Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.741
Filtrar
1.
Cochrane Database Syst Rev ; 11: CD008923, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36367444

RESUMO

BACKGROUND: Larval source management (LSM) may help reduce Plasmodium parasite transmission in malaria-endemic areas. LSM approaches include habitat modification (permanently or temporarily reducing mosquito breeding aquatic habitats); habitat manipulation (temporary or recurrent change to environment); or use of chemical (e.g. larviciding) or biological agents (e.g. natural predators) to breeding sites. We examined the effectiveness of habitat modification or manipulation (or both), with and without larviciding. This is an update of a review published in 2013. OBJECTIVES: 1. To describe and summarize the interventions on mosquito aquatic habitat modification or mosquito aquatic habitat manipulation, or both, on malaria control. 2. To evaluate the beneficial and harmful effects of mosquito aquatic habitat modification or mosquito aquatic habitat manipulation, or both, on malaria control. SEARCH METHODS: We used standard, extensive Cochrane search methods. The latest search was from January 2012 to 30 November 2021. SELECTION CRITERIA: Randomized controlled trials (RCT) and non-randomized intervention studies comparing mosquito aquatic habitat modification or manipulation (or both) to no treatment or another active intervention. We also included uncontrolled before-after (BA) studies, but only described and summarized the interventions from studies with these designs. Primary outcomes were clinical malaria incidence, malaria parasite prevalence, and malaria parasitaemia incidence. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. We assessed risk of bias using the Cochrane RoB 2 tool for RCTs and the ROBINS-I tool for non-randomized intervention studies. We used a narrative synthesis approach to systematically describe and summarize all the interventions included within the review, categorized by the type of intervention (habitat modification, habitat manipulation, combination of habitat modification and manipulation). Our primary outcomes were 1. clinical malaria incidence; 2. malaria parasite prevalence; and 3. malaria parasitaemia incidence. Our secondary outcomes were 1. incidence of severe malaria; 2. anaemia prevalence; 3. mean haemoglobin levels; 4. mortality rate due to malaria; 5. hospital admissions for malaria; 6. density of immature mosquitoes; 7. density of adult mosquitoes; 8. sporozoite rate; 9. entomological inoculation rate; and 10. HARMS: We used the GRADE approach to assess the certainty of the evidence for each type of intervention. MAIN RESULTS: Sixteen studies met the inclusion criteria. Six used an RCT design, six used a controlled before-after (CBA) study design, three used a non-randomized controlled design, and one used an uncontrolled BA study design. Eleven studies were conducted in Africa and five in Asia. Five studies reported epidemiological outcomes and 15 studies reported entomological outcomes. None of the included studies reported on the environmental impacts associated with the intervention. For risk of bias, all trials had some concerns and other designs ranging from moderate to critical. Ten studies assessed habitat manipulation (temporary change to the environment). This included water management (spillways across streams; floodgates; intermittent flooding; different drawdown rates of water; different flooding and draining regimens), shading management (shading of drainage channels with different plants), other/combined management approaches (minimal tillage; disturbance of aquatic habitats with grass clearing and water replenishment), which showed mixed results for entomological outcomes. Spillways across streams, faster drawdown rates of water, shading drainage canals with Napier grass, and using minimal tillage may reduce the density of immature mosquitoes (range of effects from 95% reduction to 1.7 times increase; low-certainty evidence), and spillways across streams may reduce densities of adult mosquitoes compared to no intervention (low-certainty evidence). However, the effect of habitat manipulation on malaria parasite prevalence and clinical malaria incidence is uncertain (very low-certainty evidence). Two studies assessed habitat manipulation with larviciding. This included reducing or removal of habitat sites; and drain cleaning, grass cutting, and minor repairs. It is uncertain whether drain cleaning, grass cutting, and minor repairs reduces malaria parasite prevalence compared to no intervention (odds ratio 0.59, 95% confidence interval (CI) 0.42 to 0.83; very low-certainty evidence). Two studies assessed combination of habitat manipulation and permanent change (habitat modification). This included drainage canals, filling, and planting of papyrus and other reeds for shading near dams; and drainage of canals, removal of debris, land levelling, and filling ditches. Studies did not report on epidemiological outcomes, but entomological outcomes suggest that such activities may reduce the density of adult mosquitoes compared to no intervention (relative risk reduction 0.49, 95% CI 0.47 to 0.50; low-certainty evidence), and preventing water stagnating using drainage of canals, removal of debris, land levelling, and filling ditches may reduce the density of immature mosquitoes compared to no intervention (ranged from 10% to 55% reductions; low-certainty evidence). Three studies assessed combining manipulation and modification with larviciding. This included filling or drainage of water bodies; filling, draining, or elimination of rain pools and puddles at water supply points and stream bed pools; and shoreline work, improvement and maintenance to drainage, clearing vegetation and undergrowth, and filling pools. There were mixed effect sizes for the reduction of entomological outcomes (moderate-certainty evidence). However, filling or draining water bodies probably makes little or no difference to malaria parasite prevalence, haemoglobin levels, or entomological inoculation rate when delivered with larviciding compared to no intervention (moderate-certainty evidence). AUTHORS' CONCLUSIONS: Habitat modification and manipulation interventions for preventing malaria has some indication of benefit in both epidemiological and entomological outcomes. While the data are quite mixed and further studies could help improve the knowledge base, these varied approaches may be useful in some circumstances.


Assuntos
Culicidae , Malária , Humanos , Adulto , Animais , Controle de Mosquitos/métodos , Malária/epidemiologia , Malária/prevenção & controle , Larva , Ecossistema , Água , Hemoglobinas
2.
Malar J ; 21(1): 324, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369006

RESUMO

BACKGROUND: Broflanilide is a newly discovered insecticide with a novel mode of action targeting insect γ-aminobutyric acid receptors. The efficacy of VECTRON™ T500, a wettable powder formulation of broflanilide, was assessed for IRS against wild pyrethroid-resistant malaria vectors in experimental huts in Benin. METHODS: VECTRON™ T500 was evaluated at 100 mg/m2 in mud and cement-walled experimental huts against wild pyrethroid-resistant Anopheles gambiae sensu lato (s.l.) in Covè, southern Benin, over 18 months. A direct comparison was made with Actellic® 300CS, a WHO-recommended micro-encapsulated formulation of pirimiphos-methyl, applied at 1000 mg/m2. The vector population at Covè was investigated for susceptibility to broflanilide and other classes of insecticides used for vector control. Monthly wall cone bioassays were performed to assess the residual efficacy of VECTRON™ T500 using insecticide susceptible An. gambiae Kisumu and pyrethroid-resistant An. gambiae s.l. Covè strains. The study complied with OECD principles of good laboratory practice. RESULTS: The vector population at Covè was resistant to pyrethroids and organochlorines but susceptible to broflanilide and pirimiphos-methyl. A total of 23,171 free-flying wild pyrethroid-resistant female An. gambiae s.l. were collected in the experimental huts over 12 months. VECTRON™ T500 induced 56%-60% mortality in wild vector mosquitoes in both cement and mud-walled huts. Mortality with VECTRON™ T500 was 62%-73% in the first three months and remained > 50% for 9 months on both substrate-types. By comparison, mortality with Actellic® 300CS was very high in the first three months (72%-95%) but declined sharply to < 40% after 4 months. Using a non-inferiority margin defined by the World Health Organization, overall mortality achieved with VECTRON™ T500 was non-inferior to that observed in huts treated with Actellic® 300CS with both cement and mud wall substrates. Monthly in situ wall cone bioassay mortality with VECTRON™ T500 also remained over 80% for 18 months but dropped below 80% with Actellic® 300CS at 6-7 months post spraying. CONCLUSION: VECTRON™ T500 shows potential to provide substantial and prolonged control of malaria transmitted by pyrethroid-resistant mosquito vectors when applied for IRS. Its addition to the current list of WHO-approved IRS insecticides will provide a suitable option to facilitate rotation of IRS products with different modes of action.


Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Animais , Feminino , Humanos , Piretrinas/farmacologia , Inseticidas/farmacologia , Malária/prevenção & controle , Malária/epidemiologia , Mosquitos Vetores , Controle de Mosquitos , Resistência a Inseticidas
3.
Parasit Vectors ; 15(1): 420, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369172

RESUMO

BACKGROUND: Estimating human exposure to mosquito vectors is crucial for the prediction of malaria transmission and intervention impact. The human landing catch method is frequently used to directly measure estimate exposure rates; however, there has been an increasing shift from this method to exposure-free alternatives, such as the mosquito electrocuting traps (MET) and other approaches. While these latter methods can provide robust and representative values of human exposure and mosquito density, they often still require a human volunteer, which poses logistical challenges. Additionally, in the case of the MET, the early MET prototype (METe) required human volunteers to wear protective clothing that could be uncomfortable. We investigated two alternative trapping approaches to address these challenges by comparing the performance of the METe prototype to: (i) a modified caged MET prototype that offers full protection to users (METc) and (ii) a barrier screen trap (BST) designed to passively sample (host-seeking and blood-fed) mosquitoes outdoors without requiring a human participant. METHODS: The relative performance of the METe, METc and BST were evaluated in a 3 × 3 Latin square field experiment design conducted in south-eastern Tanzania over 12 nights of sampling. The outcomes of interest were the nightly catch of mosquitoes and biting time estimates. RESULTS: The METc and BST caught similar numbers of An. arabiensis as the METe (relative ratio [RR] = 0.76, 95% confidence interval [CI]: 0.42-1.39, P = 0.38 and RR = 1.13, 95% CI: 0.63-2.04, P = 0.69, respectively). Similarly, the METc and BST caught similar numbers of Culex spp. as the METe (RR = 0.87, 95% CI: 0.62-1.22, P = 0.42 and RR = 0.80, 95% CI: 0.57-1.12, P = 0.199, respectively). All three trapping methods indicated a similar pattern of biting activity by An. arabiensis and Culex spp., characterized by biting starting in the early evening (18:00-22:00), peaking when people are typically sleeping (22:00-05:00) and dropping off drastically toward the morning (05:00-07:00). CONCLUSIONS: The modifications made to the METe design to improve user comfort and remove the need for protective clothing did not result in an underestimation of mosquito vector abundance nor misrepresentation of their biting time pattern. We recommend the METc for use over the METe design. Similarly, the BST demonstrated potential for monitoring malaria and filariasis vector densities in Tanzania.


Assuntos
Anopheles , Culex , Filariose , Malária , Infecções por Nematoides , Animais , Humanos , Tanzânia , Mosquitos Vetores , Malária/prevenção & controle , Fenótipo , Controle de Mosquitos/métodos
4.
Parasit Vectors ; 15(1): 423, 2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36369170

RESUMO

BACKGROUND: The common house mosquito Culex pipiens is known to be a major vector for West Nile virus. In order to decrease risks of West Nile virus outbreaks in Europe, insecticides and the bio-larvicide Bacillus thuringiensis israelensis (Bti) are commonly used for vector control. Alarmingly, insecticide resistance has been reported in Cx. pipiens populations from Southern Europe and several countries neighbouring Europe. For Central and Northern Europe, however, the phenotypic insecticide resistance status of Cx. pipiens has not yet been investigated. METHODS: A literature review was performed to assess the geographical distribution of insecticide resistance in Cx. pipiens. To fill the gap of knowledge for Central and Northern Europe, WHO susceptibility tests with permethrin, deltamethrin, malathion, bendiocarb and DDT and a larval toxicity test with Bti were performed with a Cx. pipiens population from Belgium, a country in Central Europe. RESULTS: This research provides the first evidence of widespread phenotypic insecticide resistance in Cx. pipiens. In general, Cx. pipiens developed resistance against multiple insecticides in several countries. Another Cx. pipiens population from Belgium was tested and showed insecticide resistance against deltamethrin, permethrin, DDT and possibly against bendiocarb. The bio-larvicide Bti caused lower mortality than reported for other Cx. pipiens populations in the literature. CONCLUSIONS: These results indicate the urgent need for insecticide resistance monitoring against commonly used adulticides and larvicides in Europe, for the translation of knowledge gained regarding the limited efficiency and availability of insecticide into EU legislation and the need for innovative non-chemical vector control tools in order to counter the widespread insecticide resistance in Culex populations.


Assuntos
Bacillus thuringiensis , Culex , Inseticidas , Vírus do Nilo Ocidental , Animais , Resistência a Inseticidas , Inseticidas/farmacologia , Permetrina , DDT , Controle de Mosquitos , Mosquitos Vetores
5.
PLoS One ; 17(11): e0276500, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36327271

RESUMO

BACKGROUND: Urban malaria is becoming a major public health concern in major cities in Cameroon. To improve malaria vector control, a pilot larviciding trial was conducted to assess its impact on mosquito density and malaria transmission intensity in Yaoundé. The present study investigated perceptions and practices of communities on malaria control during the larviciding trial implemented in Yaoundé. METHODS: Quantitative and qualitative data were collected in non-intervention and intervention areas. Quantitative data were collected during three cross-sectional surveys using a structured pre-tested questionnaire while qualitative data were obtained through interviews. A total of 26 in-depth interviews and eight focus group discussions with community members were performed. A binary logistic regression model was used to assess the perception of the community on larviciding impact on some malaria or bed nets use indicators. RESULTS: People living in intervention areas were 2.64 times more likely to know the mode of malaria transmission (95% CI: 1.82-3.84; p<0.001) and 1.3 time more likely to know mosquito breeding habitats (95% CI: 1.06-1.56; p = 0.009) compared to those living in non-intervention areas. In intervention areas, interviewee opinions on larviciding were generally good i.e. most interviewees reported having noticed a reduction in mosquito nuisance and malaria cases following larviciding implementation; whereas in non-intervention areas no report of reduction of mosquito nuisance was recorded. LLINs were regularly used by the population despite the implementation of larviciding treatments. There was high interest in larviciding program and demand for continuation, even if this needs the community involvement. CONCLUSION: The larviciding program in the city of Yaoundé did not negatively affected community members' behaviour and practices concerning the use of treated nets. The study indicated the acceptance of larviciding program by the population. This positive environment could favour the implementation of future antilarval control activities in the city of Yaoundé.


Assuntos
Conhecimentos, Atitudes e Prática em Saúde , Malária , Animais , Humanos , Camarões/epidemiologia , Cidades/epidemiologia , Estudos Transversais , Malária/epidemiologia , Malária/prevenção & controle , Controle de Mosquitos , Mosquitos Vetores , Grupos Focais , Inquéritos e Questionários , Pesquisa Qualitativa
6.
Sci Rep ; 12(1): 19544, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36380224

RESUMO

Competent arbovirus vectors are found in the culicid mosquito fauna of south-west Indian Ocean (SWIO) islands. In La Reunion, Aedes albopictus and Aedes aegypti mosquitoes are known vectors of dengue and chikungunya viruses. Culex quinquefasciatus is a potential vector of Rift Valley fever and West Nile viruses. To prepare a vector-control field trial against Ae. aegypti, this study aimed at identifying the best trapping strategy to catch adult Ae. aegypti, using BG-Sentinel traps (Biogents, Germany). It was implemented in two sites in southern La Reunion. Catches of Ae. albopictus and Cx. quinquefasciatus mosquitoes were also recorded. A Latin square design was used to estimate the detection probability and the apparent daily density-according to the BG-Sentinel trapping strategy: none, carbon dioxide (CO2), a commercial attractant-BG-Lure (Biogents, Germany), or both. The use of CO2 alone was associated with a higher detection probability for Ae. aegypti and Cx. quinquefasciatus mosquitoes, as well as a large increase in their apparent density. Traps with BG-Lure-alone or in combination with CO2, did not improve the detection probability of Ae. aegypti and Cx. quinquefasciatus mosquitoes. The same result was found for male Ae. albopictus. For females, baiting BG-Sentinel traps with CO2 or BG-Lure had no significant effect. The same apparent densities were found for Ae. aegypti and Ae. albopictus mosquitoes in both study sites-where Ae. aegypti mosquitoes were found at very low densities during previous surveys.


Assuntos
Aedes , Arbovírus , Culex , Animais , Feminino , Masculino , Mosquitos Vetores , Dióxido de Carbono , Reunião , Controle de Mosquitos
7.
PLoS One ; 17(11): e0276783, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36374859

RESUMO

Malaria vector control interventions in Sumba, Indonesia, have not been able to eliminate malaria. Human drivers of exposure to Anopheles bites were investigated as part of a larger clinical trial evaluating the impact of a spatial repellent product on malaria incidence. Human behavioral observations (HBOs) evaluating temporal and spatial presence, sleeping behaviors, and insecticide treated net (ITN) use, were collected parallel to entomological collections-indoor and outdoor human landing catches (HLCs), and house hold surveys. Data demonstrates that mosquito access to humans, enabled by structurally open houses, is evident by the similar entomological landing rates both inside and outside households. The presence of animals inside houses was associated with increased mosquito entry-however, the number of humans present inside houses was not related to increased mosquito landing. Analyzing mosquito landing rates with human behavior data enables the spatial and temporal estimation of exposure to Anopheles bites, accounting for intervention (ITN) presence and usage. Human behavior adjusted exposure to Anopheles bites was found to be highest in the early in the evening, but continued at lower levels throughout the night. Over the night, most exposure (53%) occurred when people were indoors and not under the protection of nets (asleep or awake) followed by exposure outside (44%). Characterized gaps in protection are outdoor exposure as well as exposure indoors-when awake, and when asleep and not using ITNs. Interestingly, in the primary trial, even though there was not a significant impact of the spatial repellent on vector biting rates by themselves (16%), when factoring in human behavior, there was approximately 28% less exposure in the intervention arm than in the placebo arm. The treated arm had less human behavior adjusted bites in all spaces evaluated though there was proportionally higher exposure indoors. This analysis points to the importance of using HBOs both towards understanding gaps in protection as well as how interventions are evaluated. To mitigate ongoing transmission, understanding context specific spatial and temporal exposure based on the interactions of vectors, humans and interventions would be vital for a directed evidence-based control or elimination strategy.


Assuntos
Anopheles , Mordeduras e Picadas de Insetos , Repelentes de Insetos , Inseticidas , Malária , Humanos , Animais , Malária/epidemiologia , Malária/prevenção & controle , Controle de Mosquitos , Indonésia/epidemiologia , Mosquitos Vetores , Mordeduras e Picadas de Insetos/epidemiologia , Repelentes de Insetos/farmacologia , Inseticidas/farmacologia , Comportamento Alimentar
8.
Malar J ; 21(1): 329, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376926

RESUMO

BACKGROUND: Malaria is the top public health problem in the Republic of Guinea, with more than 4 million cases and 10,000 deaths in 2021 among a population of approximately 13 million. It is also the second highest cause of death there. The purpose of this quantitative survey in a rural area of Guinea was to understand knowledge, attitudes, and practices (KAP) about malaria and to assess water and sanitation practices among community members. METHODS: In 2016, the authors conducted a cross-sectional household survey in Timbi-Touni, Guinea using community workers. The survey included respondent demographic characteristics, malaria knowledge, child health, water and sanitation, and health services access. Malaria knowledge and sleeping under bed nets were the primary outcome variables and multiple logistic regression was used to determine odds ratios. RESULTS: Majority of the respondents were women (89.41%) and had never been to school (71.18%). Slightly more than half the children were reported to have ever had malaria and 45% reported to have ever had diarrhoea. There was no statistically significant association between gender or level of education and malaria knowledge. Eighty six percent of respondents had received a free bed net during national campaigns and 61% slept under a bed net the night before the survey. Knowing mosquitoes to be the cause of malaria and receiving free bed net were significantly associated with sleeping under a bed net. There was no statistically significant association between drinking water source and malaria or diarrhoea. CONCLUSIONS: Both malaria and diarrhoea were considered to be serious illnesses for adults and children by nearly all respondents. Receiving free bed nets and having correct knowledge about malaria were the greatest predictors of sleeping under a bed net. Insights from this detailed KAP survey-such as focusing on radio to transmit malaria prevention information and reinforcing free malaria treatments-can guide policy makers and practitioners who design and implement malaria control and prevention measures in Guinea.


Assuntos
Malária , População Rural , Humanos , Adulto , Criança , Animais , Feminino , Masculino , Guiné/epidemiologia , Conhecimentos, Atitudes e Prática em Saúde , Estudos Transversais , Malária/epidemiologia , Malária/prevenção & controle , Inquéritos e Questionários , Diarreia , Água , Controle de Mosquitos
9.
Malar J ; 21(1): 328, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376966

RESUMO

BACKGROUND: In 2017, several new housing districts were constructed on Bioko Island, Equatorial Guinea. This case study assessed the impact construction projects had on mosquito larval habitats and the effectiveness of larval source management in reducing malaria vector density within the surrounding area. METHODS: Anopheline larval presence was assessed at 11 new construction sites by the proportion of larval habitats containing Anopheline pupae and late instar larval stages. Bacillus thuringiensis israelensis (Bti) larvicide was applied weekly to nine locations for 30 weeks, while two locations received no larvicide and acted as controls. Adult mosquito density was monitored via human landing collections in adjacent communities of six construction sites, including the two control sites. RESULTS: The sites that received Bti had significantly lower observation rates of both pupae (3.2% vs. 18.0%; p < 0.001) and late instar Anopheles spp. mosquitoes (14.1 vs. 43.6%; p < 0.001) compared to the two untreated sites. Anopheles spp. accounted for 67% of mosquitoes collected with human landing collections and were captured at significantly lower levels in communities adjacent to treated construction sites compared to untreated sites (p < 0.001), with an estimated 38% reduction in human biting rate (IRR: 0.62, 95% CI IRR: 0.55, 0.69). Seven months after the start of the study, untreated sites were treated due to ethical concerns given results from treatment sties, necessitating immediate Bti application. The following week, the number of habitats, the proportion of larval sites with Anopheles spp. pupae, late instars, and adult biting rates in adjacent communities to these sites all decreased to comparable levels across all sites. CONCLUSION: Findings suggest larval source management represents an effective intervention to suppress mosquito populations during infrastructure development. Incorporating larval source management into ongoing and planned construction initiatives represents an opportunity to fine tune vector control in response to anthropogenetic changes. Ideally, this should become standard practice in malaria-endemic regions in order to reduce viable mosquito habitats that are common by-products of construction.


Assuntos
Anopheles , Bacillus thuringiensis , Malária , Animais , Humanos , Anopheles/fisiologia , Malária/epidemiologia , Controle de Mosquitos/métodos , Larva , Reforma Urbana , Mosquitos Vetores , Pupa , Ecossistema
10.
Malar J ; 21(1): 318, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335363

RESUMO

BACKGROUND: Insecticidal mosquito-proof netting screens could combine the best features of insecticide-treated nets (ITNs) and indoor residual spraying (IRS), the two most important front line vector control interventions in Africa today, and also overcome the most important limitations of these methods. This study engaged members of a rural Tanzanian community in developing and evaluating simple, affordable and scalable procedures for installing readily available screening materials on eave gaps and windows of their own houses, and then treating those screens with a widely used IRS formulation of the organophosphate insecticide pirimiphos-methyl (PM). METHODS: A cohort of 54 households recruited upon consent, following which the structural features and occupant demographics of their houses were surveyed. Indoor mosquito densities were surveyed longitudinally, for approximately 3 months before and over 5 months after participatory house modification and screening using locally available materials. Each house was randomly assigned to one of three study arms: (1) No screens installed until the end of the study (negative control), (2) untreated screens installed, and (3) screened installed and then treated with PM, the insecticidal activity of which was subsequently assessed using standard cone assays. RESULTS: Almost all (52) recruited households participated until the end, at which point all houses had been successfully screened. In most cases, screening was only installed after making enabling structural modifications that were accepted by the enrolled households. Compared to unscreened houses, houses with either treated or untreated screens both almost entirely excluded Anopheles arabiensis (Relative reduction (RR) ≥ 98%, P < < 0.0001), the most abundant local malaria vector. However, screens were far less effective against Culex quinquefasciatus (RR ≤ 46%, P < < 0.0001), a non-malaria vector causing considerable biting nuisance, regardless of their treatment status. While PM did not augment household level protection by screens against either mosquito species (P = 0.676 and 0.831, respectively), 8 months after treatment it still caused 73% and 89% mortality among susceptible insectary-reared Anopheles gambiae following exposures of 3 and 30 min, respectively. CONCLUSIONS: Participatory approaches to mosquito proofing houses may be acceptable and effective, and installed screens may be suitable targets for residual insecticide treatments.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Humanos , Animais , Controle de Mosquitos/métodos , Habitação , Tanzânia , Mosquitos Vetores , Malária/prevenção & controle
11.
Afr Health Sci ; 22(2): 194-203, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36407336

RESUMO

Background: Despite upscaled control efforts, deaths and hospitalization due to malaria remained high in counties of western Kenya highlands. Objectives: This study assessed the knowledge of malaria in two rural communities, the control strategies they use, and their capacity to integrate the available control programs. Methods: A cross-sectional survey was carried out in two rural villages in November - December 2018. Focus group discussions and a questionnaire survey were carried out in 736 households. Frequencies and proportions were used for descriptive analysis while the Chi-square test was used to determine factors that were associated with knowledge of malaria at p ≤ 0.05. Results: Ninety-seven percent of the respondents had knowledge of malaria and this was associated with the level of education attained (χ2 = 30.108; p > 0.0001). Bed net ownership was at 86% and 92% correctly identified its use. Draining stagnant water (53.9%) was the most cited environmental management practice. Conclusion: There was awareness of the risk factors of malaria transmission in the study sites. The local communities must be mobilized and empowered through EIC for the control practises to bear fruit against malaria transmission. However, more sensitization needs to be done to optimize the use of malaria control practices.


Assuntos
Malária , Saccharum , Humanos , Quênia/epidemiologia , Controle de Mosquitos , Estudos Transversais , Conhecimentos, Atitudes e Prática em Saúde , Malária/epidemiologia , Malária/prevenção & controle
12.
Parasit Vectors ; 15(1): 439, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36419069

RESUMO

BACKGROUND: The Asian tiger mosquito Aedes albopictus is responsible for the transmission of many arboviruses worldwide and is well adapted to thrive in urban environments. In mainland France, a nonendemic area, this mosquito is responsible for several autochthonous and imported cases of chikungunya and dengue each year. Better management and prevention of mosquito-borne disease transmission in nonendemic areas is thus of global concern. In this context, the aim of this study was to provide a better understanding of mosquito-human interactions as well as human behavior and beliefs in regard to this mosquito species in urban areas. METHODS: We focused on people who participate in community gardens, which are increasingly popular initiatives in metropolitan France and are conducive to the development of tiger mosquitoes. To evaluate community gardeners' knowledge and practices in relation to mosquito management and control, we conducted a knowledge, attitude, and practice (KAP) survey. RESULTS: In contrast to previous KAP studies, we showed that attitudes, more than knowledge, influence the practices of community gardeners in relation to mosquitoes. Interestingly, all gardeners who participated in the survey were concerned about the Asian tiger mosquito and were motivated to incorporate mosquito control methods in their gardens. Moreover, mosquitoes were perceived as nuisances rather than disease vector species. A change in community gardeners' perceptions could facilitate more appropriate behavior to control this species. CONCLUSIONS: This survey reveals the lack of knowledge and awareness of good practices for the efficient control of the Asian tiger mosquito in green urban areas.


Assuntos
Aedes , Animais , Humanos , Mosquitos Vetores , Jardins , Controle de Mosquitos/métodos , Conhecimentos, Atitudes e Prática em Saúde
13.
Front Public Health ; 10: 919780, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36419988

RESUMO

Personality is known to affect compliance with health-protective behaviors and it has been shown that effective public health messaging can be informed by an understanding of that relationship. Thus, we aimed to evaluate the role personality might play in implementing personal protective measures (PPMs) that can prevent mosquito-borne diseases. This is the first mosquito-related knowledge, attitudes, and practices (KAP) study to incorporate a measure of personality using the Big Five: openness, conscientiousness, extraversion, agreeableness, and neuroticism. KAP studies in Gulf-coast and Mexican border-states in the U.S. are few. Ours is only the second KAP study to take place in Texas despite known local transmission and established mosquito populations capable of transmitting dengue, zika, chikungunya, and West Nile viruses. The KAP survey was administered in three neighborhoods in San Antonio, a large, Hispanic-majority, urban city that is segregated economically and ecologically. We found that openness, agreeableness, and extraversion predicted certain attitudes and PPMs, and that KAP and personality measures did not differ along ethnic or neighborhood lines. Perceptions toward the city's role in mosquito control and education was an important factor in predicting PPMs, suggesting that city culture (attitudes common throughout the city as opposed to attitudes differing by ethnicity and neighborhood) may be most salient in developing public health messaging in San Antonio.


Assuntos
Culicidae , Doenças Transmitidas por Vetores , Infecção por Zika virus , Zika virus , Animais , Texas , Controle de Mosquitos , Personalidade , Infecção por Zika virus/prevenção & controle
14.
Parasit Vectors ; 15(1): 402, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36320036

RESUMO

BACKGROUND: The sterile insect technique (SIT), which involves area-wide inundative releases of sterile insects to suppress the reproduction of a target species, has proven to be an effective pest control method. The technique demands the continuous release of sterilized insects in quantities that ensure a high sterile male:wild male ratio for the suppression of the wild population over succeeding generations. METHODS: For these releases, it is important to determine several ecological and biological population parameters, including the longevity of the released males in the field, the dispersal of the released males and the wild pest population size. The Lee County Mosquito Control District initiated a study in a 47-ha portion of Captiva Island (Florida, USA), an island with a total area of 230 ha, to define biological SIT parameters for Aedes aegypti (L.), an invasive disease-vectoring mosquito known to be difficult to control due to a combination of daytime biting activity, use of cryptic breeding habitats that are difficult to target with conventional night-time ultra-low volume methods, and emerging resistance to commonly used insecticides. Another goal was to assess patterns of dispersal and survival for laboratory-reared sterile Ae. aegypti males released over time in the pilot site. These parameters will be used to evaluate the efficacy of a SIT suppression program for Ae. aegypti on Captiva Island. RESULTS: Over the course of seven mark-release-recapture studies using single- and multiple-point releases, 190,504 sterile marked males were released, for which the recapture rate was 1.5% over a mean period of 12 days. The mean distance traveled by sterile males of the local strain of Ae. aegypti that has colonized Captiva Island was 201.7 m from the release point, with an observed maximum traveled distance of 404.5 m. The released sterile mosquitoes had a probability of daily survival of 0.67 and an average life expectancy of ~ 2.46 days. CONCLUSIONS: These data together with the population size estimate and sterile:wild ratio provide a solid basis for planning the SIT operational phase which is aimed at mosquito population suppression.


Assuntos
Aedes , Infertilidade Masculina , Humanos , Animais , Masculino , Projetos Piloto , Controle de Mosquitos/métodos , Densidade Demográfica , Mosquitos Vetores
15.
PLoS One ; 17(10): e0272655, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36190958

RESUMO

Indoor residual spraying (IRS) has been and remains an important malaria control intervention in southern Mozambique, South Africa and Eswatini. A better understanding of the effectiveness of IRS campaigns is critical to guide future elimination efforts. We analyze the three IRS campaigns conducted during a malaria elimination demonstration project in southern Mozambique, the "Magude project", and propose a new method to calculate the efficacy of IRS campaigns adjusting for IRS coverage, pace of house spraying and IRS residual efficacy on different wall types. Anopheles funestus sensu lato (s.l.) and An. gambiae s.l. were susceptible to pirimiphos-methyl and DDT. Anopheles funestus s.l. was resistant to pyrethroids, with 24h post-exposure mortality being lower for An. funestus sensu stricto (s.s.) than for An. parensis (collected indoors). The percentage of structures sprayed was above 90% and percentage of people covered above 86% in all three IRS campaigns. The percentage of households sprayed was above 83% in 2015 and 2016, but not assessed in 2017. Mosquito mortality 24h post-exposure stayed above 80% for 196 days after the 2016 IRS campaign and 222 days after the 2017 campaign and was 1.5 months longer on mud walls than on cement walls. This was extended by up to two months when 120h post-exposure mortality was considered. The district-level realized IRS efficacy was 113 days after the 2016 campaign. While the coverage of IRS campaigns in Magude were high, IRS protection did not remain optimal for the entire high malaria transmissions season. The use of a longer-lasting IRS product could have further supported the interruption of malaria transmission in the district. To better estimate the protection afforded by IRS campaigns, National Malaria Control Programs and partners are encouraged to adjust the calculation of IRS efficacy for IRS coverage, pace of house spraying during the campaign and IRS efficacy on different wall types combined with wall type distribution in the sprayed area.


Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Animais , DDT , Humanos , Malária/prevenção & controle , Controle de Mosquitos/métodos , Mosquitos Vetores , Organização Mundial da Saúde
16.
Parasit Vectors ; 15(1): 351, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183110

RESUMO

BACKGROUND: The control of the Asian tiger mosquito Aedes albopictus (Diptera: Culicidae) is crucial owing to its high vector competence for more than 20 arboviruses-the most important being dengue, chikungunya and Zika virus. Aedes albopictus has an enormous adaptive potential, and its invasive spreading across urban and suburban environments poses challenges for its control. Therefore, all suitable, cost-effective and eco-friendly control tools should be put into practice. In this context, cyclopoid copepods are already known as effective predators of mosquito larvae. This study reports an essential preliminary step towards the integration of copepods into the vector control strategy in Germany, in order to provide a sustainable tool in an integrated control strategy based on the elimination or sanitation of breeding sites, the use of formulations based on Bacillus thuringiensis israelensis (Bti.) and the sterile insect technique (SIT). METHODS: The predatory potential of native cyclopoid copepods, namely the field-derived species Megacyclops viridis (Crustacea: Cyclopidae), was examined against the larvae of Ae. albopictus, and for comparison, against the larvae of the common house mosquito, Culex pipiens sensu lato (Diptera: Culicidae). The use of different larval instars as prey, and various predator-to-prey ratios, were examined under laboratory and semi-field conditions. The compatibility of Bti. applications along with the use of copepods was assessed in the laboratory. RESULTS: High predation efficiency of M. viridis upon first-instar larvae of Ae. albopictus was observed under laboratory (up to 96%) and semi-field conditions (65.7%). The copepods did not prey upon stages further developed than the first instars, and in comparison with Ae. albopictus, the predation rates on the larvae of Cx. pipiens s.l. were significantly lower. CONCLUSIONS: The results indicate a high predation potential of M. viridis against Ae. albopictus larvae, even though strong larval stage and mosquito species preferences were implicated. The integration of copepods as a promising biocontrol agent to the vector control strategy in Germany is therefore highly recommended, especially because of the excellent compatibility of copepods with the use of Bti. However, further research is required, concerning all the probable parameters that may impact the copepod performance under natural conditions.


Assuntos
Aedes , Copépodes , Infecção por Zika virus , Zika virus , Animais , Larva , Controle de Mosquitos/métodos , Mosquitos Vetores , Controle Biológico de Vetores/métodos , Comportamento Predatório
17.
Parasitol Res ; 121(12): 3529-3545, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36203064

RESUMO

Irrigation not only helps to improve food security but also creates numerous water bodies for mosquito production. This study assessed the effect of irrigation on malaria vector bionomics and transmission in a semi-arid site with ongoing malaria vector control program. The effectiveness of CDC light traps in the surveillance of malaria vectors was also evaluated relative to the human landing catches (HLCs) method. Adult mosquitoes were sampled in two study sites representing irrigated and non-irrigated agroecosystems in western Kenya using a variety of trapping methods. The mosquito samples were identified to species and assayed for host blood meal source and Plasmodium spp. sporozoite infection using polymerase chain reaction. Anopheles arabiensis was the dominant malaria vector in the two study sites and occurred in significantly higher densities in irrigated study site compared to the non-irrigated study site. The difference in indoor resting density of An. arabiensis during the dry and wet seasons was not significant. Other species, including An. funestus, An. coustani, and An. pharoensis, were collected. The An. funestus indoor resting density was 0.23 in irrigated study site while almost none of this species was collected in the non-irrigated study site. The human blood index (HBI) for An. arabiensis in the irrigated study site was 3.44% and significantly higher than 0.00% for the non-irrigated study site. In the irrigated study site, the HBI of An. arabiensis was 3.90% and 5.20% indoor and outdoor, respectively. The HBI of An. funestus was 49.43% and significantly higher compared to 3.44% for An. arabiensis in the irrigated study site. The annual entomologic inoculation rate for An. arabiensis in the irrigated study site was 0.41 and 0.30 infective bites/person/year indoor and outdoor, respectively, whereas no transmission was observed in the non-irrigated study site. The CDC light trap performed consistently with HLC in terms of vector density. These findings demonstrate that irrigated agriculture may increase the risk of malaria transmission in irrigated areas compared to the non-irrigated areas and highlight the need to complement the existing malaria vector interventions with novel tools targeting the larvae and both indoor and outdoor biting vector populations.


Assuntos
Anopheles , Malária , Adulto , Animais , Humanos , Quênia/epidemiologia , Mosquitos Vetores , Ecologia , Controle de Mosquitos/métodos
18.
J Med Entomol ; 59(6): 2139-2149, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36208216

RESUMO

The performances of the human-baited double net trap (HDNT) and the human-baited host decoy trap (HDT) methods were compared against the outdoor human landing catch (OHLC) method in Thailand and Vietnam. Two study sites were selected in each country: a rural village and a nearby forest setting. The three outdoor trap methods were rotated nightly between three set trapping positions, in a pre-assigned Latin square design. Volunteers were rotated following the trap rotation to avoid bias. The greatest number of adult mosquitoes was collected from the forest sites in both countries, showing Anopheles minimus (s.s.) Theobald (96.54%) and Anopheles dirus (s.s.) Peyton & Harrison (25.71%) as the primary malaria vectors in Thailand and Vietnam, respectively. At the Thai forest site, OHLC collected significantly more anopheline mosquitoes per trap night than HDNT and HDT, with mean ± standard error values of 14.17 ± 4.42, 4.83 ± 1.56, and 4.44 ± 1.45, respectively, whilst HDNT and HDT were significantly less productive at 0.34 times and 0.31 times, respectively, than OHLC in capturing anopheline mosquitoes. However, there were no significant differences among the three methods of trapping malaria vectors for the village site. At the Vietnamese forest site, HDNT achieved the highest performance in collecting Anopheline mosquitoes at 1.54 times compared to OHLC, but there was no significant difference between the two traps. The results suggested HDNT could be a possible alternative trap to OHLC in this area. Although HDT was less efficient at attracting Anopheline mosquitoes, it was highly efficient at trapping culicine mosquitoes.


Assuntos
Anopheles , Malária , Humanos , Animais , Mosquitos Vetores , Tailândia/epidemiologia , Vietnã , Controle de Mosquitos/métodos
19.
Am J Trop Med Hyg ; 107(4_Suppl): 55-67, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36228903

RESUMO

For a decade, the Southern and Central Africa International Center of Excellence for Malaria Research has operated with local partners across study sites in Zambia and Zimbabwe that range from hypo- to holoendemic and vary ecologically and entomologically. The burden of malaria and the impact of control measures were assessed in longitudinal cohorts, cross-sectional surveys, passive and reactive case detection, and other observational designs that incorporated multidisciplinary scientific approaches: classical epidemiology, geospatial science, serosurveillance, parasite and mosquito genetics, and vector bionomics. Findings to date have helped elaborate the patterns and possible causes of sustained low-to-moderate transmission in southern Zambia and eastern Zimbabwe and recalcitrant high transmission and fatality in northern Zambia. Cryptic and novel mosquito vectors, asymptomatic parasite reservoirs in older children, residual parasitemia and gametocytemia after treatment, indoor residual spraying timed dyssynchronously to vector abundance, and stockouts of essential malaria commodities, all in the context of intractable rural poverty, appear to explain the persistent malaria burden despite current interventions. Ongoing studies of high-resolution transmission chains, parasite population structures, long-term malaria periodicity, and molecular entomology are further helping to lay new avenues for malaria control in southern and central Africa and similar settings.


Assuntos
Inseticidas , Malária , Parasitos , África Central , Animais , Criança , Estudos Transversais , Humanos , Malária/epidemiologia , Malária/prevenção & controle , Controle de Mosquitos , Zâmbia/epidemiologia , Zimbábue/epidemiologia
20.
Am J Trop Med Hyg ; 107(4_Suppl): 33-39, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36228904

RESUMO

Malaria is the leading cause of disease burden in sub-Saharan Africa. In 2010, the East Africa International Center of Excellence for Malaria Research, also known as the Program for Resistance, Immunology, Surveillance, and Modeling of Malaria (PRISM), was established to provide a comprehensive approach to malaria surveillance in Uganda. We instituted cohort studies and a robust malaria and entomological surveillance network at selected public health facilities that have provided a platform for monitoring trends in malaria morbidity and mortality, tracking the impact of malaria control interventions (indoor residual spraying of insecticide [IRS], use of long-lasting insecticidal nets [LLINs], and case management with artemisinin-based combination therapies [ACTs]), as well as monitoring of antimalarial drug and insecticide resistance. PRISM studies have informed Uganda's malaria treatment policies, guided selection of LLINs for national distribution campaigns, and revealed widespread pyrethroid resistance, which led to changes in insecticides delivered through IRS. Our continuous engagement and interaction with policy makers at the Ugandan Ministry of Health have enabled PRISM to share evidence, best practices, and lessons learned with key malaria stakeholders, participate in malaria control program reviews, and contribute to malaria policy and national guidelines. Here, we present an overview of interactions between PRISM team members and Ugandan policy makers to demonstrate how PRISM's research has influenced malaria policy and control in Uganda.


Assuntos
Antimaláricos , Artemisininas , Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Piretrinas , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Humanos , Malária/tratamento farmacológico , Malária/epidemiologia , Malária/prevenção & controle , Controle de Mosquitos , Políticas , Uganda/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...