Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.471
Filtrar
1.
PLoS One ; 15(8): e0236808, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32750061

RESUMO

BACKGROUND: Ataxia with oculomotor apraxia type 1 (AOA1) is a rare autosomal recessive cerebellar ataxia, caused by mutations in the APTX gene. The disease is characterized by early-onset cerebellar ataxia, oculomotor apraxia and severe axonal polyneuropathy. The aim of this study was to detect the disease-causing variants in two unrelated consanguineous Jordanian families with cerebellar ataxia using whole exome sequencing (WES), and to correlate the identified mutation(s) with the clinical and cellular phenotypes. METHODS: WES was performed in three affected individuals and segregation analysis of p.W279* APTX candidate variant was performed. Expression levels of APTX were measured in patients' skin fibroblasts and peripheral blood mononuclear cells, followed by western blot analysis in skin fibroblasts. Genotoxicity assay was performed to detect the sensitivity of APTX mutated cells to H2O2, MMC, MMS and etoposide. RESULTS: A recurrent homozygous nonsense variant in APTX gene (c.837G>A, p.W279*) was revealed in all affected individuals. qRT-PCR showed normal APTX levels in peripheral blood and lower levels in fibroblast cells. However, western blot showed the absence of APTX protein in patients' skin fibroblasts. Significant hypersensitivity to H2O2, MMC and etoposide and lack of sensitivity to MMS were noted. CONCLUSIONS: This is the first study to report the identification of a nonsense variant in the APTX gene (c.837G>A; p.W279*) in AOA1 patients within the Jordanian population. This study confirmed the need of WES to assist in the diagnosis of cerebellar ataxia and it emphasizes the importance of studying the pathophysiology of the APTX gene.


Assuntos
Ataxia Cerebelar/genética , Códon sem Sentido , Dano ao DNA , Proteínas de Ligação a DNA/genética , Proteínas Nucleares/genética , Criança , Pré-Escolar , Consanguinidade , DNA/efeitos dos fármacos , Feminino , Humanos , Masculino , Mutagênicos/farmacologia , Sequenciamento Completo do Exoma
2.
Pediatrics ; 146(2)2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32669404

RESUMO

Hereditary hemorrhagic telangiectasia (HHT) can be clinically diagnosed, but children often lack characteristic features. We report a family with homozygous growth differentiation factor 2 (GDF2)-related HHT diagnosed by genetic testing. A boy aged 5 years and 2 months presented with isolated hypoxemia. He was the product of a consanguineous marriage; his parents were second cousins. Physical examination revealed cyanosis of nail beds and clubbed fingers. Pulse oxygen saturation was 84% to 89%. Lung function, contrast-enhanced lung computed tomography, and noncontrast echocardiography were normal. A pulmonary perfusion scan revealed radioactivity in the brain and bilateral kidney, suggesting the existence of a intrapulmonary shunt. Whole-exome sequencing revealed a homozygous variant [c.1060_1062delinsAG (p.Tyr354ArgfsTer15)] in GDF2, which was found to be inherited from his heterozygous parents. At the age of 8 years, he developed epistaxis, and an angiogram revealed diffuse pulmonary arteriovenous malformations. At the age of 9 years, he was treated with sirolimus, and his condition improved significantly. However, his now 7-year-old sister with the same homozygous variant currently has no symptoms. Physical examinations revealed 1 pinpoint-sized telangiectasia on the chest of his mother and a vascular lesion on the forehead of his sister. Additionally, the patient's father and great-uncle had a history of mild to moderate epistaxis. Mutation in GDF2 is a rare cause of HHT. Ours is the first report of homozygous GDF2-related HHT; in addition, this variant has not been reported previously. In our report, we also confirm variable expressivity, even with the same pathogenic variant in GDF2-related HHT.


Assuntos
Fator 2 de Diferenciação de Crescimento/genética , Hipóxia/etiologia , Telangiectasia Hemorrágica Hereditária/genética , Grupo com Ancestrais do Continente Asiático/genética , Criança , Pré-Escolar , Consanguinidade , Endoglina/metabolismo , Epistaxe/etiologia , Feminino , Homozigoto , Humanos , Mutação INDEL , Mutação com Perda de Função , Masculino , Linhagem , Transdução de Sinais , Telangiectasia Hemorrágica Hereditária/sangue , Telangiectasia Hemorrágica Hereditária/complicações , Telangiectasia Hemorrágica Hereditária/diagnóstico por imagem , Fator de Crescimento Transformador beta/fisiologia , Fator A de Crescimento do Endotélio Vascular/sangue , Sequenciamento Completo do Exoma
3.
Dermatol Online J ; 26(4)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32621683

RESUMO

Congenital atrichia with papular lesions is a rare, autosomal recessive and irreversible form of total alopecia of the body hair characterized by hair loss soon after birth and the development of keratinfilled cysts or horny papules over extensive areas of the body. The condition is associated with a mutation of the human hairless gene on chromosome region 8p12. We report a 1-year-old boy presenting with the absence of scalp and body hair since birth. On examination, he had complete absence of hair on the scalp, eyebrows, and eyelashes. Multiple, discrete, pearly-to-skin-colored papules of 1-3mm in size were present over the scalp. The skin biopsy from a scalp papule revealed normal overlying epidermis with multiple keratin cysts and hypoplastic hair follicles in the upper dermis.


Assuntos
Alopecia/congênito , Folículo Piloso/anormalidades , Dermatopatias Vesiculobolhosas/congênito , Pele/patologia , Alopecia/diagnóstico , Alopecia/genética , Alopecia/patologia , Biópsia , Consanguinidade , Diagnóstico Diferencial , Raquitismo Hipofosfatêmico Familiar/diagnóstico , Folículo Piloso/patologia , Humanos , Lactente , Masculino , Linhagem , Dermatopatias Vesiculobolhosas/diagnóstico , Dermatopatias Vesiculobolhosas/genética , Dermatopatias Vesiculobolhosas/patologia
4.
Hum Genet ; 139(11): 1429-1441, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32488467

RESUMO

Autozygosity-driven exome analysis has been shown effective for identification of genes underlying recessive diseases especially in countries of the so-called Greater Middle East (GME), where high consanguinity unravels the phenotypic effects of recessive alleles and large family sizes facilitate homozygosity mapping. In Italy, as in most European countries, consanguinity is estimated low. Nonetheless, consanguineous Italian families are not uncommon in publications of genetic findings and are often key to new associations of genes with rare diseases. We collected 52 patients from 47 consanguineous families with suspected recessive diseases, 29 originated in GME countries and 18 of Italian descent. We performed autozygosity-driven exome analysis by detecting long runs of homozygosity (ROHs > 1.5 Mb) and by prioritizing candidate clinical variants within. We identified a pathogenic synonymous variant that had been previously missed in NARS2 and we increased an initial high diagnostic rate (47%) to 55% by matchmaking our candidate genes and including in the analysis shorter ROHs that may also happen to be autozygous. GME and Italian families contributed to diagnostic yield comparably. We found no significant difference either in the extension of the autozygous genome, or in the distribution of candidate clinical variants between GME and Italian families, while we showed that the average autozygous genome was larger and the mean number of candidate clinical variants was significantly higher (p = 0.003) in mutation-positive than in mutation-negative individuals, suggesting that these features influence the likelihood that the disease is autozygosity-related. We highlight the utility of autozygosity-driven genomic analysis also in countries and/or communities, where consanguinity is not widespread cultural tradition.


Assuntos
Testes Genéticos/métodos , Genoma Humano/genética , Mapeamento Cromossômico/métodos , Consanguinidade , Exoma/genética , Família , Feminino , Genes Recessivos/genética , Humanos , Itália , Masculino , Oriente Médio , Mutação/genética , Linhagem
5.
Nature ; 582(7812): 384-388, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32555485

RESUMO

The nature and distribution of political power in Europe during the Neolithic era remains poorly understood1. During this period, many societies began to invest heavily in building monuments, which suggests an increase in social organization. The scale and sophistication of megalithic architecture along the Atlantic seaboard, culminating in the great passage tomb complexes, is particularly impressive2. Although co-operative ideology has often been emphasised as a driver of megalith construction1, the human expenditure required to erect the largest monuments has led some researchers to emphasize hierarchy3-of which the most extreme case is a small elite marshalling the labour of the masses. Here we present evidence that a social stratum of this type was established during the Neolithic period in Ireland. We sampled 44 whole genomes, among which we identify the adult son of a first-degree incestuous union from remains that were discovered within the most elaborate recess of the Newgrange passage tomb. Socially sanctioned matings of this nature are very rare, and are documented almost exclusively among politico-religious elites4-specifically within polygynous and patrilineal royal families that are headed by god-kings5,6. We identify relatives of this individual within two other major complexes of passage tombs 150 km to the west of Newgrange, as well as dietary differences and fine-scale haplotypic structure (which is unprecedented in resolution for a prehistoric population) between passage tomb samples and the larger dataset, which together imply hierarchy. This elite emerged against a backdrop of rapid maritime colonization that displaced a unique Mesolithic isolate population, although we also detected rare Irish hunter-gatherer introgression within the Neolithic population.


Assuntos
Consanguinidade , Hierarquia Social/história , Incesto/história , Sociedades/história , Adulto , Sepultamento/história , DNA Antigo/análise , Família/história , Feminino , Genoma Humano/genética , Haplótipos/genética , História Antiga , Humanos , Irlanda , Masculino
6.
Tunis Med ; 98(5): 396-403, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32548843

RESUMO

INTRODUCTION: Urolithiasis is a health problem that is increasing all over the world as in Algeria, but with scarce local data. AIM: To determine, for the first time, the epidemiological characteristics of urolithiasis in western Algeria. METHODS: We determined the socio-demographic parameters, the clinical data, and those related to stones of 1104 adult stone formers (2012-2019). RESULTS: We confirmed the higher prevalence of urolithiasis among males (sex-ratio=1.9). Stone formers were overweight or obese in 57.2% of cases, 56.7% were living in urban areas and 53.1% had a poor educational level. The rate of consanguinity was 25% and 33.9% had a family history. Stone recurrence was 51.1% and 89% of stones were located in the upper urinary tract. Spontaneous expulsion was the most frequent way of elimination (51.9%), open surgery was used in 19.7%, while 15.5% resorted to endourology or extracorporeal shock wave lithotripsy. The predominant component of stones was calcium oxalate (75%), followed by calcium phosphates (8.9%) and uric acid (10.2%). Struvite (urinary infection indices) was in 3.4% of stones but detected in 16.9% and cystine was found in 1%. Males had a higher educational level, a higher consanguinity rate, and more recurrences than females. CONCLUSION: The epidemiologic profile coming out of this study is close to those described in Maghreb and in industrialized countries. Our data showed that there is an improvement of the socio-economical level, but modern techniques of stone removal should be used more, as well as change in lifestyle.


Assuntos
Urolitíase/epidemiologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Argélia/epidemiologia , Comorbidade , Consanguinidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/complicações , Obesidade/epidemiologia , Fatores de Risco , Fatores Socioeconômicos , População Urbana/estatística & dados numéricos , Urolitíase/etiologia
7.
Radiology ; 295(3): 736-740, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32421468

RESUMO

HistoryA 13-year-old girl was born to consanguineous parents. She presented with mild intellectual impairment, convergent strabismus, horizontal gaze palsy, and bilateral abducens palsy. Vertical gaze was preserved, and no abnormalities suggesting facial paralysis were noted. In addition, she reported progressive back pain since she was 5 years old. Other symptoms were denied. No medications or related drugs had been administered thus far. The patient underwent brain MRI for further evaluation. Current and previous spine radiographs were also reviewed.


Assuntos
Análise Mutacional de DNA , Oftalmoplegia Externa Progressiva Crônica/genética , Receptores de Superfície Celular/genética , Escoliose/genética , Adolescente , Consanguinidade , Feminino , Humanos , Imagem por Ressonância Magnética , Oftalmoplegia Externa Progressiva Crônica/diagnóstico por imagem , Doenças Raras , Escoliose/diagnóstico por imagem
8.
PLoS One ; 15(5): e0233017, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32407401

RESUMO

Myotonia congenita and hypokalemic periodic paralysis type 2 are both rare genetic channelopathies caused by mutations in the CLCN1 gene encoding voltage-gated chloride channel CLC-1 and the SCN4A gene encoding voltage-gated sodium channel Nav1.4. The patients with concomitant mutations in both genes manifested different unique symptoms from mutations in these genes separately. Here, we describe a patient with myotonia and periodic paralysis in a consanguineous marriage pedigree. By using whole-exome sequencing, a novel F306S variant in the CLCN1 gene and a known R222W mutation in the SCN4A gene were identified in the pedigree. Patch clamp analysis revealed that the F306S mutant reduced the opening probability of CLC-1 and chloride conductance. Our study expanded the CLCN1 mutation database. We emphasized the value of whole-exome sequencing for differential diagnosis in atypical myotonic patients.


Assuntos
Canais de Cloreto/genética , Paralisia Periódica Hipopotassêmica/complicações , Paralisia Periódica Hipopotassêmica/genética , Miotonia Congênita/complicações , Miotonia Congênita/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Adolescente , Adulto , Idoso , Sequência de Aminoácidos , China , Canais de Cloreto/química , Canais de Cloreto/metabolismo , Consanguinidade , Sequência Conservada , Diagnóstico Diferencial , Feminino , Células HEK293 , Humanos , Paralisia Periódica Hipopotassêmica/metabolismo , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Miotonia Congênita/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo , Linhagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sequenciamento Completo do Exoma , Adulto Jovem
9.
Nature ; 581(7809): 459-464, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32461653

RESUMO

Naturally occurring human genetic variants that are predicted to inactivate protein-coding genes provide an in vivo model of human gene inactivation that complements knockout studies in cells and model organisms. Here we report three key findings regarding the assessment of candidate drug targets using human loss-of-function variants. First, even essential genes, in which loss-of-function variants are not tolerated, can be highly successful as targets of inhibitory drugs. Second, in most genes, loss-of-function variants are sufficiently rare that genotype-based ascertainment of homozygous or compound heterozygous 'knockout' humans will await sample sizes that are approximately 1,000 times those presently available, unless recruitment focuses on consanguineous individuals. Third, automated variant annotation and filtering are powerful, but manual curation remains crucial for removing artefacts, and is a prerequisite for recall-by-genotype efforts. Our results provide a roadmap for human knockout studies and should guide the interpretation of loss-of-function variants in drug development.


Assuntos
Genes Essenciais/efeitos dos fármacos , Genes Essenciais/genética , Mutação com Perda de Função/genética , Terapia de Alvo Molecular , Artefatos , Automação , Consanguinidade , Éxons/genética , Mutação com Ganho de Função/genética , Frequência do Gene , Técnicas de Silenciamento de Genes , Heterozigoto , Homozigoto , Humanos , Proteína Huntingtina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doenças Neurodegenerativas/genética , Proteínas Priônicas/genética , Reprodutibilidade dos Testes , Tamanho da Amostra , Proteínas tau/genética
10.
Hum Genet ; 139(10): 1273-1283, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32367404

RESUMO

Unlike disorders of primary cilium, primary ciliary dyskinesia (PCD) has a much narrower clinical spectrum consistent with the limited tissue distribution of motile cilia. Nonetheless, PCD diagnosis can be challenging due to the overlapping features with other disorders and the requirement for sophisticated tests that are only available in specialized centers. We performed exome sequencing on all patients with a clinical suspicion of PCD but for whom no nasal nitric oxide test or ciliary functional assessment could be ordered. Among 81 patients (56 families), in whom PCD was suspected, 68% had pathogenic or likely pathogenic variants in established PCD-related genes that fully explain the phenotype (20 variants in 11 genes). The major clinical presentations were sinopulmonary infections (SPI) (n = 58), neonatal respiratory distress (NRD) (n = 2), laterality defect (LD) (n = 6), and combined LD/SPI (n = 15). Biallelic likely deleterious variants were also encountered in AKNA and GOLGA3, which we propose as novel candidates in a lung phenotype that overlaps clinically with PCD. We also encountered a PCD phenocopy caused by a pathogenic variant in ITCH, and a pathogenic variant in CEP164 causing Bardet-Biedl syndrome and PCD presentation as a very rare example of the dual presentation of these two disorders of the primary and motile cilia. Exome sequencing is a powerful tool that can help "democratize" the diagnosis of PCD, which is currently limited to highly specialized centers.


Assuntos
Cílios/metabolismo , Transtornos da Motilidade Ciliar/genética , Predisposição Genética para Doença , Pneumonia/genética , Síndrome do Desconforto Respiratório do Recém-Nascido/genética , Sinusite/genética , Autoantígenos/genética , Cílios/patologia , Transtornos da Motilidade Ciliar/complicações , Transtornos da Motilidade Ciliar/diagnóstico , Transtornos da Motilidade Ciliar/patologia , Consanguinidade , Proteínas de Ligação a DNA/genética , Feminino , Expressão Gênica , Proteínas da Matriz do Complexo de Golgi/genética , Humanos , Masculino , Proteínas dos Microtúbulos/genética , Mutação , Proteínas Nucleares/genética , Linhagem , Fenótipo , Pneumonia/complicações , Pneumonia/diagnóstico , Pneumonia/patologia , Proteínas Repressoras/genética , Síndrome do Desconforto Respiratório do Recém-Nascido/complicações , Síndrome do Desconforto Respiratório do Recém-Nascido/diagnóstico , Síndrome do Desconforto Respiratório do Recém-Nascido/patologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Arábia Saudita , Sinusite/complicações , Sinusite/diagnóstico , Sinusite/patologia , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética , Sequenciamento Completo do Exoma
11.
Neurology ; 94(23): e2441-e2447, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32467133

RESUMO

OBJECTIVE: Facioscapulohumeral muscular dystrophy (FSHD) is a heterogenetic disorder predominantly characterized by progressive facial and scapular muscle weakness. Patients with FSHD either have a contraction of the D4Z4 repeat on chromosome 4q35 or mutations in D4Z4 chromatin modifiers SMCHD1 and DNMT3B, both causing D4Z4 chromatin relaxation and inappropriate expression of the D4Z4-encoded DUX4 gene in skeletal muscle. In this study, we tested the hypothesis whether LRIF1, a known SMCHD1 protein interactor, is a disease gene for idiopathic FSHD2. METHODS: Clinical examination of a patient with idiopathic FSHD2 was combined with pathologic muscle biopsy examination and with genetic, epigenetic, and molecular studies. RESULTS: A homozygous LRIF1 mutation was identified in a patient with a clinical phenotype consistent with FSHD. This mutation resulted in the absence of the long isoform of LRIF1 protein, D4Z4 chromatin relaxation, and DUX4 and DUX4 target gene expression in myonuclei, all molecular and epigenetic hallmarks of FSHD. In concordance, LRIF1 was shown to bind to the D4Z4 repeat, and knockdown of the LRIF1 long isoform in muscle cells results in DUX4 and DUX4 target gene expression. CONCLUSION: LRIF1 is a bona fide disease gene for FSHD2. This study further reinforces the unifying genetic mechanism, which postulates that FSHD is caused by D4Z4 chromatin relaxation, resulting in inappropriate DUX4 expression in skeletal muscle.


Assuntos
Proteínas de Ciclo Celular/genética , Distrofia Muscular Facioescapuloumeral/genética , Biópsia , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Cromatina/ultraestrutura , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Humanos Par 4/genética , Códon sem Sentido , Consanguinidade , Fibroblastos , Mutação da Fase de Leitura , Duplicação Gênica , Regulação da Expressão Gênica , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/patologia , Linhagem , Isoformas de Proteínas/genética , Sequências Repetitivas de Ácido Nucleico
12.
PLoS Genet ; 16(5): e1008639, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32453731

RESUMO

Hypertrophic cardiomyopathy (HCM) is characterized by thickening of the ventricular muscle without dilation and is often associated with dominant pathogenic variants in cardiac sarcomeric protein genes. Here, we report a family with two infants diagnosed with infantile-onset HCM and mitral valve dysplasia that led to death before one year of age. Using exome sequencing, we discovered that one of the affected children had a homozygous frameshift variant in Myosin light chain 2 (MYL2:NM_000432.3:c.431_432delCT: p.Pro144Argfs*57;MYL2-fs), which alters the last 20 amino acids of the protein and is predicted to impact the most C-terminal of the three EF-hand domains in MYL2. The parents are unaffected heterozygous carriers of the variant and the variant is absent in control cohorts from gnomAD. The absence of the phenotype in carriers and the infantile presentation of severe HCM is in contrast to HCM associated with dominant MYL2 variants. Immunohistochemical analysis of the ventricular muscle of the deceased patient with the MYL2-fs variant showed a marked reduction of MYL2 expression compared to an unaffected control. In vitro overexpression studies further indicate that the MYL2-fs variant is actively degraded. In contrast, an HCM-associated missense variant (MYL2:p.Gly162Arg) and three other MYL2 stop-gain variants (p.E22*, p.K62*, p.E97*) that result in loss of the EF domains are stably expressed but show impaired localization. The degradation of the MYL2-fs can be rescued by inhibiting the cell's proteasome function supporting a post-translational effect of the variant. In vivo rescue experiments with a Drosophila MYL2-homolog (Mlc2) knockdown model indicate that neither the MYL2-fs nor the MYL2:p.Gly162Arg variant supports normal cardiac function. The tools that we have generated provide a rapid screening platform for functional assessment of variants of unknown significance in MYL2. Our study supports an autosomal recessive model of inheritance for MYL2 loss-of-function variants in infantile HCM and highlights the variant-specific molecular differences found in MYL2-associated cardiomyopathy.


Assuntos
Miosinas Cardíacas/genética , Cardiomiopatia Hipertrófica/genética , Família , Mutação da Fase de Leitura , Cadeias Leves de Miosina/genética , Adulto , Animais , Animais Geneticamente Modificados , Cardiomiopatia Hipertrófica/classificação , Cardiomiopatia Hipertrófica/congênito , Cardiomiopatia Hipertrófica/patologia , Células Cultivadas , Consanguinidade , Drosophila , Evolução Fatal , Feminino , Genes Dominantes , Genes Recessivos , Heterozigoto , Humanos , Lactente , Morte do Lactente , Recém-Nascido , Masculino , Linhagem , Fenótipo , Irmãos
13.
BMC Med Genet ; 21(1): 67, 2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-32228487

RESUMO

BACKGROUND: Xeroderma pigmentosum (XP) is a rare autosomal recessive genodermatosis. There are eight complementation groups of XP (XP-A to G and a variant form). XP-E is one of the least common forms, and XP-E patients are generally not diagnosed until they are adults due to a later onset of skin alterations. CASE PRESENTATION: We report a case of a 28-year-old Chinese woman with freckle-like hyperpigmented macules in a sun-exposed area who is prone to develop basal cell carcinomas. A genetic study revealed a novel homozygous c.111_112del deletion in exon 1 of the DDB2 gene. Western blotting analysis revealed that the patient lacked the expression of the wild-type mature DDB2 protein. The proband was first diagnosed with XPE on the basis of clinical findings and genetic testing. Sun protection was recommended, and the patient did not develop any skin cancers during the one-year follow-up. CONCLUSIONS: We identified a novel homozygous deletion in DDB2 gene in Chinese XP-E patients having unique clinical features.


Assuntos
Proteínas de Ligação a DNA/genética , Xeroderma Pigmentoso/genética , Adulto , Grupo com Ancestrais do Continente Asiático/genética , China , Consanguinidade , Feminino , Homozigoto , Humanos , Mutação , Fenótipo , Deleção de Sequência , Neoplasias Cutâneas/complicações , Neoplasias Cutâneas/genética
14.
BMC Med Genet ; 21(1): 68, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32234020

RESUMO

BACKGROUND: The TWNK gene encodes the twinkle protein, which is a mitochondrial helicase for DNA replication. The dominant TWNK variants cause progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal dominant 3, while the recessive variants cause mitochondrial DNA depletion syndrome 7 and Perrault syndrome 5. Perrault syndrome is characterized by sensorineural hearing loss in both males and females and gonadal dysfunction in females. Patients with Perrault syndrome may present early-onset cerebellar ataxia, whereas middle-age-onset cerebellar ataxia caused by TWNK variants is rare. CASE PRESENTATION: A Japanese female born to consanguineous parents presented hearing loss at age 48, a staggering gait at age 53, and numbness in her distal extremities at age 57. Neurological examination revealed sensorineural hearing loss, cerebellar ataxia, decreased deep tendon reflexes, and sensory disturbance in the distal extremities. Laboratory tests showed no abnormal findings other than a moderate elevation of pyruvate concentration levels. Brain magnetic resonance imaging revealed mild cerebellar atrophy. Using exome sequencing, we identified a homozygous TWNK variant (NM_021830: c.1358G>A, p.R453Q). CONCLUSIONS: TWNK variants could cause middle-age-onset cerebellar ataxia. Screening for TWNK variants should be considered in cases of cerebellar ataxia associated with deafness and/or peripheral neuropathy, even if the onset is not early.


Assuntos
Ataxia Cerebelar/genética , DNA Helicases/genética , Proteínas Mitocondriais/genética , Ataxia Cerebelar/complicações , Ataxia Cerebelar/diagnóstico , Consanguinidade , Feminino , Marcha Atáxica/complicações , Marcha Atáxica/diagnóstico , Marcha Atáxica/genética , Disgenesia Gonadal 46 XX/diagnóstico , Disgenesia Gonadal 46 XX/genética , Perda Auditiva/complicações , Perda Auditiva/diagnóstico , Perda Auditiva/genética , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/genética , Homozigoto , Humanos , Japão , Transtornos de Início Tardio/diagnóstico , Transtornos de Início Tardio/genética , Pessoa de Meia-Idade , Mutação , Linhagem
15.
Mutat Res ; 852: 503164, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32265042

RESUMO

In central Brazil, in the municipality of Faina (state of Goiás), the small and isolated village of Araras comprises a genetic cluster of xeroderma pigmentosum (XP) patients. The high level of consanguinity and the geographical isolation gave rise to a high frequency of XP patients. Recently, two founder events were identified affecting that community, with two independent mutations at the POLH gene, c.764 + 1 G > A (intron 6) and c.907 C > T; p.Arg303* (exon 8). These deleterious mutations lead to the xeroderma pigmentosum variant syndrome (XP-V). Previous reports identified both mutations in other countries: the intron 6 mutation in six patients (four families) from Northern Spain (Basque Country and Cantabria) and the exon 8 mutation in two patients from different families in Europe, one of them from Kosovo. In order to investigate the ancestry of the XP patients and the age for these mutations at Araras, we generated genotyping information for 22 XP-V patients from Brazil (16), Spain (6) and Kosovo (1). The local genomic ancestry and the shared haplotype segments among the patients showed that the intron 6 mutation at Araras is associated with an Iberian genetic legacy. All patients from Goiás, homozygotes for intron 6 mutation, share with the Spanish patients identical-by-descent (IBD) genomic segments comprising the mutation. The entrance date for the Iberian haplotype at the village was calculated to be approximately 200 years old. This result is in agreement with the historical arrival of Iberian individuals at the Goiás state (BR). Patients from Goiás and the three families from Spain share 1.8 cM (family 14), 1.7 cM (family 15), and a more significant segment of 4.7 cM within family 13. On the other hand, the patients carrying the exon 8 mutation do not share any specific genetic segment, indicating an old genetic distance between them or even no common ancestry.


Assuntos
DNA Polimerase Dirigida por DNA/genética , Haplótipos , Padrões de Herança , Mutação , Isolamento Reprodutivo , Xeroderma Pigmentoso/genética , Brasil/epidemiologia , Consanguinidade , Europa (Continente)/epidemiologia , Éxons , Feminino , Genética Populacional , Heterozigoto , Homozigoto , Migração Humana , Humanos , Íntrons , Masculino , Fenótipo , Xeroderma Pigmentoso/epidemiologia , Xeroderma Pigmentoso/patologia
16.
Mol Genet Genomics ; 295(4): 1039-1053, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32253496

RESUMO

Premature ovarian insufficiency (POI) is a clinically and etiologically heterogeneous disorder characterized by menstrual irregularities and elevated levels of FSH before age of 40 years. Genetic anomalies are among the recognized causes of POI. Here, we aimed to identify the genetic cause of POI in an inbred pedigree with nine POI and two ichthyosis-affected members. Inheritance of POI and ichthyosis were, respectively, dominant and recessive. Reproduction-related information and measurements of relevant hormones were obtained. Genetic studies included homozygosity mapping, linkage analysis, exome sequencing, and screening of candidate variants. A mutation within ALOX12B, which is a known ichthyosis causing gene, was identified as cause of ichthyosis. ALOX12B encodes a protein involved in steroidogenesis and lipid metabolism. Considering the importance of steroidogenesis in reproduction functions, the possibility that the ALOX12B mutation is also cause of POI was considered. Screenings showed that the mutation segregated with POI status. Linkage analysis with respect to POI identified a single strongly linked locus (LOD > 3) that includes ALOX12B. Exome sequencing on POI-affected females identified the mutation in ALOX12B and also a sequence variation in SPNS2 within the linked locus. A possible contribution of the SPNS2 variation to POI was not strictly ruled out, but various data presented in the text including reported association of variations in related gene ALOX12 with menopause-age and role of ALOX12B in atretic bovine follicle formation argue in favor of ALOX12B. It is, therefore, concluded that the mutation in ALOX12B is the likely cause of POI in the pedigree.


Assuntos
Proteínas de Transporte de Ânions/genética , Araquidonato 12-Lipoxigenase/genética , Ictiose/genética , Insuficiência Ovariana Primária/genética , Adulto , Consanguinidade , Feminino , Ligação Genética/genética , Predisposição Genética para Doença , Homozigoto , Humanos , Ictiose/complicações , Ictiose/patologia , Irã (Geográfico)/epidemiologia , Metabolismo dos Lipídeos/genética , Menopausa Precoce/genética , Mutação/genética , Linhagem , Insuficiência Ovariana Primária/complicações , Insuficiência Ovariana Primária/patologia , Sequenciamento Completo do Exoma
17.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 37(5): 505-508, 2020 May 10.
Artigo em Chinês | MEDLINE | ID: mdl-32335873

RESUMO

OBJECTIVE: To explore the genetic basis for a consanguineous pedigree affected with inherited coagulation factor V deficiency. METHODS: Genomic DNA was extracted from peripheral blood samples from the pedigree and subjected to next generation sequencing for screening variants of the F5 gene. Suspected pathogenic variant was verified by using Sanger sequencing. Pathogenicity of the variant was evaluated according to ACMG guidelines. RESULTS: A homozygous frameshifting variant, c.4096delC (p.Leu1366Phefs*3), was identified in the F5 gene in the proband, which was confirmed to be derived from her consanguineous parents. This variant was absent in all databases including 10 000 in-house Chinese exome sequences. Based on the ACMG guidelines, the c.4096delC was predicted to be a pathogenic variant. CONCLUSION: A novel pathogenic variant has been identified in the F5 gene in a consanguineous pedigree with inherited coagulation factor V deficiency, which has enriched the spectrum of F5 gene variants.


Assuntos
Deficiência do Fator V , Fator V , Variação Genética , Linhagem , Consanguinidade , Fator V/genética , Deficiência do Fator V/genética , Feminino , Humanos
18.
Hum Genet ; 139(10): 1247-1259, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32306098

RESUMO

Congenital diarrheal disorders (CDD) comprise > 50 monogenic entities featuring chronic diarrhea of early-onset, including defects in nutrient and electrolyte absorption, enterocyte polarization, enteroendocrine cell differentiation, and epithelial integrity. Diarrhea is also a predominant symptom in many immunodeficiencies, congenital disorders of glycosylation, and in some defects of the vesicular sorting and transporting machinery. We set out to identify the etiology of an intractable diarrhea in 2 consanguineous families by whole-exome sequencing, and identified two novel AP1S1 mutations, c.269T>C (p.Leu90Pro) and c.346G>A (p.Glu116Lys). AP1S1 encodes the small subunit of the adaptor protein 1 complex (AP-1), which plays roles in clathrin coat-assembly and trafficking between trans-Golgi network, endosomes and the plasma membrane. An AP1S1 knock-out (KO) of a CaCo2 intestinal cell line was generated to characterize intestinal AP1S1 deficiency as well as identified mutations by stable expression in KO background. Morphology and prototype transporter protein distribution were comparable between parental and KO cells. We observed altered localization of tight-junction proteins ZO-1 and claudin 3, decreased transepithelial electrical resistance and an increased dextran permeability of the CaCo2-AP1S1-KO monolayer. In addition, lumen formation in 3D cultures of these cells was abnormal. Re-expression of wild-type AP1S1 in CaCo2-AP1S1-KO cells reverted these abnormalities, while expression of AP1S1 containing either missense mutation did not. Our data indicate that loss of AP1S1 function causes an intestinal epithelial barrier defect, and that AP1S1 mutations can cause a non-syndromic form of congenital diarrhea, whereas 2 reported truncating AP1S1 mutations caused MEDNIK syndrome, characterized by mental retardation, enteropathy, deafness, neuropathy, ichthyosis, and keratodermia.


Assuntos
Complexo 1 de Proteínas Adaptadoras/genética , Subunidades sigma do Complexo de Proteínas Adaptadoras/genética , Surdez/genética , Diarreia/genética , Ictiose/genética , Deficiência Intelectual/genética , Ceratodermia Palmar e Plantar/genética , Mutação de Sentido Incorreto , Complexo 1 de Proteínas Adaptadoras/deficiência , Subunidades sigma do Complexo de Proteínas Adaptadoras/deficiência , Sequência de Bases , Células CACO-2 , Claudina-3/genética , Claudina-3/metabolismo , Consanguinidade , Surdez/diagnóstico , Surdez/metabolismo , Surdez/patologia , Diarreia/diagnóstico , Diarreia/metabolismo , Diarreia/patologia , Feminino , Expressão Gênica , Técnicas de Inativação de Genes , Teste de Complementação Genética , Humanos , Ictiose/diagnóstico , Ictiose/metabolismo , Ictiose/patologia , Lactente , Recém-Nascido , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Ceratodermia Palmar e Plantar/diagnóstico , Ceratodermia Palmar e Plantar/metabolismo , Ceratodermia Palmar e Plantar/patologia , Linhagem , Permeabilidade , Sequenciamento Completo do Exoma , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo
19.
BMC Med Genet ; 21(1): 59, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209057

RESUMO

BACKGROUND: Intellectual disability (ID) is both a clinically diverse and genetically heterogeneous group of disorder, with an onset of cognitive impairment before the age of 18 years. ID is characterized by significant limitations in intellectual functioning and adaptive behaviour. The identification of genetic variants causing ID and neurodevelopmental disorders using whole-exome sequencing (WES) has proven to be successful. So far more than 1222 primary and 1127 candidate genes are associated with ID. METHODS: To determine pathogenic variants causative of ID in three unrelated consanguineous Pakistani families, we used a combination of WES, homozygosity-by-descent mapping, de-deoxy sequencing and bioinformatics analysis. RESULTS: Rare pathogenic single nucleotide variants identified by WES which passed our filtering strategy were confirmed by traditional Sanger sequencing and segregation analysis. Novel and deleterious variants in VPS53, GLB1, and MLC1, genes previously associated with variable neurodevelopmental anomalies, were found to segregate with the disease in the three families. CONCLUSIONS: This study expands our knowledge on the molecular basis of ID as well as the clinical heterogeneity associated to different rare genetic causes of neurodevelopmental disorders. This genetic study could also provide additional knowledge to help genetic assessment as well as clinical and social management of ID in Pakistani families.


Assuntos
Consanguinidade , Deficiência Intelectual/genética , Proteínas de Membrana/genética , Polimorfismo Genético , Proteínas de Transporte Vesicular/genética , beta-Galactosidase/genética , Criança , Pré-Escolar , Família , Feminino , Genes Recessivos/genética , Heterogeneidade Genética , Testes Genéticos , Homozigoto , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/patologia , Masculino , Transtornos do Neurodesenvolvimento/complicações , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Paquistão/epidemiologia , Linhagem , Sequenciamento Completo do Exoma
20.
BMC Med Genet ; 21(1): 61, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32216767

RESUMO

BACKGROUND: Wolcott-Rallison Syndrome (WRS) is a rare autosomal recessive disease that is the most common cause of neonatal diabetes in consanguineous families. WRS is caused by various genetic alterations of the Eukaryotic Translation Initiation Factor 2-Alpha Kinase 3 (EIF2AK3) gene. METHODS: Genetic analysis of a consanguineous family where two children were diagnosed with WRS was performed by Sanger sequencing. The altered protein was investigated by in vitro cloning, expression and immunohistochemistry. RESULTS: The first cases in Hungary, - two patients in one family, where the parents were fourth-degree cousins - showed the typical clinical features of WRS: early onset diabetes mellitus with hyperglycemia, growth retardation, infection-induced multiple organ failure. The genetic background of the disease was a novel alteration in the EIF2AK3 gene involving the splice site of exon 11- intron 11-12 boundary: g.53051_53062delinsTG. According to cDNA sequencing this created a new splice site and resulted in a frameshift and the development of an early termination codon at amino acid position 633 (p.Pro627AspfsTer7). Based on in vitro cloning and expression studies, the truncated protein was functionally inactive. Immunohistochemistry revealed that the intact protein was absent in the islets of pancreas, furthermore insulin expressing cells were also dramatically diminished. Elevated GRP78 and reduced CHOP protein expression were observed in the liver. CONCLUSIONS: The novel genetic alteration causing the absence of the EIF2AK3 protein resulted in insufficient handling of severe endoplasmic reticulum stress, leading to liver failure and demise of the patients.


Assuntos
Diabetes Mellitus Tipo 1/genética , Epífises/anormalidades , Mutação INDEL , Osteocondrodisplasias/genética , Sítios de Splice de RNA/genética , eIF-2 Quinase/genética , Pré-Escolar , Consanguinidade , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/patologia , Estresse do Retículo Endoplasmático/genética , Epífises/patologia , Evolução Fatal , Feminino , Mutação da Fase de Leitura , Humanos , Hungria , Lactente , Falência Hepática/complicações , Falência Hepática/genética , Falência Hepática/patologia , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/patologia , Linhagem , Irmãos , Viroses/complicações , Viroses/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA