Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38.912
Filtrar
1.
Medicine (Baltimore) ; 100(30): e26431, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34397684

RESUMO

BACKGROUND: Sodium glucose cotransporter 2 (SGLT2) inhibitors and glucagon-like peptide 1 receptor agonists (GLP-1 RAs) have been demonstrated to be able to improve the cardiovascular and renal prognosis in patients with type 2 diabetes (T2D). However, the relative efficacy of various SGLT2 inhibitors and GLP-1 RAs on cardiorenal outcomes is unestablished. METHODS: We searched PubMed and Embase for relevant cardiovascular or renal outcome trials (CVOTs). Endpoints of interest were major adverse cardiovascular events (MACE), stroke, myocardial infarction (MI), cardiovascular death (CVD), all-cause death (ACD), kidney function progression (KFP), and hospitalization for heart failure (HHF). Bayesian network meta-analysis was conducted to produce pooled hazard ratio (HR) and 95% confidence interval (CI). We calculated the probability values of surface under the cumulative ranking curve to rank active and placebo interventions. RESULTS: Fourteen COVTs were included in analysis. Sotagliflozin (HR 0.76, 95% CI 0.61-0.94), subcutaneous semaglutide, and albiglutide lowered MACE versus lixisenatide among others. Sotagliflozin (HR 0.59, 95% CI 0.40-0.89), canagliflozin, and empagliflozin lowered HHF versus subcutaneous semaglutide among others. Dapagliflozin and empagliflozin lowered KFP versus exenatide among others. Empagliflozin and oral semaglutide lowered CVD versus dapagliflozin among others. Sotagliflozin (HR 0.65, 95% CI 0.47-0.91) and albiglutide lowered MI versus ertugliflozin among others. Sotagliflozin (HR 0.56, 95% CI 0.37-0.85) and subcutaneous semaglutide lowered stroke versus empagliflozin among others. Oral semaglutide and empagliflozin lowered ACD versus subcutaneous semaglutide among others. The maximum surface under the cumulative ranking curve values followed sotagliflozin, subcutaneous semaglutide, and albiglutide in lowering MACE; sotagliflozin, canagliflozin, and empagliflozin in lowering HHF; dapagliflozin and empagliflozin in lowering KFP; empagliflozin and oral semaglutide in lowering CVD; sotagliflozin and albiglutide in lowering MI; sotagliflozin and subcutaneous semaglutide in lowering stroke; and oral semaglutide and empagliflozin in lowering ACD. CONCLUSIONS: This updated network meta-analysis reproduced the findings in the first network meta-analysis, and moreover revealed that sotagliflozin was one of the most effective drugs as for lowering MI, stroke, MACE, and HHF, whereas ertugliflozin was not. These findings will provide the according evidence regarding the usage of specific SGLT2 inhibitors and GLP-1 RAs in T2D patients for prevention of specific cardiorenal endpoints.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Receptor do Peptídeo Semelhante ao Glucagon 1/antagonistas & inibidores , Coração/efeitos dos fármacos , Rim/efeitos dos fármacos , Inibidores do Transportador 2 de Sódio-Glicose/efeitos adversos , Diabetes Mellitus Tipo 2/fisiopatologia , Receptor do Peptídeo Semelhante ao Glucagon 1/uso terapêutico , Coração/fisiopatologia , Humanos , Rim/fisiopatologia , Metanálise em Rede , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Resultado do Tratamento
2.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361024

RESUMO

The use of chemicals to boost food production increases as human consumption also increases. The insectidal, nematicidal and acaricidal chemical carbofuran (CAF), is among the highly toxic carbamate pesticide used today. Alongside, copper oxide nanoparticles (CuO) are also used as pesticides due to their broad-spectrum antimicrobial activity. The overuse of these pesticides may lead to leaching into the aquatic environments and could potentially cause adverse effects to aquatic animals. The aim of this study is to assess the effects of carbofuran and copper oxide nanoparticles into the cardiovascular system of zebrafish and unveil the mechanism behind them. We found that a combination of copper oxide nanoparticle and carbofuran increases cardiac edema in zebrafish larvae and disturbs cardiac rhythm of zebrafish. Furthermore, molecular docking data show that carbofuran inhibits acetylcholinesterase (AChE) activity in silico, thus leading to impair cardiac rhythms. Overall, our data suggest that copper oxide nanoparticle and carbofuran combinations work synergistically to enhance toxicity on the cardiovascular performance of zebrafish larvae.


Assuntos
Carbofurano/toxicidade , Inibidores da Colinesterase/toxicidade , Cobre/toxicidade , Coração/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Praguicidas/toxicidade , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Animais , Sítios de Ligação , Carbofurano/farmacologia , Cardiotoxicidade , Sinergismo Farmacológico , Praguicidas/farmacologia , Ligação Proteica , Peixe-Zebra
3.
Nutrients ; 13(7)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34371842

RESUMO

The aim of the present study was to investigate the possible protective effects of a garlic hydroalcoholic extract on the burden of oxidative stress and inflammation occurring on mouse heart specimens exposed to E. coli lipopolysaccharide (LPS), which is a well-established inflammatory stimulus. Headspace solid-phase microextraction combined with the gas chromatography-mass spectrometry (HS-SPME/GC-MS) technique was applied to determine the volatile fraction of the garlic powder, and the HS-SPME conditions were optimized for each of the most representative classes of compounds. CIEL*a*b* colorimetric analyses were performed on the powder sample at the time of delivery, after four and after eight months of storage at room temperature in the dark, to evaluate the color changing. Freshly prepared hydroalcoholic extract was also evaluated in its color character. Furthermore, the hydroalcoholic extract was analyzed through GC-MS. The extract was found to be able to significantly inhibit LPS-induced prostaglandin (PG) E2 and 8-iso-PGF2α levels, as well as mRNA levels of cyclooxygenase (COX)-2, interleukin (IL)-6, and nuclear factor-kB (NF-kB), in heart specimens. Concluding, our findings showed that the garlic hydroalcoholic extract exhibited cardioprotective effects on multiple inflammatory and oxidative stress pathways.


Assuntos
Cardiotônicos/farmacologia , Alho/química , Coração/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Antioxidantes/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Camundongos , Microextração em Fase Sólida
4.
Cardiovasc Toxicol ; 21(10): 781-789, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34255300

RESUMO

Since the onset of the global COVID-19 pandemic, there has been much discussion about the advantages and disadvantages of ongoing chronic drug therapies in SARS-CoV-2-positive patients. These discussions include also statins treatment. The statins are among the most widely used drugs in the global population. Statins aim to lower cholesterol, which is essential for many biological processes but can lead to heart disease if levels are too high; however, also the pleiotropic effects of statins are well known. So could the anti-inflammatory or the potential antiviral effects of statins be helpful in avoiding extreme inflammation and severity in COVID-19? To date, there are conflicting opinions on the effects of statins in the course of COVID-19 infection. The aim of this article is to describe the molecular and pharmacological basis of the pleiotropic effects of statins that could be more involved in the fight against COVID-19 infection and to investigate the current epidemiological evidence in the literature on the current and important topic.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antivirais/uso terapêutico , COVID-19/tratamento farmacológico , Cardiopatias/tratamento farmacológico , Coração/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , Animais , Anti-Inflamatórios/efeitos adversos , Antivirais/efeitos adversos , COVID-19/epidemiologia , COVID-19/fisiopatologia , COVID-19/virologia , Coração/fisiopatologia , Coração/virologia , Cardiopatias/epidemiologia , Cardiopatias/fisiopatologia , Cardiopatias/virologia , Interações Hospedeiro-Patógeno , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , SARS-CoV-2/patogenicidade , Resultado do Tratamento
5.
Am J Physiol Regul Integr Comp Physiol ; 321(3): R385-R395, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34259041

RESUMO

Exercise intolerance is a hallmark symptom of cardiovascular disease and likely occurs via enhanced activation of muscle metaboreflex-induced vasoconstriction of the heart and active skeletal muscle which, thereby limits cardiac output and peripheral blood flow. Muscle metaboreflex vasoconstrictor responses occur via activation of metabolite-sensitive afferent fibers located in ischemic active skeletal muscle, some of which express transient receptor potential vanilloid 1 (TRPV1) cation channels. Local cardiac and intrathecal administration of an ultrapotent noncompetitive, dominant negative agonist resiniferatoxin (RTX) can ablate these TRPV1-sensitive afferents. This technique has been used to attenuate cardiac sympathetic afferents and nociceptive pain. We investigated whether intrathecal administration (L4-L6) of RTX (2 µg/kg) could chronically attenuate subsequent muscle metaboreflex responses elicited by reductions in hindlimb blood flow during mild exercise (3.2 km/h) in chronically instrumented conscious canines. RTX significantly attenuated metaboreflex-induced increases in mean arterial pressure (27 ± 5.0 mmHg vs. 6 ± 8.2 mmHg), cardiac output (1.40 ± 0.2 L/min vs. 0.28 ± 0.1 L/min), and stroke work (2.27 ± 0.2 L·mmHg vs. 1.01 ± 0.2 L·mmHg). Effects were maintained until 78 ± 14 days post-RTX at which point the efficacy of RTX injection was tested by intra-arterial administration of capsaicin (20 µg/kg). A significant reduction in the mean arterial pressure response (+45.7 ± 6.5 mmHg pre-RTX vs. +19.7 ± 3.1 mmHg post-RTX) was observed. We conclude that intrathecal administration of RTX can chronically attenuate the muscle metaboreflex and could potentially alleviate enhanced sympatho-activation observed in cardiovascular disease states.


Assuntos
Débito Cardíaco/efeitos dos fármacos , Diterpenos/farmacologia , Membro Posterior/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Animais , Pressão Arterial/efeitos dos fármacos , Débito Cardíaco/fisiologia , Diterpenos/administração & dosagem , Cães , Coração/efeitos dos fármacos , Coração/fisiopatologia , Membro Posterior/fisiopatologia , Isquemia/fisiopatologia , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Fluxo Sanguíneo Regional/efeitos dos fármacos , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/fisiopatologia , Vasoconstrição/fisiologia
6.
Molecules ; 26(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207748

RESUMO

Tiagabine is an antiepileptic drug used for the treatment of partial seizures in humans. Recently, this drug has been found useful in several non-epileptic conditions, including anxiety, chronic pain and sleep disorders. Since tachycardia-an impairment of cardiac rhythm due to cardiac ion channel dysfunction-is one of the most commonly reported non-neurological adverse effects of this drug, in the present paper we have undertaken pharmacological and numerical studies to assess a potential cardiovascular risk associated with the use of tiagabine. A chemical interaction of tiagabine with a model of human voltage-gated ion channels (VGICs) is described using the molecular docking method. The obtained in silico results imply that the adverse effects reported so far in the clinical cardiological of tiagabine could not be directly attributed to its interactions with VGICs. This is also confirmed by the results from the isolated organ studies (i.e., calcium entry blocking properties test) and in vivo (electrocardiogram study) assays of the present research. It was found that tachycardia and other tiagabine-induced cardiac complications are not due to a direct effect of this drug on ventricular depolarization and repolarization.


Assuntos
Canais de Cálcio Tipo L/química , Canal de Potássio ERG1/antagonistas & inibidores , Epilepsia/tratamento farmacológico , Coração/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.5/química , Tiagabina/farmacologia , Potenciais de Ação , Animais , Anticonvulsivantes/efeitos adversos , Canais de Cálcio Tipo L/metabolismo , Simulação por Computador , Canal de Potássio ERG1/metabolismo , Epilepsia/complicações , Epilepsia/metabolismo , Humanos , Masculino , Simulação de Acoplamento Molecular/métodos , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Ratos , Ratos Wistar , Tiagabina/efeitos adversos
7.
Biomed Pharmacother ; 138: 111521, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34311525

RESUMO

Euphorbiae pekinensis Radix (EP) is effective in treating various diseases, but it's toxicity is a major obstacle in use in clinical. Although EP was processed with vinegar to reduce it's toxicity, the detailed mechanism of toxicity in EP have not been clearly delineated. This study investigate the toxicity attenuation-mechanism of Euphorbiae pekinensis after being processed with vinegar (VEP) and the toxic mechanism of four compounds from EP on zebrafish embryos. The contents of four compounds decreased obviously in VEP. Correspondingly, slower development on embryos can be seen as some symptoms like reduction of heart rate, liver area and gastrointestinal peristalsis after exposed to the compounds. Some obvious pathological signals such as pericardial edema and yolk sac edema were observed. Furthermore, the compounds could increase the contents of MDA and GSH-PX and induce oxidative damage by inhibiting the activity of SOD. Also, four compounds could provoke apoptosis by up-regulating the expression level of p53, MDM2, Bax, Bcl-2 and activating the activity of caspase-3, caspase-9. In conclusion, the four compounds play an important role in the toxicity attenuation effects of VEP, which may be related to the apoptosis induction and oxidative damage. This would contribute to the clinical application and further toxicity-reduction mechanism research.


Assuntos
Euphorbia/toxicidade , Trato Gastrointestinal/efeitos dos fármacos , Coração/efeitos dos fármacos , Fígado/efeitos dos fármacos , Compostos Fitoquímicos/toxicidade , Extratos Vegetais/toxicidade , Peixe-Zebra/embriologia , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Cardiotoxicidade , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Embrião não Mamífero/patologia , Euphorbia/química , Trato Gastrointestinal/embriologia , Trato Gastrointestinal/metabolismo , Coração/embriologia , Fígado/embriologia , Fígado/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
8.
Life Sci ; 282: 119761, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34217764

RESUMO

AIMS: Eugenol is a natural compound found in the essential oils of many aromatic plants. The compound is used as a local anesthetic because of its inhibitory effect on the voltage-gated Na+ channels (Nav), which are expressed in the nociceptive neurons. Eugenol has shown wide range of activities in the cardiovascular system; most of these activities are attributed to the modulation of voltage-sensitive Ca2+ channels. However, its action on Nav1.5, the main subtype of Nav expressed in the mammalian myocardium, is unknown. The interaction of eugenol with Nav1.5 could also contribute to its antiarrhythmic properties in vitro and ex vivo. We investigated the compound's effect on sodium current (INa) and its possible cardiac antiarrhythmic activity. METHODS: The effect of eugenol on cardiac contractility was investigated using isolated atrium from guinea pig (for isometric force measurements). The compound's effect on INa was evaluated using human embryonic cell transiently expressing human Nav1.5 and patch-clamp technique. KEY FINDINGS: Eugenol caused negative inotropic and chronotropic effects in the atria. In the ex vivo arrhythmia model, eugenol decreased atrial pacing disturbance induced by ouabain. Eugenol reduced the INa in a concentration-dependent manner. Furthermore, the compound left-shifted the stationary inactivation curve, delayed recovery from inactivation of the INa, and preferentially blocked the channel in the inactivated state. Importantly, eugenol was able to attenuate the late sodium current. All these aspects are considered to be antiarrhythmic. SIGNIFICANCE: Overall, our findings demonstrate that eugenol has antiarrhythmic activity due, at least in part, to its interaction with Nav1.5.


Assuntos
Antiarrítmicos/uso terapêutico , Arritmias Cardíacas/tratamento farmacológico , Eugenol/uso terapêutico , Coração/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Feminino , Cobaias , Células HEK293 , Coração/fisiopatologia , Humanos , Masculino , Técnicas de Patch-Clamp
9.
Nat Commun ; 12(1): 4501, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301958

RESUMO

Nitric oxide (NO) is a short-lived signaling molecule that plays a pivotal role in cardiovascular system. Organic nitrates represent a class of NO-donating drugs for treating coronary artery diseases, acting through the vasodilation of systemic vasculature that often leads to adverse effects. Herein, we design a nitrate-functionalized patch, wherein the nitrate pharmacological functional groups are covalently bound to biodegradable polymers, thus transforming small-molecule drugs into therapeutic biomaterials. When implanted onto the myocardium, the patch releases NO locally through a stepwise biotransformation, and NO generation is remarkably enhanced in infarcted myocardium because of the ischemic microenvironment, which gives rise to mitochondrial-targeted cardioprotection as well as enhanced cardiac repair. The therapeutic efficacy is further confirmed in a clinically relevant porcine model of myocardial infarction. All these results support the translational potential of this functional patch for treating ischemic heart disease by therapeutic mechanisms different from conventional organic nitrate drugs.


Assuntos
Implantes de Medicamento/metabolismo , Infarto do Miocárdio/metabolismo , Nitratos/metabolismo , Óxidos de Nitrogênio/metabolismo , Animais , Cardiotônicos/metabolismo , Cardiotônicos/farmacologia , Modelos Animais de Doenças , Implantes de Medicamento/farmacologia , Coração/efeitos dos fármacos , Coração/fisiopatologia , Ativação de Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Infarto do Miocárdio/mortalidade , Infarto do Miocárdio/prevenção & controle , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Células RAW 264.7 , Ratos Sprague-Dawley , Taxa de Sobrevida , Suínos
10.
Int J Biol Macromol ; 185: 582-591, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34216660

RESUMO

The effects of a novel Flammulina velutipes polysaccharide (FVP) on intestinal microbiota, immune repertoire and heart transcriptome were investigated in this study. The results showed that FVP treatment could effectively regulate the abundance of colonic microbiota. And FVP exhibited obvious immunoregulatory effect by influencing V gene and J gene fragments usage on TCRα chain. The usage frequency of TRBV1, TRBJ1-6 and TRBJ1-5 were significantly altered, and 41 V-J pairs were identified with obvious difference after FVP treatment. Furthermore, the mRNA of mice heart was analyzed by transcriptome assay. Total 525 genes and 1587 mRNA were significantly changed after FVP treatment. KEGG annotation indicated that the up-regulated mRNA was enriched in 17 pathways including adherens junction, mTOR signaling pathway, insulin signaling pathway, mitophagy, tight junction, PPAR signaling pathway and TNF signaling pathway, etc. Meanwhile, the down-regulated mRNA was gathered in AMPK signaling pathway, metabolism of xenobiotics by cytochrome P450, apelin signaling pathway, PPAR signaling pathway, PI3K-Akt signaling pathway, insulin signaling pathway, cardiac muscle contraction, adrenergic signaling in cardiomyocytes, Fc gamma R-mediated phagocytosis, etc. The great potential exhibited by FVP could make it an ideal candidate as complementary medicine or functional food for promotion of health.


Assuntos
Bactérias/isolamento & purificação , Flammulina/química , Perfilação da Expressão Gênica/métodos , Miocárdio/química , Polissacarídeos/administração & dosagem , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Animais , Bactérias/efeitos dos fármacos , Bactérias/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Coração/efeitos dos fármacos , Masculino , Camundongos , Anotação de Sequência Molecular , Filogenia , Polissacarídeos/farmacologia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de RNA , Xenobióticos
11.
Int J Mol Sci ; 22(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34298945

RESUMO

Increased oxidative stress is a crucial factor for the progression of cellular senescence and aging. The present study aimed to investigate the effects of licochalcone D (Lico D) on oxidative stress-induced senescence, both in vitro and in vivo, and explore its potential mechanisms. Hydrogen peroxide (200 µM for double time) and D-galactose (D-Gal) (150 mg/kg) were used to induce oxidative stress in human bone marrow-mesenchymal stem cells (hBM-MSCs) and mice, respectively. We performed the SA-ß-gal assay and evaluated the senescence markers, activation of AMPK, and autophagy. Lico D potentially reduced oxidative stress-induced senescence by upregulating AMPK-mediated activation of autophagy in hBM-MSCs. D-Gal treatment significantly increased the expression levels of senescence markers, such as p53 and p21, in the heart and hippocampal tissues, while this effect was reversed in the Lico D-treated animals. Furthermore, a significant increase in AMPK activation was observed in both tissues, while the activation of autophagy was only observed in the heart tissue. Interestingly, we found that Lico D significantly reduced the expression levels of the receptors for advanced glycation end products (RAGE) in the hippocampal tissue. Taken together, our findings highlight the antioxidant, anti-senescent, and cardioprotective effects of Lico D and suggest that the activation of AMPK and autophagy ameliorates the oxidative stress-induced senescence.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Senescência Celular/efeitos dos fármacos , Chalconas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Animais , Antioxidantes/farmacologia , Autofagia/efeitos dos fármacos , Cardiotônicos/farmacologia , Células Cultivadas , Galactose/metabolismo , Coração/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Regulação para Cima/efeitos dos fármacos
12.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299301

RESUMO

Metformin can reduce cardiovascular risk independent of glycemic control. The mechanisms behind its non-glycemic benefits, which include decreased energy intake, lower blood pressure and improved lipid and fatty acid metabolism, are not fully understood. In our study, metformin treatment reduced myocardial accumulation of neutral lipids-triglycerides, cholesteryl esters and the lipotoxic intermediates-diacylglycerols and lysophosphatidylcholines in a prediabetic rat model (p < 0.001). We observed an association between decreased gene expression and SCD-1 activity (p < 0.05). In addition, metformin markedly improved phospholipid fatty acid composition in the myocardium, represented by decreased SFA profiles and increased n3-PUFA profiles. Known for its cardioprotective and anti-inflammatory properties, metformin also had positive effects on arachidonic acid metabolism and CYP-derived arachidonic acid metabolites. We also found an association between increased gene expression of the cardiac isoform CYP2c with increased 14,15-EET (p < 0.05) and markedly reduced 20-HETE (p < 0.001) in the myocardium. Based on these results, we conclude that metformin treatment reduces the lipogenic enzyme SCD-1 and the accumulation of the lipotoxic intermediates diacylglycerols and lysophosphatidylcholine. Increased CYP2c gene expression and beneficial effects on CYP-derived arachidonic acid metabolites in the myocardium can also be involved in cardioprotective effect of metformin.


Assuntos
Ácido Araquidônico/metabolismo , Metformina/farmacologia , Miocárdio/metabolismo , Estado Pré-Diabético/tratamento farmacológico , Estado Pré-Diabético/metabolismo , Animais , Metabolismo Basal/efeitos dos fármacos , Biomarcadores/sangue , Cardiotônicos/farmacologia , Modelos Animais de Doenças , Ácidos Graxos Dessaturases/metabolismo , Coração/efeitos dos fármacos , Hiperlipoproteinemia Tipo IV/tratamento farmacológico , Hiperlipoproteinemia Tipo IV/metabolismo , Hipoglicemiantes/farmacologia , Mediadores da Inflamação/sangue , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Fatores de Risco
13.
Nutrients ; 13(6)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34073024

RESUMO

L-carnitine (LC) supplementation improves cardiac function in hemodialysis (HD) patients. However, whether reducing LC supplementation affects carnitine kinetics and cardiac function in HD patients treated with LC remains unclear. Fifty-nine HD patients previously treated with intravenous LC 1000 mg per HD session (three times weekly) were allocated to three groups: LC injection three times weekly, once weekly, and placebo, and prospectively followed up for six months. Carnitine fractions were assessed by enzyme cycling methods. Plasma and red blood cell (RBC) acylcarnitines were profiled using tandem mass spectrometry. Cardiac function was evaluated using echocardiography and plasma B-type natriuretic peptide (BNP) levels. Reducing LC administration to once weekly significantly decreased plasma carnitine fractions and RBC-free carnitine levels during the study period, which were further decreased in the placebo group (p < 0.001). Plasma BNP levels were significantly elevated in the placebo group (p = 0.03). Furthermore, changes in RBC (C16 + C18:1)/C2 acylcarnitine ratio were positively correlated with changes in plasma BNP levels (ß = 0.389, p = 0.005). Reducing LC administration for six months significantly decreased both plasma and RBC carnitine levels, while the full termination of LC increased plasma BNP levels; however, it did not influence cardiac function in HD patients.


Assuntos
Carnitina/sangue , Carnitina/farmacocinética , Suplementos Nutricionais , Insuficiência Cardíaca/prevenção & controle , Coração/efeitos dos fármacos , Falência Renal Crônica/terapia , Diálise Renal/métodos , Idoso , Carnitina/administração & dosagem , Relação Dose-Resposta a Droga , Feminino , Seguimentos , Coração/fisiopatologia , Insuficiência Cardíaca/complicações , Humanos , Falência Renal Crônica/sangue , Falência Renal Crônica/complicações , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Método Simples-Cego
14.
Ecotoxicol Environ Saf ; 220: 112394, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34091186

RESUMO

Arsenic (As) and antimony (Sb) are known as an environmental contaminant with cardiotoxicity properties. The endoplasmic reticulum (ER) is the largest calcium reservoir in the cell, and its calcium homeostasis disorder plays a vital role in endoplasmic reticulum stress (ERS) and apoptosis. The objective of this study was to investigate whether As and Sb induced apoptosis via endoplasmic reticulum stress (ERS) linked to calcium homeostasis disturbance. In this study, thirty-two adult mice were gavage-fed daily with As2O3 (4 mg/kg), SbCl3 (15 mg/kg) and co-treat with SbCl3 (15 mg/kg) and As2O3 (4 mg/kg) daily for 60 days. It was observed that As or/and Sb caused histopathological lesions and ER expansion of the heart. Meanwhile, the gene expression of ER Ca2+ release channels (RyR2 and IP3R) and calmodulin-dependent protein kinase II (CaMKII) increased while the levels of mRNA and protein of ER Ca2+ uptake channel (SERCA2) downregulated significantly compared to the controls. Then, As or/and Sb induced ERS and triggered the ER apoptotic pathway by activating unfolded protein response (UPR)-associated genes ((PERK, ATF6, IRE1, XBP1, JNK, GRP78), and apoptosis-related genes (Caspase12, Caspase3, p53, CHOP). Above indicators in As + Sb group became more severe than that of As group and Sb group. Overall, our results proved that the cardiotoxicity caused by As or/and Sb might be concerning disturbing calcium homeostasis, which induced apoptosis through the ERS pathway.


Assuntos
Antimônio/toxicidade , Arsênio/toxicidade , Cálcio/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Coração/efeitos dos fármacos , Animais , Antimônio/metabolismo , Apoptose , Arsênio/metabolismo , Canais de Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiotoxicidade/metabolismo , Cardiotoxinas , Caspase 3/metabolismo , Morte Celular , Regulação para Baixo , Retículo Endoplasmático/metabolismo , Poluentes Ambientais/toxicidade , Homeostase/efeitos dos fármacos , Masculino , Metais Pesados/toxicidade , Camundongos , Miocárdio/metabolismo , Miocárdio/patologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Resposta a Proteínas não Dobradas
15.
Molecules ; 26(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071846

RESUMO

This study was conducted to determine the potential interaction of aged garlic extract (AGE) with carvedilol (CAR), as well as to investigate the role of S-allyl-l-cysteine (SAC), an active constituent of AGE, in rats with isoproterenol (ISO)-induced myocardial dysfunction. At the end of three weeks of treatment with AGE (2 and 5 mL/kg) or SAC (13.1 and 32.76 mg/kg), either alone or along with CAR (10 mg/kg) in the respective groups of animals, ISO was administered subcutaneously to induce myocardial damage. Myocardial infarction (MI) diagnostic predictor enzymes, lactate dehydrogenase (LDH) and creatinine kinase (CK-MB), were measured in both serum and heart tissue homogenates (HTH). Superoxide dismutase (SOD), catalase, and thiobarbituric acid reactive species (TBARS) were estimated in HTH. When compared with other groups, the combined therapy of high doses of AGE and SAC given alone or together with CAR caused a significant decrease in serum LDH and CK-MB activities. Further, significant rise in the LDH and CK-MB activities in HTH was noticed in the combined groups of AGE and SAC with CAR. It was also observed that both doses of AGE and SAC significantly increased endogenous antioxidants in HTH. Furthermore, histopathological observations corroborated the biochemical findings. The cytoprotective potential of SAC and AGE were dose-dependent, and SAC was more potent than AGE. The protection offered by aged garlic may be attributed to SAC. Overall, the results indicated that a high dose of AGE and its constituent SAC, when combined with carvedilol, has a synergistic effect in preventing morphological and physiological changes in the myocardium during ISO-induced myocardial damage.


Assuntos
Carvedilol/administração & dosagem , Cisteína/análogos & derivados , Alho/metabolismo , Coração/efeitos dos fármacos , Miocárdio/patologia , Extratos Vegetais/farmacologia , Animais , Antioxidantes/química , Catalase/metabolismo , Creatina Quinase Forma MB/metabolismo , Cisteína/administração & dosagem , Feminino , Hemodinâmica , Isoproterenol/química , L-Lactato Desidrogenase/metabolismo , Necrose , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico
16.
Methods Mol Biol ; 2277: 405-421, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34080165

RESUMO

The more recent studies of human pathologies have essentially revealed the complexity of the interactions involved at the different levels of integration in organ physiology. Integrated organ thus reveals functional properties not predictable by underlying molecular events. It is therefore obvious that current fine molecular analyses of pathologies should be fruitfully combined with integrative approaches of whole organ function. It follows that an important issue in the comprehension of the link between molecular events in pathologies and whole organ function/dysfunction is the development of new experimental strategies aimed at the study of the integrated organ physiology. Cardiovascular diseases are a good example as heart submitted to ischemic conditions has to cope both with a decreased supply of nutrients and oxygen, and the necessary increased activity required to sustain whole body-including the heart itself-oxygenation.By combining the principles of control analysis with noninvasive 31P NMR measurement of the energetic intermediates and simultaneous measurement of heart contractile activity, we developed MoCA (for Modular Control and regulation Analysis), an integrative approach designed to study in situ control and regulation of cardiac energetics during contraction in intact beating perfused isolated heart (Diolez et al., Am J Physiol Regul Integr Comp Physiol 293(1):R13-R19, 2007). Because it gives real access to integrated organ function, MoCA brings out a new type of information-the "elasticities," referring to integrated internal responses to metabolic changes-that may be a key to the understanding of the processes involved in pathologies. MoCA can potentially be used not only to detect the origin of the defects associated with the pathology, but also to provide the quantitative description of the routes by which these defects-or also drugs-modulate global heart function, therefore opening therapeutic perspectives. This review presents selected examples of the applications to isolated intact beating heart that evidence different modes of energetic regulation of cardiac contraction. We also discuss the clinical application by using noninvasive 31P cardiac energetics examination under clinical conditions for detection of heart pathologies.


Assuntos
Metabolismo Energético , Espectroscopia de Ressonância Magnética/métodos , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Animais , Cálcio/metabolismo , Cardiotônicos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Epinefrina/metabolismo , Cobaias , Coração/efeitos dos fármacos , Homeostase , Humanos , Masculino , Mitocôndrias Cardíacas/metabolismo , Miofibrilas/metabolismo , Técnicas de Cultura de Órgãos/métodos , Ratos , Simendana/farmacologia
17.
J Mater Chem B ; 9(24): 4793-4803, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34059858

RESUMO

As an anthracycline antibiotic, doxorubicin (DOX) is one of the most potent and widely used chemotherapeutic agents for treating various types of tumors. Unfortunately, the clinical application of this drug results in severe side effects, particularly dose-dependent cardiotoxicity. There are multiple mechanisms involved with the cardiotoxicity caused by DOX, among which intracellular iron homeostasis plays an essential role based on a recent discovery. In this mini-review, we summarize the clinical features and symptoms of DOX-dependent cardiotoxicity, discuss the correlation between iron and cardiotoxicity, and highlight the involvement of iron-dependent ferroptotic cell death therein. Recent advances in this topic will aid the development of novel DOX delivery systems with reduced adverse effects, and expand the clinical application of anthracycline.


Assuntos
Doxorrubicina/efeitos adversos , Sistemas de Liberação de Medicamentos/métodos , Coração/efeitos dos fármacos , Ferro/metabolismo , Humanos
18.
Arch Biochem Biophys ; 708: 108952, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34097901

RESUMO

Cancer patients undergoing radiotherapy, chemotherapy, or targeted cancer therapy are exposed to the risk of several side effects because of the heavy production of ROS by ionizing radiation or some chemotherapy drugs. Damages to DNA, mitochondria, membrane and other organelles within normal tissue cells such as cardiomyocytes and endothelial cells lead to the release of some toxins which are associated with triggering inflammatory cells to release several types of cytokines, chemokines, ROS, and RNS. The release of some molecules following radiotherapy or chemotherapy stimulates reduction/oxidation (redox) reactions. Redox reactions cause remarkable changes in the level of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Excessive production of ROS and RNS or suppression of antioxidant defense enzymes leads to damage to critical macromolecules, which may continue for long times. Increased levels of some cytokines and oxidative injury are hallmarks of heart injury following cancer therapy. Redox reactions may be involved in several heart disorders such as fibrosis, cardiomyopathy, and endothelium injury. In the current review, we explain the cellular and molecular mechanisms of redox interactions following radiotherapy, chemotherapy, and targeted cancer therapy. Afterward, we explain the evidence of the involvement of redox reactions in heart diseases.


Assuntos
Coração/efeitos dos fármacos , Coração/efeitos da radiação , Neoplasias/terapia , Animais , Humanos , Terapia de Alvo Molecular/efeitos adversos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/radioterapia , Oxirredução/efeitos dos fármacos , Oxirredução/efeitos da radiação
19.
Genes Cells ; 26(8): 583-595, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34060165

RESUMO

Genetic mutations in actin regulators have been emerging as a cause of cardiomyopathy, although the functional link between actin dynamics and cardiac contraction remains largely unknown. To obtain insight into this issue, we examined the effects of pharmacological inhibition of formins, a major class of actin-assembling proteins. The formin inhibitor SMIFH2 significantly enhanced the cardiac contractility of isolated frog hearts, thereby augmenting cardiac performance. SMIFH2 treatment had no significant effects on the Ca2+ sensitivity of frog muscle fibers. Instead, it unexpectedly increased Ca2+ concentrations of isolated frog cardiomyocytes, suggesting that the inotropic effect is due to enhanced Ca2+ transients. In contrast to frog hearts, the contractility of mouse cardiomyocytes was attenuated by SMIFH2 treatment with decreasing Ca2+ transients. Thus, SMIFH2 has opposing effects on the Ca2+ transient and contractility between frog and mouse cardiomyocytes. We further found that SMIFH2 suppressed Ca2+ -release via type 2 ryanodine receptor (RyR2); this inhibitory effect may explain the species differences, since RyR2 is critical for Ca2+ transients in mouse myocardium but absent in frog myocardium. Although the mechanisms underlying the enhancement of Ca2+ transients in frog cardiomyocytes remain unclear, SMIFH2 differentially affects the cardiac contraction of amphibian and mammalian by differentially modulating their Ca2+ handling.


Assuntos
Sinalização do Cálcio , Coração/efeitos dos fármacos , Contração Miocárdica , Miócitos Cardíacos/efeitos dos fármacos , Animais , Células Cultivadas , Coração/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Rana catesbeiana , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Especificidade da Espécie , Tionas/farmacologia , Uracila/análogos & derivados , Uracila/farmacologia
20.
Int J Nanomedicine ; 16: 3581-3598, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34079251

RESUMO

Background: BF211, a derivative of bufalin (BF), shows significantly improved solubility and potent antitumor efficiency compared to BF. Unfortunately, the unwanted toxicity such as cardiotoxicity caused by unspecific distribution has hindered its clinical use. Methods: PEGylated BF211 liposomes (BF211@Lipo) were designed and optimizely prepared based on the pre-prescription research. In vitro and in vivo cardiotoxicity was evaluated. In vivo pharmacokinetics and biodistribution of BF211@Lipo were investigated. In vivo antitumor activity and toxicity were evaluated in HepG2 cell xenograft models. The rapid-release triggered by Poloxamer 188 (P188) was assessed in vitro and in vivo. Results: The optimized BF211@Lipo displayed a spherical morphology with a size of (164.6 ± 10.3) nm and a high encapsulation efficiency of (93.24 ± 2.15) %. The in vivo concentration-time curves of BF211 loaded in liposomes showed a prolonged half-life in plasma and increased tumor accumulation. No obvious abnormality in electrocardiograms was observed in guinea pigs even at 9 mg/kg. Moreover, to improve the efficient release of BF211@Lipo, a surfactant-assisted rapid-release strategy was developed, and the release-promoting mechanism was revealed by the fluorescence resonance energy transfer (FRET) and fluorescence nanoparticle tracking analysis (fl-NTA) technology. Sequential injection of BF211@Lipo and P188 could ignite the "cold" liposomes locally in tumor regions, facilitating the burst release of BF211 and enhancing the therapeutic index. Conclusion: Our progressive efforts that begin with preparation technology and dosage regimen enable BF211 to like a drug, providing a promising nano platform to deliver the cardiac glycosides and alleviate the side effects by decreasing unspecific biodistribution.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Bufanolídeos/administração & dosagem , Bufanolídeos/farmacologia , Coração/efeitos dos fármacos , Tensoativos/química , Animais , Antineoplásicos/química , Antineoplásicos/toxicidade , Bufanolídeos/química , Bufanolídeos/toxicidade , Cobaias , Células Hep G2 , Humanos , Lipossomos , Nanopartículas/química , Poloxâmero/química , Solubilidade , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...