Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.756
Filtrar
1.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360967

RESUMO

Microbial biodegradation is one of the acceptable technologies to remediate and control the pollution by polycyclic aromatic hydrocarbon (PAH). Several bacteria, fungi, and cyanobacteria strains have been isolated and used for bioremediation purpose. This review paper is intended to provide key information on the various steps and actors involved in the bacterial and fungal aerobic and anaerobic degradation of pyrene, a high molecular weight PAH, including catabolic genes and enzymes, in order to expand our understanding on pyrene degradation. The aerobic degradation pathway by Mycobacterium vanbaalenii PRY-1 and Mycobactetrium sp. KMS and the anaerobic one, by the facultative bacteria anaerobe Pseudomonas sp. JP1 and Klebsiella sp. LZ6 are reviewed and presented, to describe the complete and integrated degradation mechanism pathway of pyrene. The different microbial strains with the ability to degrade pyrene are listed, and the degradation of pyrene by consortium is also discussed. The future studies on the anaerobic degradation of pyrene would be a great initiative to understand and address the degradation mechanism pathway, since, although some strains are identified to degrade pyrene in reduced or total absence of oxygen, the degradation pathway of more than 90% remains unclear and incomplete. Additionally, the present review recommends the use of the combination of various strains of anaerobic fungi and a fungi consortium and anaerobic bacteria to achieve maximum efficiency of the pyrene biodegradation mechanism.


Assuntos
Klebsiella/metabolismo , Mycobacterium/metabolismo , Pseudomonas/metabolismo , Pirenos/metabolismo , Klebsiella/genética , Consórcios Microbianos , Mycobacterium/genética , Oxigênio/metabolismo , Pseudomonas/genética
2.
Bioresour Technol ; 340: 125635, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34339998

RESUMO

This study aims to construct a high-temperature-resistant microbial consortium to effectively degrade oily food waste by Fed-in-situ biological reduction treatment (FBRT). Oil degrading bacteria were screened under thermophilic conditions of mineral salt medium with increased oil content. The oil degradation and emulsification ability of each stain was evaluated and their synergetic improvement was further confirmed. Consortium of Bacillus tequilensis, Bacillus licheniformis, Bacillus sonorensis and Ureibacillus thermosphaericus was selected and applicated as bacterial agents in FBRT under 55 °C. Changes in pH, moisture, bacterial community and key components of food waste were monitored for 5 days during processing. Facilitated by the bacterial consortium, FBRT gave superior total mass reduction (86.61 ± 0.58% vs. 67.25 ± 1.63%) and non-volatile solids reduction (65.91 ± 1.53% vs. 28.53 ± 2.29%) compared with negative control, the feasibility and efficiency of present FBRT providing a promising in-situ disposal strategy for rapid reduction of oily food waste.


Assuntos
Consórcios Microbianos , Eliminação de Resíduos , Bacillus , Biodegradação Ambiental , Alimentos , Planococáceas , Temperatura
3.
Bioresour Technol ; 340: 125709, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34375790

RESUMO

The characterized microbial consortium can efficiently degrade rice straw to produce acetic and butyric acids in high yields. The rice straw lost 86.9% in weight and degradation rates of hemicellulose, cellulose, and lignin attained were 97.1%, 86.4% and 70.3% within 12 days, respectively. During biodegradation via fermentation of rice straw, average concentrations of acetic and butyric acids reached 1570 mg/L and 1270 mg/L, accounting for 47.2% and 35.4% of the total volatile fatty acids, respectively. The consortium mainly composed of Prevotella, Cellulosilyticum, Pseudomonas, Clostridium and Ruminococcaceae, etc. Metagenomic analyses indicated that glycoside hydrolases (GHs) were the largest enzyme group with a relative abundance of 54.5%. Various lignocellulose degrading enzymes were identified in the top 30 abundant GHs, and were primarily distributed in the dominant genera (Prevotella, Cellulosilyticum and Clostridium). These results provide a new route for the commercial recycling of rice straw to produce organic acids.


Assuntos
Consórcios Microbianos , Oryza , Butiratos , DNA Ribossômico , Fermentação , Lignina/metabolismo , Metagenoma , Oryza/metabolismo
4.
Sci Total Environ ; 791: 148400, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34412406

RESUMO

Metal(loid) soil pollution resulting from mining activities is an important issue that has negative effects on the environment (soil acidification, lack of vegetation, groundwater pollution) and human health (cancer, chronic diseases). In the context of a phytostabilization process for the bioremediation of a mine soil highly contaminated by arsenic (As) and lead (Pb), a pot experiment was set up to study the effect of plant sowing and microbial inoculation on soil properties, metal(loid) (im)mobilization in soil and accumulation in plant, and plant growth. For this, mine soil was sown with endemic metallicolous Agrostis seeds and/or inoculated with endogenous microbial consortia previously selected for their As and Pb tolerance. Agrostis was able to develop on the contaminated mine soil and immobilized metal(loid)s through metal(loid) accumulation in the roots. Its growth was improved by microbial consortium inoculation. Moreover, microbial consortium inoculation increased soil organic content and electrical conductivity, and led to an increase in soil microbial activities (linked to C and P cycles); however, it also induced a metal(loid) mobilization. In conclusion, microbial consortium inoculation stimulated the growth of endemic Agrostis plants and thus ameliorated the phytostabilization of a former mine soil highly polluted by As and Pb. This study is thus a good example of the benefits of coupling several approaches such as phytostabilization and bioaugmentation for the bioremediation of former mine contaminated sites.


Assuntos
Agrostis , Poluentes do Solo , Biodegradação Ambiental , Humanos , Consórcios Microbianos , Solo , Poluentes do Solo/análise
5.
J Environ Sci (China) ; 107: 65-76, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34412788

RESUMO

Polycyclic aromatic hydrocarbons (PAHs), typical representatives of the persistent organic pollutants (POPs), have become ubiquitous in the environment. In this study, a novel microbial consortium QY1 that performed outstanding PAHs-degrading capacity has been enriched. The degradation characteristics of single and mixed PAHs treated with QY1 were studied, and the effect of biochar on biodegradation of mixed PAHs and the potential of biochar in PAHs-heavy metal combined pollution bioremediation were also investigated. Results showed that, in single substrate system, QY1 degraded 94.5% of 500 mg/L phenanthrene (PHE) and 17.8% of 10 mg/L pyrene (PYR) after 7 days, while in PHE-PYR mixture system, the biodegradation efficiencies of PHE (500 mg/L) and PYR (10 mg/L) reached 94.0% and 96.2%, respectively, since PHE served as co-metabolic substrate to have significantly improved PYR biodegradation. Notably, with the cooperation of biochar, the biodegradations of PHE and PYR were greatly accelerated. Further, biochar could reduce the adverse impact of heavy metals (Cd2+, Cu2+, Cr2O72-) on PYR biodegradation remarkably. The sequencing analysis revealed that Methylobacterium, Burkholderia and Stenotrophomonas were the dominant genera of QY1 in almost all treatments, indicating that these genera might play key roles in PAHs biodegradation. Overall, this study provided new insights into the efficient bioremediation of PAHs-contaminated site.


Assuntos
Metais Pesados , Hidrocarbonetos Policíclicos Aromáticos , Biodegradação Ambiental , Carvão Vegetal , Consórcios Microbianos
6.
Food Res Int ; 147: 110449, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34399451

RESUMO

Mud cellars have long been used as anaerobic bioreactors for the fermentation of Chinese strong-flavor Baijiu, where starchy raw materials (mainly sorghum) are metabolized to ethanol and various flavor compounds by multi-species microorganisms. Jiupei (fermented grains) and pit mud are two spatially linked microbial habitats in the mud cellar, yet their metabolic division of labor remains unclear. Here, we investigated the changes in environmental variables (e.g., temperature, oxygen, pH), key metabolites (e.g., ethanol, organic acids) and microbial communities in jiupei and pit mud during fermentation. Jiupei (low pH, high ethanol) and pit mud (neutral pH) provided two habitats with distinctly different environmental conditions for microbial growth. Lactic acid accumulated in jiupei, while butyric and hexanoic acids were mainly produced by microbes inhabiting the pit mud. Biomass analysis using quantitative real-time PCR showed that bacteria dominated the microbial consortia during fermentation, moreover cluster and principal coordinate analysis (PCoA) analysis showed that the bacterial communities of jiupei and pit mud were significantly divergent. The bacterial community diversity of jiupei decreased significantly during the fermentation process, and was relatively stable in pit mud. Lactobacillus dominated the jiupei bacterial community, and its relative abundance reached 98.0% at the end of fermentation. Clostridia (relative abundance: 42.9-85.5%) was the most abundant bacteria in pit mud, mainly distributed in the genus Hydrogenispora (5.3-68.4%). Fungal communities of jiupei and pit mud showed a similar succession pattern, and Kazachstania, Aspergillus and Thermoascus were the predominant genera. PICRUSt analysis demonstrated that enzymes participating in the biosynthesis of acetic and lactic acid were mainly enriched in jiupei samples, while the bacterial community in the pit mud displayed greater potential for butyric and hexanoic acid synthesis. Assays from an in vitro simulated fermentation further validated the roles of jiupei microbiota in acetic and lactic acid production, and these acids were subsequently metabolized to butyric and hexanoic acid by the pit mud microbiota. This work has demonstrated the synergistic cooperation between the microbial communities of jiupei and pit mud for the representative flavor formation of strong-flavor Baijiu.


Assuntos
Consórcios Microbianos , Microbiota , Bebidas Alcoólicas/análise , Bactérias/genética , Fermentação
7.
Food Res Int ; 147: 110549, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34399526

RESUMO

Kombucha is a very distinct naturally fermented sweetened tea that has been produced for thousands of years. Fermentation relies on metabolic activities of the complex autochthonous symbiotic microbiota embedded in a floating biofilm and used as a backslop for successive fermentations. Here, we designed a tailor-made microbial consortium representative of the core Kombucha microbiota to drive this fermentation. Microbial (counts, metagenetics), physico-chemical (pH, density) and biochemical (organic acids, volatile compounds) parameters were monitored as well as biofilm formation by confocal laser scanning microscopy and scanning electron microscopy. While nine species were co-inoculated, four (Dekkera bruxellensis, Hanseniaspora uvarum, Acetobacter okinawensis and Liquorilactobacillus nagelii) largely dominated. Microbial activities led to acetic, lactic, succinic and oxalic acids being produced right from the start of fermentation while gluconic and glucuronic acids progressively increased. A distinct shift in volatile profile was also observed with mainly aldehydes identified early on, then high abundances of fatty acids, ketones and esters at the end. Correlation analyses, combining metabolomic and microbial data also showed a shift in species abundances during fermentation. We also determined distinct bacteria-yeast co-occurence patterns in biofilms by microscopy. Our study provides clear evidence that a tailor-made consortium can be successfully used to drive Kombucha fermentations.


Assuntos
Consórcios Microbianos , Microbiota , Acetobacter , Biofilmes , Brettanomyces , Fermentação , Hanseniaspora
8.
Bioresour Technol ; 339: 125507, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34303101

RESUMO

The present study extracts and enriches cellulolytic microbial consortia from yak (Bos grunniens) and evaluates their effects on the fermentation profile and bioethanol yield in rice straw silage. Two microbial consortia (CF and PY) with high cellulolytic activity were isolated and observed to be prone to utilize natural carbon sources. Two consortia were introduced with and without combined lactic acid bacteria (CLAB) to rice straw for up to 60 days of ensiling, and their application notably decreased the levels of structural carbohydrates and pH values of rice straw silages. Treatments that combining microbial consortia and CLAB resulted in the highest levels of lactic acid, water soluble carbohydrates, mono- and disaccharides, and lignocellulose degradation, with PY + CLAB group yielding the highest bioethanol production. The microbial consortia identified herein exhibit great potential for degrading fibrous substrates, and their combination with CLAB provides a feasible way to efficiently use rice straw for bioethanol production.


Assuntos
Oryza , Animais , Carboidratos , Bovinos , Fermentação , Consórcios Microbianos , Silagem/análise
9.
Bioresour Technol ; 339: 125577, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34304095

RESUMO

Antibiotics in wastewater leads to migration of pollutants and disrupts natural processes of mineralization of organic matter. In order to understand the mechanism of this, research was undertaken on the influence of nitrofurantoin (NFT) and furazolidone (FZD), on the behaviour of a consortium of microorganisms present in a model wastewater in a bioreactor. Our study confirmed biodegradation of the antibiotics by the microbial consortium, with the degradation efficiency within 10 days of 65% for FZD, but only 20% for NFT. The kinetic study proved that the presence of analysed antibiotics had no adverse effect on the microbes, but the consortium behaviour differ significantly with the NFT reducing the consumption of organic carbon in wastewater and increasing the production of extracellular biopolymeric and volatile organic compounds, and the FZD reducing assimilation of other carbon sources to a less extent, at the expense of cellular focus on biodegradation of this antibiotic.


Assuntos
Furazolidona , Nitrofurantoína , Antibacterianos , Consórcios Microbianos , Águas Residuárias
10.
Bioresour Technol ; 338: 125521, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34273631

RESUMO

This study aims to explore distinct bacterial strains from wood-feeding termites and to construct novel bacterial consortium for improving the methane yield during anaerobic digestion by degrading birchwood sawdust (BSD) and removing creosote (CRO) compounds simultaneously. A novel bacterial consortium CTB-4 which stands for the molecularly identified species Burkholderia sp., Xanthomonas sp., Shewanella sp., and Pseudomonas mosselii was successfully developed. The CTB-4 consortium showed high efficiency in the removal of naphthalene and phenol. It also revealed reduction in lignin, hemicellulose, and cellulose by 19.4, 52.5, and 76.8%, respectively. The main metabolites after the CRO degradation were acetic acid, succinate, pyruvate, and acetaldehyde. Pretreatment of treated BSD mixed with CRO enhanced the total methane yield (162 L/kg VS) by 82.7% and biomass reduction by 54.7% compared to the untreated substrate. CRO showed a toxicity decrease of >90%, suggesting the efficiency of constructed bacterial consortia in bioremediation and biofuel production.


Assuntos
Isópteros , Madeira , Anaerobiose , Animais , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Biocombustíveis/análise , Creosoto , Lignina/metabolismo , Metano , Consórcios Microbianos , Pseudomonas , Madeira/química
11.
Molecules ; 26(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209142

RESUMO

The objective of the study was to gather insight into the metabolism of lead-removing microorganisms, coupled with Pb(II) removal, biomass viability and nitrate concentrations for Pb(II) bioremoval using an industrially obtained microbial consortium. The consortium used for study has proven to be highly effective at removing aqueous Pb(II) from solution. Anaerobic batch experiments were conducted with Luria-Bertani broth as rich growth medium over a period of 33 h, comparing a lower concentration of Pb(II) with a higher concentration at two different nutrient concentrations. Metabolite profiling and quantification were conducted with the aid of both liquid chromatography coupled with tandem mass spectroscopy (UPLC-HDMS) in a "non-targeted" fashion and high-performance liquid chromatography (HPLC) in a "targeted" fashion. Four main compounds were identified, and a metabolic study was conducted on each to establish their possible significance for Pb(II) bioremoval. The study investigates the first metabolic profile to date for Pb(II) bioremoval, which in turn can result in a clarified understanding for development on an industrial and microbial level.


Assuntos
Biomassa , Chumbo/metabolismo , Metaboloma , Consórcios Microbianos , Águas Residuárias/microbiologia , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental
12.
J Hazard Mater ; 418: 126091, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34118544

RESUMO

Lignocellulosic biomass represents an unlimited and ubiquitous energy source, which can effectively address current global challenges, including climate change, greenhouse gas emissions, and increased energy demand. However, lignocellulose recalcitrance hinders microbial degradation, especially in case of contaminated materials such as creosote (CRO)-treated wood, which necessitates appropriate processing in order to eliminate pollution. This study might be the first to explore a novel bacterial consortium SST-4, for decomposing birchwood sawdust, capable of concurrently degrading lignocellulose and CRO compounds. Afterwards, SST-4 which stands for molecularly identified bacterial strains Acinetobacter calcoaceticus BSW-11, Shewanella putrefaciens BSW-18, Bacillus cereus BSW-23, and Novosphingobium taihuense BSW-25 was evaluated in terms of biological sawdust pre-treatment, resulting in effective lignocellulose degradation and 100% removal of phenol and naphthalene. Subsequently, the maximum biogas production observed was 18.7 L/kg VS, while cumulative methane production was 162.8 L/kg VS, compared to 88.5 without microbial pre-treatment. The cumulative energy production from AD-I and AD-II through biomethanation was calculated as 3177.1 and 5843.6 KJ/kg, respectively. The pretreatment process exhibited a significant increase in the energy yield by 83.9%. Lastly, effective CRO detoxification was achieved with EC50 values exceeding 90%, showing the potential for an integrated process of effective contaminated wood management and bioenergy production.


Assuntos
Consórcios Microbianos , Sphingomonadaceae , Anaerobiose , Biocombustíveis/análise , Biomassa , Creosoto , Lignina/metabolismo , Metano , Sphingomonadaceae/metabolismo , Madeira/química
13.
J Environ Manage ; 295: 113088, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34174687

RESUMO

In-situ sludge reduction plays a significant role in reducing excess sludge production. This study investigated the role of beneficial microorganisms (BM) in the anoxic-oxic-settling-anoxic (A-OSA) process associated with the in-situ sludge reduction efficiency under synthetic landfill leachate treatment. The rates of excess sludge reduction with the inoculation of BM increased up to 53.6% (calculated as total suspended solids) and 38.3% (calculated as total volume), respectively. Side-stream reactors, as important components of the A-OSA process, were further studied to explore change of parameters related to in-situ sludge reduction. With the inoculation of BM, the release and conversion of extracellular polymeric substances and the dehydrogenase activity (increasing rate = 60.9%) were increased. Species richness and microbial diversity, as well as the microbial community composition (e.g., hydrolytic and fermentative bacteria), were improved via bioaugmentation. Moreover, potential gene functions of microorganisms were positively regulated and the abundance of gene expressions (e.g., nirK, norB) for in-situ sludge reduction could be improved.


Assuntos
Esgotos , Poluentes Químicos da Água , Anaerobiose , Reatores Biológicos , Consórcios Microbianos , Eliminação de Resíduos Líquidos
14.
J R Soc Interface ; 18(179): 20210348, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34157894

RESUMO

Despite a growing understanding of how environmental composition affects microbial communities, it remains difficult to apply this knowledge to the rational design of synthetic multispecies consortia. This is because natural microbial communities can harbour thousands of different organisms and environmental substrates, making up a vast combinatorial space that precludes exhaustive experimental testing and computational prediction. Here, we present a method based on the combination of machine learning and metabolic modelling that selects optimal environmental compositions to produce target community phenotypes. In this framework, dynamic flux balance analysis is used to model the growth of a community in candidate environments. A genetic algorithm is then used to evaluate the behaviour of the community relative to a target phenotype, and subsequently adjust the environment to allow the organisms to approach this target. We apply this iterative process to thousands of in silico communities of varying sizes, showing how it can rapidly identify environments that yield desired taxonomic compositions and patterns of metabolic exchange. Moreover, this combination of approaches produces testable predictions for the assembly of experimental microbial communities with specific properties and can facilitate rational environmental design processes for complex microbiomes.


Assuntos
Microbiota , Algoritmos , Evolução Biológica , Simulação por Computador , Consórcios Microbianos
15.
Molecules ; 26(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066118

RESUMO

Lignin, which is a component of wood, is difficult to degrade in nature. However, serious decay caused by microbial consortia can happen to wooden antiques during the preservation process. This study successfully screened four microbial consortia with lignin degradation capabilities (J-1, J-6, J-8 and J-15) from decayed wooden antiques. Their compositions were identified by genomic sequencing, while the degradation products were analyzed by GC-MS. The lignin degradation efficiency of J-6 reached 54% after 48 h with an initial lignin concentration of 0.5 g/L at pH 4 and rotation speed of 200 rpm. The fungal consortium of J-6 contained Saccharomycetales (98.92%) and Ascomycota (0.56%), which accounted for 31% of the total biomass. The main bacteria in J-6 were Shinella sp. (47.38%), Cupriavidus sp. (29.84%), and Bosea sp. (7.96%). The strongest degradation performance of J-6 corresponded to its composition, where Saccharomycetales likely adapted to the system and improved lignin degradation enzymes activities, and the abundant bacterial consortium accelerated lignin decomposition. Our work demonstrated the potential utilization of microbial consortia via the synergy of microbial consortia, which may overcome the shortcomings of traditional lignin biodegradation when using a single strain, and the potential use of J-6 for lignin degradation/removal applications.


Assuntos
Lignina/metabolismo , Consórcios Microbianos/genética , Madeira/metabolismo , Madeira/microbiologia , Ascomicetos/genética , Biodegradação Ambiental , Biomassa , Bradyrhizobiaceae/genética , Cupriavidus/genética , DNA Bacteriano/genética , DNA Fúngico/genética , Cromatografia Gasosa-Espectrometria de Massas , Lacase/metabolismo , Peroxidases/metabolismo , Rhizobiaceae/genética , Saccharomycetales/genética , Análise de Sequência de DNA
16.
Sci Total Environ ; 780: 146590, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34030345

RESUMO

The growing accumulation of plastic wastes is one of the main environmental challenges currently faced by modern societies. These wastes are considered a serious global problem because of their effects on all forms of life. There is thus an urgent need to demonstrate effective eco-environmental techniques to overcome the hazardous environmental impacts of traditional disposal paths. However, our current knowledge on the prevailing mechanisms and the efficacy of synthetic plastics' biodegradation still appears limited. Under this scope, our review aims to comprehensively highlight the role of microbes, with special emphasis on algae, on the entire plastic biodegradation process focusing on the depolarization of various synthetic plastic types. Moreover, our review emphasizes on the ability of insects' gut microbial consortium to degrade synthetic plastic wastes. In this view, we discuss the schematic pathway of the biodegradation process of six types of synthetic plastics. These findings may contribute to establishing bio-upcycling processes of plastic wastes towards biosynthesis of valuable metabolic products. Finally, we discuss the challenges and opportunities for microbial valorization of degraded plastic wastes.


Assuntos
Consórcios Microbianos , Plásticos , Biodegradação Ambiental
17.
J Hazard Mater ; 414: 125533, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34030408

RESUMO

Long-term exposure of anammox process to 1,4-dioxane was investigated using periodic anammox baffled reactor (PABR) under different 1,4-dioxane concentrations. The results generally indicated that PABR (composed of 4 compartments) has robust resistance to 10 mg-dioxane/L. The 1st compartment acted as a shield to protect subsequent compartments from 1,4-dioxane toxicity through secretion of high extracellular polymeric substance (EPS) of 152.9 mg/gVSS at 10 mg-dioxane/L. However, increasing 1,4-dioxane to 50 mg/L significantly inhibited anammox bacteria; e.g., ~ 93% of total nitrogen removal was lost within 14 days. The inhibition of anammox process at this dosage was most likely due to bacterial cell lysis, resulting in the decrease of EPS secretion and specific anammox activity (SAA) to 105.9 mg/gVSS and 0.04 mg N/gVSS/h, respectively, in the 1st compartment. However, anammox bacteria were successfully self-recovered within 41 days after the cease of 1,4-dioxane exposure. The identification of microbial compositions further emphasized the negative impacts of 1,4-dioxane on abundance of C. Brocadia among samples. Furthermore, the development of genus Planococcus in the 1st compartment, where removal of 1,4-dioxane was consistently observed, highlights its potential role as anoxic 1,4-dioxane degrader. Overall, long-term exposure to 1,4-dioxane should be controlled not exceeding 10 mg/L for a successful application.


Assuntos
Reatores Biológicos , Matriz Extracelular de Substâncias Poliméricas , Anaerobiose , Dioxanos , Fadiga , Humanos , Cinética , Consórcios Microbianos , Nitrogênio , Oxirredução
18.
Sci Total Environ ; 786: 147421, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-33964769

RESUMO

Highly enriched active dechlorinating cultures are important in advancing microbial remediation technology. This study attempted to enrich a rapid perchloroethene (PCE) dechlorinating culture via magnetic nanoparticle-mediated isolation (MMI). MMI is a novel method that can separate the fast-growing and slow-growing population in a microbial community without labelling. In the MMI process, PCE dechlorination was enhanced but the subsequent trichloroethene (TCE) dechlorination was inhibited, with TCE cumulative rate reached up to 80.6% within 70 days. Meanwhile, the microbial community was also changed, with fast-growing genera like Dehalobacterium and Petrimonas enriched, and slow-growing Methanosarcina almost ruled out. Relative abundances of several major genera including Petrimonas and Methanosarcina were positively related to TCE dechlorination rate and the relative abundance of Dehalococcoides. On the other hand, Dehalobacterium was negatively related to TCE dechlorination rate and Dehalococcoides abundance, suggesting potential competition between Dehalobacterium and Dehalococcoides. The regrowth of Methanosarcina coupled well with the recovery of TCE dechlorination capacity, which implied the important role of methanogens in TCE dechlorination. Via MMI method, a simpler but more active microbial consortium could be established to enhance PCE remediation efficiency. Methanogens may act as the indicators or biomarkers for TCE dechlorination, suggesting that methanogenic activity should also be monitored when enriching dechlorination cultures and remediating PCE contaminated sites. CAPSULE: A rapid perchloroethene dechlorinator was gotten via magnetic nanoparticles and dechlorination of trichloroethene coupled well with growth of Methanosarcina.


Assuntos
Chloroflexi , Nanopartículas de Magnetita , Microbiota , Tricloroetileno , Biodegradação Ambiental , Consórcios Microbianos
19.
Nat Commun ; 12(1): 3139, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035266

RESUMO

Complex biological systems in nature comprise cells that act collectively to solve sophisticated tasks. Synthetic biological systems, in contrast, are designed for specific tasks, following computational principles including logic gates and analog design. Yet such approaches cannot be easily adapted for multiple tasks in biological contexts. Alternatively, artificial neural networks, comprised of flexible interactions for computation, support adaptive designs and are adopted for diverse applications. Here, motivated by the structural similarity between artificial neural networks and cellular networks, we implement neural-like computing in bacteria consortia for recognizing patterns. Specifically, receiver bacteria collectively interact with sender bacteria for decision-making through quorum sensing. Input patterns formed by chemical inducers activate senders to produce signaling molecules at varying levels. These levels, which act as weights, are programmed by tuning the sender promoter strength Furthermore, a gradient descent based algorithm that enables weights optimization was developed. Weights were experimentally examined for recognizing 3 × 3-bit pattern.


Assuntos
Computadores Moleculares , Consórcios Microbianos/fisiologia , Reconhecimento Automatizado de Padrão/métodos , Biologia Sintética/métodos , Escherichia coli , Redes Neurais de Computação , Percepção de Quorum/fisiologia
20.
Biodegradation ; 32(5): 551-562, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34046776

RESUMO

In this work, strains of Bacillus subtilis were inoculated in consortium with Rhodotorula mucilaginosa into spent soy oil as aiming to biological treatment and low-cost reuse. The microorganisms were previously isolated and selected for the lipolytic capacity of the alperujo residue generated during the processing of olive oil. For fermentation, bioassays containing Rhodotorula mucilaginosa isolated from alperujo and Candida rugosa CCMA 00371, both co-inoculated with Bacillus subtilis CCMA 0085 in medium containing (% w/v) 0.075 glucose and 0.375 (NH4)3 PO4 in 75 mL of water and 75 mL of spent soy oil. Despite the low biomass productivity, it has favorable characteristics to be used in animal feed supplementation. Spent soy oil was used as a carbon source proven by Bartha respirometer. The strains of R. mucilaginosa UFLA RAS 144 and B. subtilis CCMA 0085 are promising inoculants for oil degradation and can be applied in a waste treatment system.


Assuntos
Consórcios Microbianos , Óleo de Soja , Biodegradação Ambiental , Hidrólise , Rhodotorula , Saccharomycetales , Tecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...