric chloride hexahydrate as the oxidants and then followed by the addition of potassium hexacyanoferrate(II) in a solid-state and template-free technique. The material was characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). The DPV measurements are performed in phosphate electrolyte solution with pH 4.0 at a potential range of - 0.1 to 1.0 V. The proposed modified electrode displayed a strong, stable, and continuous three well-separated oxidation peaks towards electrooxidation at potentials 0.20, 0.31, and 0.76 V for HQ, CC, and RS, respectively. The calibration curves were linear from 1 to 350.5 µM for both HQ and CC, while for RS, it was from 2 to 350.5 µM. The limit of detection was determined to be 0.18, 0.01, and 0.02 µM for HQ, CC, and RS, respectively. The analytical performance of the PBNS-PANI/GPE has been evaluated for simultaneous determination of HQ, CC, and RS in creek water, commercial hair dye, and skin whitening cream samples with satisfactory recoveries between 90 and 106%. Overall, we demonstrated that the presence of NS-PANI and PB resulted in a large redox-active surface area that enabled a promising analytical platform for simultaneous detection of BDIs. Graphical abstract.


Assuntos
Compostos de Anilina/química , Derivados de Benzeno/análise , Ferrocianetos/química , Nanoestruturas/química , Derivados de Benzeno/química , Calibragem , Eletrodos , Humanos , Concentração de Íons de Hidrogênio , Isomerismo , Cinética , Limite de Detecção , Espectroscopia de Infravermelho com Transformada de Fourier
12.
J Vis Exp ; (156)2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32091002

RESUMO

Low-grade heat is abundantly available in the environment as waste heat. The efficient conversion of low-grade heat into electricity is very difficult. We developed an asymmetric thermoelectrochemical cell (aTEC) for heat-to-electricity conversion under isothermal operation in the charging and discharging processes without exploiting the thermal gradient or the thermal cycle. The aTEC is composed of a graphene oxide (GO) cathode, a polyaniline (PANI) anode, and 1M KCl as the electrolyte. The cell generates a voltage due to the pseudocapacitive reaction of GO when heating from room temperature (RT) to a high temperature (TH, ~40-90 °C), and then current is successively produced by oxidizing PANI when an external electrical load is connected. The aTEC demonstrates a remarkable temperature coefficient of 4.1 mV/K and a high heat-to-electricity conversion efficiency of 3.32%, working at a TH = 70 °C with a Carnot efficiency of 25.3%, unveiling a new promising thermoelectrochemical technology for low-grade heat recovery.


Assuntos
Eletroquímica/métodos , Temperatura Alta , Compostos de Anilina/química , Eletricidade , Eletrodos , Eletrólitos/química , Grafite/química
13.
J Chromatogr A ; 1618: 460928, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32008822

RESUMO

This work presents a new triptycene-based stationary phase (TP-PEG) combining the three-dimensional (3D) triptycene (TP) framework with polyethylene glycol (PEG) moieties for gas chromatographic (GC) separations. Its statically coated capillary column showed high column efficiency of 5263 plates/m determined by naphthalene at 120 °C. Its Rohrschneider-McReynolds constants and Abraham solvation system constants were measured to characterize its polarity and molecular interactions with analytes of different types. As evidenced, the TP-PEG column showed high-resolution performance for the isomers of anilines, phenols, halobenzenes and alkanes with distinct advantages over the PEG columns, particularly those critical isomers such as 3,5-/2,3-xylidine (R = 2.94), m-/p-chlorotoluene (R = 1.92), p-/m-cresol (R = 1.89), 2,2-dimethylbutane/2-methylpentane (R = 1.51), 2,2,3-trimethylbutane /2,3-dimethyl pentane (R = 1.74) and 2,3-dimethylpentane/n-heptane (R = 1.92). In addition, it exhibited good column repeatability and reproducibility with the relative standard deviation (RSD) values of 0.02%-0.09% for run-to-run, 0.13%-0.22% for day-to-day and 2.7%-4.1% for column-to-column, respectively, and a wide operational temperature range (30 °C-280 °C) . Its application to GC-MS analysis of the essential oil of Osmanthus fragrans has proven its good potential for practical analysis of complex samples.


Assuntos
Antracenos/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Óleos Voláteis/química , Oleaceae/química , Polietilenoglicóis/química , Alcanos/análise , Alcanos/química , Compostos de Anilina/análise , Compostos de Anilina/química , Derivados de Benzeno/química , Isomerismo , Fenóis/análise , Fenóis/química , Reprodutibilidade dos Testes
14.
Arch Environ Contam Toxicol ; 78(4): 545-554, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31915850

RESUMO

Chemicals pollution in the environment has attracted attention all over the world, and the toxicity prediction of chemical pollutants has become quite important. In this paper, we introduce a simple approach to predict the toxicity of some chemical components, in which the Tchebichef image moment (TM) method was employed to extract useful chemical information from the images of molecular structures to establish quantitative structure-activity relationship (QSAR) prediction models. The proposed approach was applied to predict the toxicity of anilines and phenols for the aquatic organisms of P. subcapitata and V. fischeri, in which the obtained TMs were defined as the independent variables, while the biological toxicity (pEC50) was regarded to be the dependent variable. Then, the predictive models were established by stepwise regression, respectively. The obtained squared correlation coefficients of leave-one-out cross-validation (Q2) for training sets and the predictive squared correlation coefficients (Rp2) for test sets of the two groups of data were higher than 0.79 and 0.75, respectively, which indicated that the obtained models possessed satisfactory accuracy and reliability. Compared with several reported methods, the proposed approach was more convenient and has a higher predictive capability. Our study provides another perspective in QSAR research.


Assuntos
Compostos de Anilina/toxicidade , Organismos Aquáticos/efeitos dos fármacos , Modelos Teóricos , Fenóis/toxicidade , Poluentes Químicos da Água/toxicidade , Aliivibrio fischeri/efeitos dos fármacos , Compostos de Anilina/química , Clorófitas/efeitos dos fármacos , Fenóis/química , Valor Preditivo dos Testes , Relação Quantitativa Estrutura-Atividade , Reprodutibilidade dos Testes , Poluentes Químicos da Água/química
15.
Environ Pollut ; 259: 113917, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31926395

RESUMO

The present work reports microwave-assisted synthesis of SnO2 nanoparticles via green route using Psidium Guajava extract. For the enhancement of catalytic activity, nanohybrids of SnO2 were formulated using different ratios of polyaniline (PANI) via ultrasound-assisted chemical polymerization. Formation of nanohybrids was confirmed via IR and XPS studies. The UV-vis DRS spectra of PANI/SnO2 revealed significant reduction in the optical band gap upon nanohybrid formation. Microwave-assisted catalytic efficiency of pure SnO2, PANI, PANI/SnO2 nanohybrids was investigated using DDT as a model persistent organic pollutant. The degradation efficiency of PANI/SnO2 was found to increase with the increase in the loading of PANI. Around 87% of DDT degradation was achieved within a very short period of 12 min under microwave irradiation using PANI/SnO2-50/50 as catalyst. The effect of DDT concentration was explored and the degradation efficiency of PANI/SnO2-50/50 catalyst was noticed to be as high as 82% in presence of 100 mg/L of DDT. The effect of microwave power on the degradation efficiency revealed 79% degradation using the same nanohybrid when exposed to microwave irradiation for 5 min under 1110 W microwave power. Scavenging studies confirmed the generation of OH, O2- radicals. The fragments with m/z values as low as 86 and 70 were confirmed by LCMS analysis. Recyclability tests showed that PANI/SnO2-50/50 nanohybrid exhibited 81% degradation of DDT (500 mg/L) even after the third cycle, which reflected high catalytic efficiency as well as remarkable stability of the catalyst. This green nanohybrid could therefore be effectively utilized for the rapid degradation of persistent organic pollutants.


Assuntos
DDT/química , Micro-Ondas , Psidium , Compostos de Anilina/química , Nanoestruturas/química , Extratos Vegetais/química , Compostos de Estanho/química
16.
Mater Sci Eng C Mater Biol Appl ; 108: 110456, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31924021

RESUMO

Under different pathological conditions, high levels of reactive oxygen species (ROS) cause substantial damage to multiple organs. To counter these ROS levels in multiple organs, we have engineered highly potent novel terpolymers. We found that combination of FDA-approved polyethylene glycol, fumaric acid moieties and electroactive tetra(aniline) by varying the content of tetra(aniline) results into a novel drug composition with biologically active and tunable intrinsic antioxidant properties. To test the intrinsic antioxidative properties of these novel terpolymers, we used alloxan to induce diabetes in rats where ROS generation is known to be higher. The systemic administration of terpolymers to the diabetic rats showed strong electroactive antioxidant behavior which not only normalized ROS levels, but also improved the levels of enzymatic antioxidants including superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH). As a proof-of-principle, we here show TANI based novel drug composition of terpolymers with tunable intrinsic antioxidant properties in multiple organs.


Assuntos
Compostos de Anilina , Antioxidantes , Diabetes Mellitus Experimental/tratamento farmacológico , Compostos de Anilina/síntese química , Compostos de Anilina/química , Compostos de Anilina/farmacocinética , Compostos de Anilina/farmacologia , Animais , Antioxidantes/síntese química , Antioxidantes/química , Antioxidantes/farmacocinética , Antioxidantes/farmacologia , Catalase/sangue , Linhagem Celular , Diabetes Mellitus Experimental/sangue , Glutationa/sangue , Humanos , Masculino , Ratos , Espécies Reativas de Oxigênio , Superóxido Dismutase/sangue
17.
Talanta ; 209: 120577, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31892035

RESUMO

Human Exhaled Breath Condensate (EBC) contains markers of several inflammatory diseases. Its analysis is of interest to a number of researchers. Nitrite ions (NO2-), which are widely used in our daily lives, are nevertheless among these indicators. In this study, a simple, fast, portable, non-invasive and cheap electrochemical sensor is developed for the analysis of the nitrite profile in EBC. In this regard, sodium nitrite (NaNO2) was first immobilized on self-assembled 2-aminothiophenol (2-ATP) on a screen-printed gold electrode (Au-SPE). Then, a polymer matrix composed of polyvinyl alcohol (PVA) crosslinked with glutaraldehyde (GA) was combined with gold nanoparticles (Au-NPs) to cover the modified Au-SPE and complete the fabrication of the Ion Imprinted Polymer (IIP) sensor. The electrochemical behaviour of the sensor was monitored using Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS) and Differential Pulse Voltammetry (DPV) methods, while the morphology and chemical composition of its layers were observed by infrared Fourier transform (FTIR), Atomic Force Microscopy (AFM) and Scanning Electron Microscopy coupled with energy dispersion X-Ray spectroscopy (SEM-EDS) techniques. In addition, after a successful control test using a Non-Imprinted Ion Polymer (NIIP) sensor, the obtained results demonstrated satisfactory sensitivity and selectivity to nitrite compared to co-existing interfering substances in EBC, such as nitrate, acetate and ammonium nitrate. Under improved experimental conditions, the nitrite IIP sensor exhibits responses proportional to nitrite concentrations (R2 = 0.96) over a concentration range of 0.5-50 µg mL-1 with a detection limit (LOD) of 4 µmol L-1 (signal-to-noise ratio S/N = 3). The proposed approach was well applied for the nitrite determination in EBC samples with a relative standard deviation (RSD = 4%) and could open clinical applications in respiratory medicine.


Assuntos
Testes Respiratórios/instrumentação , Técnicas Eletroquímicas/instrumentação , Ouro/química , Nanoestruturas/química , Nitritos/análise , Polímeros/química , Compostos de Anilina/química , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Testes Respiratórios/métodos , Técnicas Eletroquímicas/métodos , Desenho de Equipamento , Humanos , Limite de Detecção , Impressão Molecular/instrumentação , Impressão Molecular/métodos , Nanoestruturas/ultraestrutura , Álcool de Polivinil/química
18.
J Chromatogr A ; 1614: 460714, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31761436

RESUMO

Developing highly selective stationary phases is essential to address the issues for separation of analytes with similar properties and various components in complex samples. Herein, we report a new triptycene-based material functionalized with polycaprolactone moieties (TP-PCL) as the stationary phase with high-resolution performance for gas chromatography (GC). The TP-PCL capillary column exhibited column efficiency of 5555 plates/m and moderate polarity. On the column, dozens of mixtures of positional and structural isomers can be well resolved, involving benzene derivatives with varying substituents (alkyl, halo, nitro, hydroxyl, amino), naphthalene derivatives, alkanes and alcohols. It exhibits advantageous performance for high resolution of the critical pairs of alkylbenzenes, phenols, anilines and alkanes over the PCL column and commercial DB-35 MS column with similar polarity. Moreover, the TP-PCL column showed excellent separation repeatability and reproducibility with RSD values of 0.02%-0.07% for run-to-run (n = 4), 0.11%-0.18% for day-to-day (n = 4) and 2.1%-4.7% for column-to-column (n = 4). In addition, it exhibited distinctly enhanced thermal stability in contrast to the PCL column. Its application to analysis of the essential oil from Artemisiae argyi proves its good potential for practical use.


Assuntos
Antracenos/química , Cromatografia Gasosa/métodos , Poliésteres/química , Álcoois/análise , Álcoois/química , Alcanos/análise , Alcanos/química , Compostos de Anilina/análise , Compostos de Anilina/química , Derivados de Benzeno/análise , Derivados de Benzeno/química , Isomerismo , Naftalenos/análise , Naftalenos/química , Fenóis/análise , Fenóis/química , Reprodutibilidade dos Testes
19.
Biomed Chromatogr ; 34(4): e4771, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31808583

RESUMO

A new method for quantification of osimertinib (OSIM) in human plasma using a high-performance liquid chromatography-tandem mass spectrometry method was developed and validated. Methanol was used for protein precipitation and pazopanib as internal standard. Separation was performed on a HyPURITY®C18 analytical column (50 × 2.1 mm; 3 µm) using a gradient elution of ammonium acetate in water and ammonium acetate in methanol, both acidified with formic acid 0.1%. Detection and quantification of OSIM and pazopanib was performed using a triple quadruple mass spectrometer after electrospray ionization. This method led to robust results, as the selectivity, carryover, precision and accuracy all met pre-specified requirements. OSIM was stable in human serum when stored at -80°C. Reduced stability was found when stored at 2-4°C or room temperature. Degradation of OSIM slowed down in EDTA-plasma and acidified human serum. The limited stability of OSIM at room temperature should be considered for transport and sample preparation. Plasma samples should be frozen as soon as possible and sample preparation should be performed on dry-ice. In the future, EDTA-plasma and sample acidification may be used to improve OSIM stability at room temperature. However, more research and validation of such an approach are required.


Assuntos
Acrilamidas/sangue , Acrilamidas/química , Compostos de Anilina/sangue , Compostos de Anilina/química , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Estabilidade de Medicamentos , Humanos , Modelos Lineares , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Chemosphere ; 243: 125270, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31726261

RESUMO

Pendimethalin (PND) is a widely used herbicide in modern means of agricultural practices. So, its toxic residues exist extensively in the environment and can enter human body. Therefore, the in vitro interaction of PND with human serum albumin (HSA) has been explored by employing various biophysical, molecular docking and dynamics simulation studies as well as enzyme kinetics to unravel its binding mechanism. The binding constant of the PND-HSA complex was about 104 M-1 using Fluorescence quenching spectra. The negative value of Gibbs free energy change (ΔG0 = -32.0 kJ mol-1) indicates this interaction is a spontaneous process. A large negative ΔH0 and positive ΔS0 suggests that hydrophobic interactions and H-bonding are involved in the binding process of PND with HSA. The binding of PND can cause conformational and micro-environmental changes in HSA molecule, as shown by various biophysical and molecular dynamics simulation studies. The site marker competition and molecular docking and simulation experiments affirmed that the binding of PND to HSA occurs at or near site I. Esterase-like activity of HSA exhibited decline in the presence of PND revealed the direct involvement of Lys199 of subdomain IIA (Sudlow's site I) in the binding process.


Assuntos
Compostos de Anilina/química , Albumina Sérica Humana/química , Compostos de Anilina/metabolismo , Sítios de Ligação , Dicroísmo Circular , Humanos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Espectrometria de Fluorescência , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA