Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.305
Filtrar
1.
Chemosphere ; 254: 126827, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32957271

RESUMO

Herein, ultrasonication (US)-assisted novel nanomaterial Ti3C2Tx MXene was utilized as a selective adsorbent for treatment of synthetic dyes in model wastewater. Two types of US frequencies, 28 and 580 kHz, were applied to disperse MXene to evaluate the feasibility of US-assisted MXene for wastewater treatment. The physico-chemical properties of MXene after US were characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and zeta potential. According to FTIR and XPS, 28 kHz US-assisted MXene had a greater amount of oxygenated functional groups and dispersion compared to 580 kHz US-assisted and pristine MXene. Subsequently, US-assisted MXene was utilized as an adsorbent for the removal of positively charged methylene blue (MB) and negatively charged methyl orange. Both 28 and 580 kHz US-assisted MXene showed better adsorption performance for only MB compared to stirring-assisted MXene based on kinetics, isotherms, and several water chemistry factors including solution pH, temperature, ionic strength, and humic acid. Advantages of US-assisted MXene for water treatment are its fast kinetics at low dose and high selectivity for positively charged target compounds (i.e., MB). The main adsorption mechanism between MXene and MB was electrostatic interaction (attraction); however, physical properties (i.e., aggregation kinetics and hydrodynamic diameter), measured via dynamic light scattering, were also found to be critical factors in controlling the adsorption performance of the system. Lastly, US-assisted MXene exhibited a high regeneration property, based on 4th adsorption-desorption cycles.


Assuntos
Corantes/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Compostos Azo , Corantes/química , Difusão Dinâmica da Luz , Cinética , Azul de Metileno/química , Espectroscopia de Infravermelho com Transformada de Fourier , Titânio/análise , Águas Residuárias/química
2.
SAR QSAR Environ Res ; 31(9): 697-715, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32878494

RESUMO

Azo dyes are a group of chemical moieties joined by azo (-N=N-) group with potential usefulness in different industrial applications. But these dyes are not devoid of hazardous consequence because of poor affinity for the fibre and discharge into the water stream. The chemical aspects of 72 azo dyes towards cellulose fibre in terms of their affinity by QSPR have been explored in the present work. We have employed two approaches, namely balance of correlation without IIC (TF1) and balance of correlation with IIC (TF2), to generate 16 QSAR models from 8 splits. The determination coefficient of calibration and validation set was found higher when the QSPR models were developed using the index of ideality correlation (IIC) parameter (TF2). The model developed with TF2 for split 3 was considered as a prominent model because the determination coefficient of the validation set was maximum (r 2 = 0.9468). The applicability domain (AD) was also analysed based on 'statistical defect', d(A) for a SMILES attribute. The mechanistic interpretation was done by identifying the SMILES attributes responsible for the promoter of endpoint increase and promoter of endpoint decrease. These SMILES attributes were applied to design 15 new dyes with higher affinity for cellulose fibre.


Assuntos
Compostos Azo/química , Celulose/química , Corantes/química , Relação Quantitativa Estrutura-Atividade , Adsorção , Simulação por Computador , Método de Monte Carlo
3.
Ecotoxicol Environ Saf ; 202: 110924, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32800211

RESUMO

Fabrication of poly-(N-isopropylmethacrylamide-co-methacrylic acid) [p(NMA)] microgels to be utilized as microreactors to synthesize stable Ag nanoparticles for catalytic reductive degradation of dyes has been addressed in this work. Both p(NMA) microgel and Ag-p(NMA) hybrid microgel systems have been analyzed by Fourier transform infra-red and Dynamic light scattering, Ultraviolet-Visible spectroscopy, X-ray diffraction and Transmission electron microscopy. Catalytic activity of Ag-p(NMA) towards reductive degradation of Congo Red (CR), Methyl Orange (MO) and Alizarin Yellow (AY) was investigated under different operating conditions. Spectrophotometry was employed to check the progress of reaction while the rate constant (kapp) value of degradation reaction was determined under various conditions to optimize reaction parameters for rapid and economical degradation of these dyes. An increase in kapp value was observed by increasing feed content of dye up to a certain value that decreases again by further increment in dye concentration which reflects that catalysis follows Langmuir-Hinshelwood mechanism. A gradual increase in the kapp value was also observed with increasing quantity of hybrid microgel used as a catalyst. By comparing kapp values of degradation of aforementioned dyes, it was found that Ag-p(NMA) hybrid microgel gives better activity for MO dye degradation in comparison to catalytic degradation of CR and AY.


Assuntos
Compostos Azo/química , Nanopartículas Metálicas/química , Prata/química , Catálise , Corantes/química , Vermelho Congo/química , Hidrogéis/química , Microscopia Eletrônica de Transmissão , Polímeros/química , Espectrofotometria , Difração de Raios X
4.
Chemosphere ; 260: 127681, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32758785

RESUMO

In this work, magnetic separably barium ferrite nanomaterial (BaFeO) was synthesized via citrate acid assisted sol-gel combustion method. Subsequently, X-ray diffraction (XRD), scanning electron microscopy-energy dispersion spectroscopy (SEM-EDS), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) were applied for its structural, morphological, and electromagnetic characterization. In addition, microwave (MW) absorption and thermal conversion test results indicated the BaFeO had electrothermal rather than magnetothermal conversion capacity. Meanwhile, the synthesized BaFeO showed satisfactory performance in both eliminating and mineralization of a typical triphenylmethane dye, brilliant green (BG), in MW-induced catalytic oxidation (MICO) process without extra oxidant addition. Besides, changes in element valence and content of BaFeO before and after MICO process investigated with XRD, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) showed its relatively stable properties. Furthermore, transition oxygen species involved in MICO process was deduced as lattice oxygen species. Then, the possible degradation pathway of BG was proposed as demethylation, open-loop of triphenylmethane, releasing one ring, formation of the benzene ring and the ultimate mineralization based on the degradation intermediates tentatively identified by gas chromatography mass spectrometry (GC/MS) and liquid chromatography mass spectrometry (LC/MS), respectively. Finally, ecotoxicity analysis by ecological structure activity relationships (ECOSAR) showed that both the acute and chronic toxicity of these intermediates were lower than that of parent BG. These findings are important regarding the development of efficient catalysts in MICO process for degradation of BG analogues in wastewater.


Assuntos
Compostos de Bário/química , Compostos Férricos/química , Nanoestruturas/química , Compostos de Amônio Quaternário/química , Catálise , Corantes/química , Magnetismo , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Micro-Ondas , Espectroscopia Fotoeletrônica , Águas Residuárias , Difração de Raios X
5.
J Environ Public Health ; 2020: 5383842, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32774394

RESUMO

Textile industries generate large quantities of dye containing wastewater which pose a serious environmental problem. Currently, biosorbents have become desirable for the removal of dyes from textile effluents. In this study, batch experiments were conducted to investigate the biosorption characteristics of cactus peel on the removal of reactive red dye from aqueous solutions. The effects of solution pH, biosorbent dosage, contact time, and initial concentration were studied. The interaction effects of process variables were analysed using response surface methodology. The results showed that removal efficiency increased as initial dye concentration and solution pH decreased and as biosorbent dosage and contact time increased. The highest removal efficiency (99.43%) was achieved at solution pH, initial dye concentration, biosorbent dose, and contact time of 3.0, 40 mg/l, 6 g, and 120 min, respectively. From regression analysis, the Langmuir isotherm was found to better (R 2 = 0.9935) represent the biosorption process as compared with the Freundlich isotherm (R 2 = 0.9722). Similarly, the pseudo-second-order model was seen to represent very well the biosorption kinetics. The results show that cactus peel has good potential for the removal of reactive red dye.


Assuntos
Cactaceae/química , Corantes/isolamento & purificação , Indústria Têxtil , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Corantes/química , Recuperação e Remediação Ambiental , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica , Poluentes Químicos da Água/química
6.
Chemosphere ; 255: 127052, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32679636

RESUMO

In this study, polypyrrole/carboxymethyl cellulose nanocomposite particles (PPy/CMC NPs) were synthesized and applied for removal of reactive red 56 (RR56)and reactive blue 160 (RB160) as highly toxic dyes. The amount of CMC was found significantly effective on the surface adsorption efficiency. Different optimization methods including the genetic programming, response surface methodology, and artificial neural network (ANN) were used to optimize the effect of different parameters including pH, adsorption time, initial dye concentration and adsorbent dose. The maximum adsorption of RR56 and RB160 were found under the following optimum conditions: pH of 4 and 5, adsorption time of 55 min and 52 min for RR56 and RB160, respectively, initial dye concentration of 100 mg/L and adsorbent dose of 0.09 g for both dyes. were obtained for RR56 and RB160, respectively. Also, the results indicated that ANN method could predict the experimental adsorption data with higher accuracy than other methods. The analysis of ANN results indicated that the adsorbent dose is the main factor in RR56 removal, followed by time, pH and initial concentration, respectively. However, initial concentration mostly determines the RB160 removal process. The isotherm data for both dyes followed the Langmuir isotherm model with a maximum adsorption capacity of 104.9 mg/g and 120.7 mg/g for RR56 and RB160, respectively. In addition, thermodynamic studies indicated the endothermic adsorption process for both studied dyes. Moreover, DFT calculations were carried out to obtain more insight into the interactions between the dyes and adsorbent. The results showed that the hydrogen bondings and Van der Waals interactions are dominant forces between the two studied dyes and PPy/CMC composite. Furthermore, the interaction energies calculated by DFT confirmed the experimental adsorption data, where PPy/CMC resulted in higher removal of both dyes compared to PPy. The developed nanocomposite showed considerable reusability up to 3 cylces of the batch adsorption process.


Assuntos
Carboximetilcelulose Sódica/química , Corantes/química , Nanocompostos/química , Adsorção , Compostos Azo , Benzenossulfonatos , Teoria da Densidade Funcional , Cinética , Nanopartículas , Polímeros , Pirróis , Termodinâmica , Poluentes Químicos da Água
7.
BMC Bioinformatics ; 21(1): 332, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709217

RESUMO

BACKGROUND: In cell biology, increasing focus has been directed to fast events at subcellular space with the advent of fluorescent probes. As an example, voltage sensitive dyes (VSD) have been used to measure membrane potentials. Yet, even the most recently developed genetically encoded voltage sensors have demanded exhausting signal averaging through repeated experiments to quantify action potentials (AP). This analysis may be further hampered in subcellular signals defined by small regions of interest (ROI), where signal-to-noise ratio (SNR) may fall substantially. Signal processing techniques like blind source separation (BSS) are designed to separate a multichannel mixture of signals into uncorrelated or independent sources, whose potential to separate ROI signal from noise has been poorly explored. Our aims are to develop a method capable of retrieving subcellular events with minimal a priori information from noisy cell fluorescence images and to provide it as a computational tool to be readily employed by the scientific community. RESULTS: In this paper, we have developed METROID (Morphological Extraction of Transmembrane potential from Regions Of Interest Device), a new computational tool to filter fluorescence signals from multiple ROIs, whose code and graphical interface are freely available. In this tool, we developed a new ROI definition procedure to automatically generate similar-area ROIs that follow cell shape. In addition, simulations and real data analysis were performed to recover AP and electroporation signals contaminated by noise by means of four types of BSS: Principal Component Analysis (PCA), Independent Component Analysis (ICA), and two versions with discrete wavelet transform (DWT). All these strategies allowed for signal extraction at low SNR (- 10 dB) without apparent signal distortion. CONCLUSIONS: We demonstrate the great capability of our method to filter subcellular signals from noisy fluorescence images in a single trial, avoiding repeated experiments. We provide this novel biomedical application with a graphical user interface at https://doi.org/10.6084/m9.figshare.11344046.v1 , and its code and datasets are available in GitHub at https://github.com/zoccoler/metroid .


Assuntos
Razão Sinal-Ruído , Software , Algoritmos , Animais , Automação , Corantes/química , Simulação por Computador , Fluorescência , Humanos , Potenciais da Membrana , Análise de Componente Principal , Ratos , Processamento de Sinais Assistido por Computador , Frações Subcelulares/metabolismo , Interface Usuário-Computador
8.
Chemosphere ; 259: 126949, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32634719

RESUMO

High internal phase emulsions (HIPEs) as template for fabrication of porous materials has attracted much attention, due to the high porosity and tunable porous structure. But the enormous consumption of organic solvents is still a nightmare for the practical application. In comparison, the aqueous foam without need any organic solvent and hence has greater advantages in the porous materials preparation. In this study, a novel Pickering foam which was stabilized by modified sepiolite (Sep) was prepared and applied as the template for preparation of the porous material via thermal-initiated polymerization. The Pickering foam had excellent ability and stability in the pH of 4-11 and the obtained porous adsorbent possess sufficient and tuned pore structure. The porous materials as adsorbent has favorable performance for adsorption and selective removal of cationic dyes, and the understanding adsorption capacities for Methylene blue (MB) and Methyl green (MG) can be achieved with 1421.18 mg/g and 638.81 mg/g within 60 and 45 min at 25 °C, respectively. This porous material can be as the potential adsorbent for adsorption or separation of organic pollutants.


Assuntos
Corantes/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Cátions , Emulsões/química , Silicatos de Magnésio , Azul de Metileno/química , Polimerização , Porosidade , Água
9.
Chemosphere ; 259: 127421, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32603965

RESUMO

Nanocomposites with ultrahigh adsorption capabilities are highly desired for efficient wastewater remediation. Unfortunately, most of the nanomaterial based adsorbents showing inevitable limitation such as leaching and agglomeration led to the emerging field of carbonaceous hybrid materials with nanocomposites. Herein, we demonstrated a simple and low-temperature hydrothermal assisted preparation of Fe-Al based nanocomposites immobilized using carbon spheres. Towards this, we have approached two different routes one is hybridizing with nanocomposite and another is doping on the surface of the carbon spheres. Iron doping played a dual-faceted role of active site for robust adsorption as well as induce magnetic property to the composites. The micro-cleaners have been extensively characterized for their physicochemical properties and adsorption capacities using FTIR, Raman, XRD, BET isotherms and XPS techniques. Remarkably, microcleaners shows robust adsorption where >99% removal was obtained within 10 min for 50 mg L-1 concentrated Eriochrome Black T (EBT) dye using 0.01 g of materials. Further, adsorption data followed the pseudo second order kinetics while the equilibrium data fitted perfectly into the Langmuir adsorption equation. As synthesized user friendly microcleaner (HTC-2) exhibits maximum adsorption capacity (qmax) of 564.97 mg g-1 for EBT dye at pH 4. Hence, the preliminary results highlight the potential of the composites to be used in pretreatment steps of industry effluents.


Assuntos
Corantes/química , Nanocompostos/química , Poluentes Químicos da Água/química , Adsorção , Ânions , Compostos Azo , Carbono , Concentração de Íons de Hidrogênio , Ferro , Cinética , Águas Residuárias , Poluentes Químicos da Água/análise
10.
J Chromatogr A ; 1625: 461305, 2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32709348

RESUMO

A novel kind of magnetic porous carbon nano-fibers (Fe3O4@P-CNFs) materials was successfully prepared and used as an adsorbent. Based on the above-mentioned adsorbent, a simple and effective magnetic disperse solid-phase extraction (MSPE) method was developed and first utilized to the enrichment and purification of five Sudan dyes (including Sudan I, Sudan II, Sudan III, Sudan IV, and Sudan Red 7B) in foodstuffs for the first time. High-performance liquid chromatography was used to determine the content of the Sudan dyes. The parameters affecting the extraction performance were studied and optimized, including the amount of the adsorbent and inorganic salt, type and the volume of the eluent, pH of the sample solution and extraction time. Under the optimized experimental conditions, the results show that the proposed method has a good linear relationship (r≥ 0.9993). The limits of detection range from 0.88 µg L-1 to 1.27 µg L-1. The recoveries range from 86.6% to 99.7% with the relative standard deviations ranging from 0.6% to 7.9% in the methodology validation. The above-mentioned results indicate that the proposed method is a sensitive and reliable procedure with good reproducibility for the detection of Sudan dyes residues in foodstuffs.


Assuntos
Compostos Azo/análise , Fibra de Carbono/química , Corantes/análise , Análise de Alimentos , Fenômenos Magnéticos , Nanofibras/química , Adsorção , Compostos Azo/química , Corantes/química , Concentração de Íons de Hidrogênio , Limite de Detecção , Nanofibras/ultraestrutura , Porosidade , Análise de Regressão , Reprodutibilidade dos Testes , Sais/química , Fatores de Tempo
11.
Ecotoxicol Environ Saf ; 202: 110859, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32574861

RESUMO

The effects of quinoid compounds on azo dyes decolorization were studied. Compared with other quinones, menadione was the most effective at aiding azo dye decolorization. Sodium formate was a suitable carbon source for the anaerobic decolorization system. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis indicated that the microbial structure changed in response to varying carbon sources. Phylogenetic analysis showed that the anaerobic sludge was consisted mainly of nine genera. The mechanism studies showed that the biotransformation of menadione to its hydroquinone form was the rate-limiting step in the dye decolorization process. Moreover, study of the electron transfer mechanism of quinone-mediated reduction showed that azo dye decolorization is not a specific reaction. The NADH chain was involved in the decolorization process. The methane production test indicated that azo dyes had an inhibitory effect on methane production. However, supplementation with a redox mediator could recover the inhibited methanogenesis. High-throughput sequencing analysis revealed that the methanogenic archaeal community was altered in the anaerobic sludge with or without azo dyes and the redox mediator.


Assuntos
Compostos Azo/metabolismo , Quinonas/metabolismo , Eliminação de Resíduos Líquidos , Anaerobiose , Compostos Azo/química , Benzoquinonas , Biotransformação , Catálise , Corantes/química , Metano/metabolismo , Oxirredução , Filogenia , Quinonas/química , Esgotos
12.
Chemosphere ; 257: 127164, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32480087

RESUMO

The present work describes the synthesis of niobium oxide nanochannels (Nb2O5NCs) with high surface area, porosity, photocurrent density, and photoelectrochemical stability as photocatalyst. The Nb2O5NCs were prepared by electrochemical anodization of niobium foil in different electrolytes: 1 M H2SO4 containing 0.4 wt% HF (S1); glycerol containing 0.4 M NH4F (S2); 0.25 g NH4F with 4 vol% water in glycol at 50 °C (S3); and glycerol containing 10 wt% K2HPO4, at 130 °C (S4, annealed in air; S5, annealed in N2). All the Nb2O5NCs showed well-organized arrays of nanochannels grown on the Nb foil, with tube diameters in the order S4

Assuntos
Corantes/química , Nióbio/química , Purificação da Água/métodos , Compostos Orgânicos , Óxidos/química , Fotólise , Titânio/química
13.
Chemosphere ; 259: 127390, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32593817

RESUMO

The dye-water treatment using UF membrane is still a challenge. In the present study, the optimized PAN-ETA ultrafiltration membrane was hydrolyzed and subsequently characterized by SEM, IR, CA, XPS, NMR, mechanic measurement, etc. The obtained membrane (H-PAN-ETA) was used for dye removal and it showed both an excellent anti-dye fouling and a good rejection property for anionic dyes. I.e. 96% rejection for methyl blue (MB), 99% for congo red (CR), 94% for acid fuchsin (AF) with no sign of contamination by dye. The flux of H-PAN-ETA membrane maintained at 50-53 L m-2⋅ h-1 during a 10-h filtration, which is higher than that of tight UF membranes reported. Meanwhile, H-PAN-ETA membrane was able to selectively remove cationic dyes, such as methylene blue (MEB), rhodamine B (RB) and, crystal violet (CV), or the mixture of anionic dye/cationic dye by adsorption process. Its adsorption capacity remained unchanged after 20 cycles. Finally, the immobile electrical double layer (EDL) theory combined with electrostatic force was introduced to explain the separation mechanism of charged UF membrane, which is helpful to instruct the preparation of UF membrane for dye removal.


Assuntos
Resinas Acrílicas/química , Corantes/química , Etanolamina/química , Purificação da Água/métodos , Adsorção , Ânions , Cátions , Filtração , Membranas , Membranas Artificiais , Azul de Metileno , Rodaminas , Ultrafiltração
14.
Food Chem ; 329: 127178, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32502746

RESUMO

A betacyanin rich extract was obtained from the flowers of Gomphrena globosa L. by ultrasound-assisted extraction and dried either by lyophilization or spray-drying, was tested as a natural colourant in cookies and compared to a commercial colourant. The extracts were characterized in terms of betacyanin content and antioxidant potential. The effects of the colourants incorporation in the cookies were assessed through proximate composition, soluble sugars, fatty acids, color, texture and microbial load, over a shelf life of 30 days. Considering all the assays and analyzing the results through a 2-way analysis of variance, the cookies incorporated with spray-dried colourant showed the most intense pink coloration while cookies incorporated with lyophilized extract lost less color intensity over time. Thus, betacyanin extracts have potential as pink natural alternatives to synthetic colourants in the food industry.


Assuntos
Amaranthaceae/química , Betacianinas/química , Doces/análise , Corantes/química , Amaranthaceae/metabolismo , Antioxidantes/química , Betacianinas/isolamento & purificação , Dessecação , Flores/química , Flores/metabolismo , Liofilização , Valor Nutritivo , Extratos Vegetais/química , Sonicação
15.
J Oleo Sci ; 69(6): 549-555, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32522916

RESUMO

Foam separation can selectively remove a target substance from a solution via adsorption of the substance with the surfactant at the surface of the bubble. A cationic dye, methylene blue, and an anionic dye, Fast Green FCF, were prepared as substances to be removed via foam separation. Anionic (sodium dodecyl sulfate, SDS), cationic (dodecyltrimethylammonium chloride, DTAC), and amphoteric (3-(dodecyldimethylammonio)propane-1-sulfonate, SB-12) surfactants were used in the foam separation process. The effectiveness of the surfactants for removing the cationic methylene blue increased as follows: DTAC < SB-12 < SDS. On the other hand, the effectiveness of the surfactants for removing the anionic Fast Green FCF was in the opposite order. The dyes were effectively adsorbed by the foams via electrostatic interactions between the oppositely charged surfactant and the dye molecules. Since amphoteric surfactants have both anionic and cationic charges in a molecule, they could effectively remove both dyes in the foam separation process. Therefore, it was found that the amphoteric surfactant was highly versatile. Analysis of the kinetics of the removal rate showed that the aqueous solutions of monomers could remove the dyes more effectively than micellar solutions in foam separation.


Assuntos
Corantes/química , Corantes Verde de Lissamina/química , Azul de Metileno/química , Compostos de Amônio Quaternário/química , Dodecilsulfato de Sódio/química , Tensoativos/química , Adsorção , Sistemas de Transporte de Aminoácidos Básicos , Ânions , Eletricidade Estática
16.
Ecotoxicol Environ Saf ; 200: 110744, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32460050

RESUMO

Hematite nanoparticles (α-Fe2O3 NPs) were successfully synthesized by a low-cost solvent-free reaction using Ferrous sulfate waste (FeSO4·7H2O) and pyrite (FeS2) as raw materials and employed for the decolorization of Methyl Orange by the photo-Fenton system. The properties of α-Fe2O3 NPs before and after photo-Fenton reaction were characterized by X-ray powder diffraction (XRD), Field emission scanning electron microscopy (FESEM), Fourier transform infrared (FT-IR) spectrum and X-ray photoelectron spectroscopy (XPS), and the optical properties of α-Fe2O3 NPs were analyzed by UV-vis diffuse reflectance spectra (UV-vis DRS) and Photoluminescence (PL) spectra. The analytic results showed that the as-formed samples having an average diameter of ~50 nm exhibit pure phase hematite with sphere structure. Besides, little differences were found by comparing the characterization data of the particles before and after the photo-Fenton reaction, indicating that the photo-Fenton reaction was carried out in solution rather than on the surface of α-Fe2O3 NPs. A 24 central composite design (CCD) coupled with response surface methodology (RSM) was applied to evaluate and optimize the important variables. A significant quadratic model (P-value<0.0001, R2 = 0.9664) was derived using an analysis of variance (ANOVA), which was adequate to perform the process variables optimization. The optimal process conditions were performed to be 395 nm of the light wavelength, pH 3.0, 5 mmol/L H2O2 and 1 g/L α-Fe2O3, and the decolorization efficiency of methyl orange was 99.55% at 4 min.


Assuntos
Compostos Azo/química , Corantes/química , Compostos Férricos/química , Nanopartículas Metálicas/química , Catálise , Compostos Férricos/síntese química , Compostos Ferrosos/química , Ferro/química , Solventes , Sulfetos/química
17.
Chemosphere ; 257: 127144, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32473409

RESUMO

Polyvinylidene fluoride (PVDF) membrane was coated with polyvinyl alcohol (PVA)/titanium dioxide (TiO2) solution using dip-coating method. The effect of PVA loading (0-12 wt%) at a fixed TiO2 concentration (1 wt%) was investigated through physical and morphological characterization of the membranes. The experimental results showed that increasing the PVA content from 0 to 12 wt% in the coating solution increased the hydrophilicity and tensile strength as well as the young's modulus of the coated membranes. It also increased the thickness of the thin film coating which enhanced the removal of dyes but affected the permeate flux adversely. Larger the molecular weight of the dye, higher the rejection and lower the permeate flux obtained. The antifouling performance of the membrane was studied using Bovine Serum Albumin (BSA) solution and the fouling was measured using the irreversible fouling factor. The results indicated that the PVA/TiO2 coated PVDF membrane had lower irreversible fouling factors compared to plain PVDF membrane. The PVDF membrane with a thin film coating containing 3 wt% of PVA and 1 wt% of TiO2 showed high photocatalytic degradation for the three dyes studied under UV irradiation due to uniform dispersion of TiO2 nanoparticles over the membrane surface. Further, smaller the molecular weight of the dye, larger the photodegradation that was observed.


Assuntos
Corantes/química , Álcool de Polivinil/química , Polivinil/química , Eliminação de Resíduos Líquidos/métodos , Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , Nanopartículas , Fotólise , Soroalbumina Bovina , Têxteis , Titânio , Raios Ultravioleta
18.
Chemosphere ; 253: 126627, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32278907

RESUMO

Manganese (Mn) contamination is a common environmental problem in the world and manganese oxidizing bacteria (MOB) play important roles in bioremediation of heavy metal and organic pollution. In this study, a novel MOB consortium AS containing core microbes of Sphingobacterium and Bacillus was acclimated from Mn-contaminated rivulet sediments. The MOB consortium AS presented good Mn(II) removal performance under 500-10,000 mg/L Mn(II), with Mn(II) removal capacities ranging from 481 to 3478 mg/L. In coexistence systems of Mn(II) and Fe(II), Ni(II), Cu(II), and Zn(II), the MOB consortium AS removed 98%, 91%, 99%, and 76% of Mn(II), respectively. Additionally, the MOB consortium AS could utilize multiple carbon sources (e.g., Chitosan, ß-Cyclodextrin, and Phenanthrene) to remove Mn(II), with Mn(II) removal efficiencies ranging from 11% to 97%. Meanwhile, XRD, XPS, FTIR, SEM, and EDS analyses reflected that biogenic Mn oxides (bio-MnOx-C) contained C, O, Mn (Mn(II) and Mn(IV)) and embodied in rhodochrosite and birnessite. The bio-MnOx-C exhibited second-order kinetic reaction for removal of dye, with corresponding decolorization capacities of 22.0 mg/g for methylene blue and 23.8 mg/g for crystal violet. In addition, bio-MnOx-C showed adsorption capacities of 159.0 mg/g for Cu(II), 130.7 mg/g for Zn(II), and 123.3 mg/g for Pb(II). Overall, this study illustrates consortium AS and bio-MnOx-C have great potentials in remediation of pollution caused by heavy metals and organic pollutants.


Assuntos
Corantes/química , Metais Pesados/química , Adsorção , Bactérias , Biodegradação Ambiental , Manganês/química , Compostos de Manganês , Azul de Metileno , Modelos Químicos , Oxirredução , Óxidos/química
19.
Chemosphere ; 254: 126823, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32334264

RESUMO

Environmentally toxic organic pollutants, namely methylene blue (MB), neutral red (NR), Rhodamine B (RhB), and methyl orange (MO) dyes contain highly toxic, carcinogenic, non-biodegradable, and colored pigments which cause harm for humans and aquatic organisms even at low concentrations. To detoxify these toxic organic pollutants from the wastewater, the bimetallic solid solution-typed In-Mo(O,S)2 catalyst with various indium (In) contents were synthesized at low temperature through a simple precipitation method. The morphological, structural, chemical compositions, electrochemical and optical properties of the catalysts were thoroughly characterized. The photodegradation performance of the In-Mo(O,S)2 catalysts over the cationic, anionic and neutral dyes were studied under visible light irradiation. It has been observed that the photocatalytic activity was enhanced as In was added to the Mo(O,S)2 catalyst, and In-Mo(O,S)2-20 was found to be the best composition to completely degrade four organic dyes. The dye degradation had rate constant values of 9.5 × 10-2 min-1, 6.3 × 10-2 min-1, 4.4 × 10-2 min-1, and 15.7 × 10-1 min-1 for MB (20 ppm), NR (20 ppm), RhB (10 ppm), and MO (10 ppm) dyes, respectively. The active species for degradation of MB is different from those for RhB and MO. Single phase In-Mo(O,S)2-20 capable to degrade four kinds of dyes at a fast rate is a good photocatalyst.


Assuntos
Corantes/análise , Poluentes Químicos da Água/análise , Compostos Azo , Catálise , Corantes/química , Índio , Luz , Azul de Metileno/química , Modelos Químicos , Fotólise , Rodaminas , Sulfetos , Águas Residuárias , Poluentes Químicos da Água/química
20.
Ecotoxicol Environ Saf ; 197: 110587, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32325327

RESUMO

The persistence and bioaccumulation of environmental pollutants in water bodies, soils and living tissues remain alarmingly related to environmental protection and ecosystem restoration. Adsorption-based techniques appear highly competent in sequestering several environmental pollutants. In this review, the recent research findings reported on the assessments of composts and compost-amended soils as adsorbents of heavy metal ions, dye molecules and xenobiotics have been appraised. This review demonstrates clearly the high adsorption capacities of composts for umpteen environmental pollutants at the lab-scale. The main inferences from this review are that utilization of composts for the removal of heavy metal ions, dye molecules and xenobiotics from aqueous environments and soils is particularly worthwhile and efficient at the laboratory scale, and the adsorption behaviors and effectiveness of compost-type adsorbents for agrochemicals (e.g. herbicides and insecticides) vary considerably because of variabilities in structure, topology, bond connectivity, distribution of functional groups and interactions of xenobiotics with the active humic substances in composts. Compost-based field-scale remediation of environmental pollutants is still sparse and arguably much challenging to implement if, furthermore, real-world soil and water contamination issues are to be addressed effectively. Hence, significant research and process development efforts should be promptly geared and intensified in this direction by extrapolating the lab-scale findings in a cost-effective manner.


Assuntos
Corantes/química , Compostagem , Poluentes Ambientais/química , Metais Pesados/química , Xenobióticos/química , Adsorção , Agroquímicos/química , Recuperação e Remediação Ambiental , Substâncias Húmicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA