Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.081
Filtrar
1.
Chemosphere ; 287(Pt 1): 131845, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34523441

RESUMO

"Green" pyrotechnics seek to remove known environmental pollutants and health hazards from their formulations. This chemical engineering approach often focuses on maintaining performance effects upon replacement of objectionable ingredients, yet neglects the chemical products formed by the exothermic reaction. In this work, milligram quantities of a lab-scale pyrotechnic red smoke composition were functioned within a thermal probe for product identification by pyrolysis-gas chromatography-mass spectrometry. Thermally decomposed ingredients and new side product derivatives were identified at lower relative abundances to the intact organic dye (as the engineered sublimation product). Side products included chlorination of the organic dye donated by the chlorate oxidizer. Machine learning quantitative structure-activity relationship models computed impacts to health and environmental hazards. High to very high toxicities were predicted for inhalation, mutagenicity, developmental, and endocrine disruption for common military pyrotechnic dyes and their analogous chlorinated side products. These results underscore the need to revise objectives of "green" pyrotechnic engineering.


Assuntos
Corantes , Fumaça , Antraquinonas/toxicidade , Corantes/toxicidade , Mutagênicos , Tabaco
2.
J Hazard Mater ; 416: 125864, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492812

RESUMO

Reactive red 2 (RR2) is a highly recalcitrant and toxic azo dye that can cause the collapse of biological treatment system. Although MFC can decolorize RR2 effectively, its performance is still inevitably affected by toxicity. Anthraquinone can enhance MFCs' performance through mediating electron transfer. In this study, an anthraquinone-rich natural plants (B.rheum (Rheum offcinale Baill)) was extracted and then added to MFCs. The optimal dosage was selected and the enhanced effects were investigated. The results showed that adding 5%(V/V) extract resulted in the optimal performance elevation of MFC. When 5% extract was added together with RR2, 15.63% and 1.33-fold improvement in RR2 decolorization efficiency and rate were achieved compared with the control group. Meanwhile, higher power density (2.75 W/m3), coulombic efficiency (6.45%), and lower internal resistance (233.69 Ω) were also observed when 5% B.rheum extract and RR2 were added. B.rheum extract in MFCs enhanced microbial activity and enriched the dye-degrading microorganisms, such as Enterobacter, Raoultella, Comamonas and Shinella. B.rheum extract acts as "antidote" in alleviating the biotoxicity of RR2 was firstly illustrated in this study. The results provided a new strategy for using plant-source electron mediators to simultaneously improve biological detoxification, bioelectricity generation and dye decolorization in bioelectrochemical system.


Assuntos
Compostos Azo , Fontes de Energia Bioelétrica , Compostos Azo/toxicidade , Corantes/toxicidade , Eletricidade , Eletrodos , Transporte de Elétrons , Elétrons
3.
Molecules ; 26(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34361600

RESUMO

Persistent pollutants such as pharmaceuticals, pesticides, musk fragrances, and dyes are frequently detected in different environmental compartments and negatively impact the environment and humans. Understanding the impacts of diffuse environmental pollutants on plants is still limited, especially at realistic environmental concentrations of contaminants. We studied the effects of key representatives of two major classes of environmental pollutants (nine different antibiotics and six different textile dyes) on the leaf carotenoid (violaxanthin and neoxanthin) content in wheat (Triticum aestivum L.) using different pollutant concentrations and application times. The wheat plants were watered with solutions of selected environmental pollutants in two different concentrations of 0.5 mg L-1 and 1.5 mg L-1 for one week (0.5 L) and two weeks (1 L). Both categories of pollutants selected for this study negatively influenced the content of violaxanthin and neoxanthin, whereas the textile dyes represented more severe stress to the wheat plants. The results demonstrate that chronic exposure to common diffusively spread environmental contaminants constitutes significant stress to the plants.


Assuntos
Antibacterianos/toxicidade , Corantes/toxicidade , Poluentes Ambientais/toxicidade , Folhas de Planta/metabolismo , Triticum/metabolismo , Xantofilas/metabolismo
4.
Toxicol Lett ; 351: 111-134, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34384884

RESUMO

The preclinical identification of health hazards relies on the performance (the historic concordance to the respective gold standard) of regulatorily recommended bioassays. However, any testing with less than 100% sensitivity (or 100% specificity) can deliver false results (outcomes discordant to the respective gold standard). Conversely, the predictive values approach (a.k.a. Bayesian forecasting) weighs (1) the performance of the predictive bioassay (battery, or framework) with (2) the prevalence of -positivity to the respective gold standard- in the most representative category to which the test substance can be allocated. Thus, the predictive values approach (PVA) provides the numeric probability for the toxicity to humans of chemicals that, circumstantially, are evaluable only through nonclinical data. Consequently, the PVA improves the predictivity of nonclinical toxicology, and increases the impact of hazard identifications entirely based on preclinical data. This article aimed to introduce the PVA through a worked example. Due to their toxicological homogeneity and public health relevance, the superfamily of colorants synthesized from benzidine (BZ) or some mutagenic congeners was selected (colorings hereafter mentioned as BZ-related-colorants). Through the PVA, the numeric probability of innate carcinogenicity to humans of 259 BZ-related-colorants was either estimated from rodent carcinogenesis bioassays (RCBs) or predicted from methods alternative to the RCB. A discussion was provided on (1) some limitations and implications of the PVA, and (2) the probable significance of the predictive values figured here for 259 BZ-related-colorings.


Assuntos
Benzidinas/química , Testes de Carcinogenicidade , Corantes/síntese química , Corantes/toxicidade , Mutagênicos/síntese química , Mutagênicos/toxicidade , Teorema de Bayes , Humanos , Estrutura Molecular
5.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34360828

RESUMO

The environmental pollutant benzo[a]pyrene (BaP) is a human carcinogen that reacts with DNA after metabolic activation catalysed by cytochromes P450 (CYP) 1A1 and 1B1 together with microsomal epoxide hydrolase. The azo dye Sudan I is a potent inducer of CYP1A1/2. Here, Wistar rats were either treated with single doses of BaP (150 mg/kg bw) or Sudan I (50 mg/kg bw) alone or with both compounds in combination to explore BaP-derived DNA adduct formation in vivo. Using 32P-postlabelling, DNA adducts generated by BaP-7,8-dihydrodiol-9,10-epoxide were found in livers of rats treated with BaP alone or co-exposed to Sudan I. During co-exposure to Sudan I prior to BaP treatment, BaP-DNA adduct levels increased 2.1-fold in comparison to BaP treatment alone. Similarly, hepatic microsomes isolated from rats exposed to Sudan I prior to BaP treatment were also the most effective in generating DNA adducts in vitro with the activated metabolites BaP-7,8-dihydrodiol or BaP-9-ol as intermediates. DNA adduct formation correlated with changes in the expression and/or enzyme activities of CYP1A1, 1A2 and 1B1 in hepatic microsomes. Thus, BaP genotoxicity in rats in vivo appears to be related to the enhanced expression and/or activity of hepatic CYP1A1/2 and 1B1 caused by exposure of rats to the studied compounds. Our results indicate that the industrially employed azo dye Sudan I potentiates the genotoxicity of the human carcinogen BaP, and exposure to both substances at the same time seems to be hazardous to humans.


Assuntos
Benzo(a)pireno/toxicidade , Citocromo P-450 CYP1A1/metabolismo , Adutos de DNA/toxicidade , Fígado/efeitos dos fármacos , Microssomos Hepáticos/efeitos dos fármacos , Naftóis/toxicidade , Animais , Carcinógenos Ambientais/toxicidade , Corantes/toxicidade , Masculino , Ratos , Ratos Wistar
6.
Chemosphere ; 284: 131273, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34216920

RESUMO

The current environmental research has fascinated the sustainable exploitation of mix bacterial consortium to biodegrade the environmentally-related toxic compounds, including hazardous synthetic dyes. Based on the existing literature evidence, textile and other industrial waste effluents pollute the natural water bodies. Textile effluent contains synthetic dyes which are liberated in the environment without proper treatment. The presence of toxic dyes added to the textile effluents undoubtedly affects the flora and fauna as that untreated water is used for irrigation by local farmers. Many conventional and biological methods are in action for the treatment of wastewater. Physical and chemical processes are expensive as compared to microbial treatments. The use of microbial consortia generates efficient results. Wastewater is a valuable resource, however, up to 80% of wastewater is released to different water matrices. This discernment needs to change for a better tomorrow. In this context, herein, we present a robust microbial-assisted treatment and simultaneously reuse of the treated wastewater as an added value to induce plant growth. Thus, the microbial approach for textile waste treatment release by-product after degradation should be non-toxic for the environment. In the present study, the toxicity of synthetic textile dye named Reactive Red 120, Reactive Orange 122, Reactive Yellow 160, and Reactive Blue 19 was investigated using a bioassay method with plant species namely Sorghum bicolor. Plate and Pot experiment was conducted with respect to untreated Azo dyes, degraded metabolites obtained from single bacteria, and consortium. Efficient Seed germination (89%), shoot length (12.4 cm), root length (15.6 cm) of the plants were observed for bacterial consortium degraded metabolites exposed seeds after comparing with the control. The degraded metabolite also increases protein (45.56 mg/g) and sugar (3.15 mg/g) contents. Bioremediation of various textile industrial effluents saves the ecosystem from the harmful effects of hazardous dyes. The biological decolorization of the textile azo dyes was investigated under co-metabolic conditions. The degraded metabolites can be used to enhance crop productivity and for commercial application. This mandates the current and future research to develop economically feasible and environmentally sustainable wastewater treatment practices.


Assuntos
Corantes , Águas Residuárias , Compostos Azo/toxicidade , Bactérias , Biodegradação Ambiental , Corantes/toxicidade , Ecossistema , Indústria Têxtil , Têxteis
7.
Toxicology ; 460: 152872, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34303732

RESUMO

The increasing number of tattooed persons urges the development of reliable test systems to assess tattoo associated risks. The alarming prevalence of 60 % phototoxic reactions in tattoos ask for a more comprehensive investigation of phototoxic reactions in tattooed skin. Here, we aimed to compare the cellular responses of human skin cells to ultraviolet (UV)A and UVB irradiation in doses of short to intermitted sun exposure (3-48 J/cm² and 0.05-5 J/cm², respectively) in the presence of tattoo pigments. Therefore, we used fibroblast monolayer culture (2D), our recently developed three dimensional full-thickness skin model with dermal-located tattoo pigments (TatSFT) and its dermal equivalents (TatSDE) that lack keratinocytes. We tested the most frequently used tattoo pigments carbon black, titanium dioxide (TiO2) anatase and rutile as well as Pigment Orange (P.O.)13 in ranges from 0.067 to 2.7 ng/cell in 2D. For TatSDE and TatSFT, concentrations were 1.3 ng/cell for TiO2, 0.67 ng/cell for P.O.13 and 0.067 ng/cell for carbon black. We assessed cell viability and cytokine release in all systems, and cyclobutane pyrimidine dimer (CPD) formation in TatSFT. Phototoxicity of tattoo pigments was exclusively observed in 2D, where especially TiO2 anatase induced phototoxic effects in all concentrations (0.067-2.7 ng/cell). In contrast, fibroblasts were protected from UV irradiation in TatSDE by TiO2 and carbon black. Neither toxic nor protective effects were recorded in TatSFT. P.O.13 showed altered cytokine secretion in 2D (0.067-1.3 ng/cell) and TatSDE, despite the absence of significant effects on viability in all systems. All pigments reduced the number of CPDs in TatSFT compared to the pigment-free controls. In conclusion, our study shows that within a 3D arrangement, intradermal tattoo pigments may act photoprotective despite intrinsic phototoxic properties in 2D. Thus, dermal 3D equivalents should be considered to evaluate acute tattoo pigment toxicology.


Assuntos
Corantes/toxicidade , Dermatite Fototóxica , Pele/efeitos dos fármacos , Tatuagem/efeitos adversos , Testes de Toxicidade/métodos , Raios Ultravioleta/efeitos adversos , Células Cultivadas , Corantes/farmacologia , Dermatite Fototóxica/patologia , Relação Dose-Resposta a Droga , Prepúcio do Pênis/citologia , Prepúcio do Pênis/efeitos dos fármacos , Prepúcio do Pênis/patologia , Humanos , Recém-Nascido , Masculino , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/toxicidade , Pele/patologia , Pele/efeitos da radiação , Fuligem/farmacologia , Fuligem/toxicidade , Tatuagem/métodos , Titânio/farmacologia , Titânio/toxicidade
8.
Chem Asian J ; 16(17): 2552-2558, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34296823

RESUMO

A pH-responsive smart nanocarrier with significant components was synthesized by conjugating the non-emissive anticancer drug methyl orange and polyethylene glycol derived folate moiety to the backbone of polynorbornene. Complete synthesis procedure and characterization methods of three monomers included in the work: norbornene-derived Chlorambucil (Monomer 1), norbornene grafted with polyethylene glycol, and folic acid (Monomer 2) and norbornene attached methyl orange (Monomer 3) connected to the norbornene backbone through ester linkage were clearly discussed. Finally, the random copolymer CHO PEG FOL METH was synthesized by ring-opening metathesis polymerization (ROMP) using Grubbs' second-generation catalyst. Advanced polymer chromatography (APC) was used to find the final polymer's molecular weight and polydispersity index (PDI). Dynamic light scattering, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were utilized to explore the prodrug's size and morphology. Release experiments of the anticancer drug, Chlorambucil and the coloring agent, methyl orange, were performed at different pH and time. Cell viability assay was carried out for determining the rate of survived cells, followed by the treatment of our final polymer named CHO PEG FOL METH.


Assuntos
Antineoplásicos/química , Portadores de Fármacos/química , Ácido Fólico/análogos & derivados , Plásticos/química , Polietilenoglicóis/química , Pró-Fármacos/química , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Compostos Azo/síntese química , Compostos Azo/química , Compostos Azo/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Clorambucila/síntese química , Clorambucila/química , Clorambucila/toxicidade , Corantes/síntese química , Corantes/química , Corantes/toxicidade , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/química , Preparações de Ação Retardada/toxicidade , Doxorrubicina/síntese química , Doxorrubicina/química , Doxorrubicina/toxicidade , Portadores de Fármacos/síntese química , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Ácido Fólico/síntese química , Ácido Fólico/química , Ácido Fólico/toxicidade , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Plásticos/síntese química , Plásticos/toxicidade , Polietilenoglicóis/síntese química , Polietilenoglicóis/toxicidade , Polimerização , Pró-Fármacos/síntese química , Pró-Fármacos/toxicidade
9.
Environ Sci Pollut Res Int ; 28(44): 63202-63214, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34224093

RESUMO

Textile dyeing consumes high volumes of water, generating proportional number of colored effluents which contain several hazardous chemical. These contaminants can implicate in significant changes in aquatic environmental, including several adverse effects to organisms in different trophic levels. The present study was developed to assess the ecotoxicological effects of textile effluent samples and reactive Red 239 dye (used in cotton dyeing) to aquatic organisms Vibrio fischeri bacteria, Daphnia similis crustacean, and Biomphalaria glabrata snail (adults and embryos). Chronic assays with lethal and sublethal effects for Daphnia similis were included and performed only for textile effluents samples. The mutagenicity was also evaluated with Salmonella/microsome assay (TA98, TA100, and YG1041 strains). V. fischeri bacteria was the most sensitive to reactive Red 239 dye (EC50 = 10.14 mg L-1) followed by mollusk embryos at all stages (EC50 = 116.41 to 124.14 mg L-1), D. similis (EC50= 389.42 mg L-1), and less sensitive to adult snails (LC50= 517.19 mg L-1). The textile effluent was toxic for all exposed organisms [E(L)C50 < 15%] and B. glabrata embryos showed different responses in the early stages of blastulae and gastrulae (EC50 = 7.60 and 7.08%) compared to advanced development stages trochophore and veliger (EC50 = 21.56 and 29.32%). Developmental and sublethal effects in B. glabrata embryos and D. similis were evidenced. In the chronic assay with effluent, the EC10/NOEC = 3% was obtained. Mutagenic effects were not detected for dye aqueous solutions neither for effluents samples. These data confirmed the importance of evaluating the effects in aquatic organisms from different trophic levels and reinforce the need for environmental aquatic protection.


Assuntos
Organismos Aquáticos , Poluentes Químicos da Água , Animais , Corantes/toxicidade , Daphnia , Têxteis , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
10.
J Microbiol Biotechnol ; 31(7): 967-977, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34099601

RESUMO

A total of 37 bacterial isolates were obtained from dye-contaminated soil samples at a textile processing factory in Nakhon Ratchasima Province, Thailand, and the potential of the isolates to decolorize and biotransform azo dye Reactive Red 141 (RR141) was investigated. The most potent bacterium was identified as Paenibacillus terrigena KKW2-005, which showed the ability to decolorize 96.45% of RR141 (50 mg/l) within 20 h under static conditions at pH 8.0 and a broad temperature range of 30-40°C. The biotransformation products were analyzed by using UV-Vis spectrophotometry and Fourier-transform infrared spectroscopy. Gas chromatography-mass spectroscopy analysis revealed four metabolites generated from the reductive biodegradation, namely sodium 3-diazenylnaphthalene-1,5-disulfonate (I), sodium naphthalene-2-sufonate (II), 4-chloro-1,3,5-triazin-2-amine (III) and N1-(1,3,5-triazin-2-yl) benzene-1,4-diamine (IV). Decolorization intermediates reduced phytotoxicity as compared with the untreated dye. However, they had phytotoxicity when compared with control, probably due to naphthalene and triazine derivatives. Moreover, genotoxicity testing by high annealing temperature-random amplified polymorphic DNA technique exhibited different DNA polymorphism bands in seedlings exposed to the metabolites. They compared to the bands found in seedlings subjected to the untreated dye or distilled water. The data from this study provide evidence that the biodegradation of Reactive Red 141 by P. terrigena KKW2-005 was genotoxic to the DNA seedlings.


Assuntos
Compostos Azo/metabolismo , Corantes/metabolismo , Paenibacillus/metabolismo , Poluentes Químicos da Água/metabolismo , Compostos Azo/toxicidade , Biotransformação , Corantes/toxicidade , Concentração de Íons de Hidrogênio , Mutação/efeitos dos fármacos , Paenibacillus/classificação , Paenibacillus/genética , Paenibacillus/isolamento & purificação , Filogenia , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Temperatura , Têxteis , Tailândia , Vigna/efeitos dos fármacos , Vigna/genética , Vigna/crescimento & desenvolvimento , Descoloração da Água , Poluentes Químicos da Água/toxicidade
11.
Int J Biol Macromol ; 181: 1030-1038, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33887293

RESUMO

A low-cost, collectable, and efficient material is essential for adsorbing water pollution, such as dyes and heavy metal ions pollution. In this work, we proposed a novel strategy for the preparation of an efficient and collectable magnetic aerogel as adsorbent for dye. The magnetic aerogels were prepared from sodium carboxymethylcellulose (CMC) hydrogel using citric acid (CA) as the crosslinker, followed by vacuum freeze-drying technique to obtain aerogels. The effects of magnetic Fe3O4 nanoparticle contents on the adsorption properties of the aerogels were investigated. The results show that the as-prepared magnetic composite aerogels exhibit porous structure and display good adsorption and collectable performance for methylene blue (MB) in water with the removal rate of 97.5% in 6 h. The maximum compress strength and absorption capacity of the magnetic aerogel with 1 wt% Fe3O4 nanoparticle loading for MB is 0.13 MPa and 83.6 mg/g, respectively. Aerogels with Fe3O4 nanoparticles exhibited magnetism which enables the aerogels to easily collect. This excellent structure stability and collectability guarantees long-term integrity and floatability of the magnetic aerogels in water.


Assuntos
Carboximetilcelulose Sódica/química , Ácido Cítrico/química , Hidrogéis/química , Metais Pesados/isolamento & purificação , Adsorção/efeitos dos fármacos , Carboximetilcelulose Sódica/farmacologia , Corantes/isolamento & purificação , Corantes/toxicidade , Humanos , Hidrogéis/farmacologia , Nanopartículas de Magnetita/química , Metais Pesados/toxicidade , Água/química , Poluição Química da Água
12.
Environ Res ; 196: 110956, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33675797

RESUMO

Today, the textile industry is considered as a leading economic sector in Tunisia. However, this sector demands a huge volume of water and a wide spectrum of chemicals, which is converted into potentially toxic wastewater leading to environmental perturbation and human health toxicity. Assessment of the environmental risks associated with textile wastewater becomes a necessity. In this study, textile dyeing wastewater samples were collected before and after the physico-chemical treatment carried out by textile companies located in Monastir-city-Tunisia and subjected to chemical analyzes in order to determine their physicochemical characteristics and the content of metals and textile dyes. The ecotoxicological assessment was performed using four organisms, namely Selenastrum capricornutum, Vibrio fischeri, Daphnia magna and Lepidium sativum, to represent different trophic levels. Based on chemical data, some physicochemical parameters (e.g. TSS, COD and TSS levels) and metals (e.g. Cr, Hg and Sb) in the textile dyeing effluents were revealed not in compliance with the Tunisian standard. Moreover, high quantities of three disperse dyes have been detected even in the textile dyeing wastewater samples before and after treatments. The ecotoxicological data confirmed that the textile dyeing influents displayed toxic effects to all the test organisms, with Selenastrum capricornutum being the most sensitive organism. While, the above toxic effects were decreased slightly when evaluating the treated effluents. Metals and textile disperse dyes could be associated with the observed toxic effects of the textile influents and effluents. In fact, the treatment process applied by the evaluated companies was only partially efficient at removing metals, disperse dyes and effluent ecotoxicity, suggesting potential risks to aquatic biota. These findings emphasize the importance of applying integrated chemical and biological approaches for continuous evaluation of the toxicity of the treated effluents to predict hazards on the environment.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Animais , Corantes/toxicidade , Ecotoxicologia , Humanos , Resíduos Industriais/análise , Indústria Têxtil , Têxteis , Tunísia , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
13.
Arch Microbiol ; 203(5): 2669-2680, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33713141

RESUMO

The optimization of the bacterium Pseudomonas stutzeri SPM-1, obtained from textile wastewater dumping sites of Surat, Gujarat was studied for the degradation of the textile azo dye Procion Red-H3B. The strain showed significant activities of azoreductase (95%), laccase (76%) and NADH-DCIP reductase (88%) at 12, 10 and 8 h of growth, respectively, indicating the evidence for reductive cleavage of the dye. The optimization was carried on phenanthrene enrichment medium followed by exposing it to variable environmental factors and nutritional sources. The complete decolourization of dye (50 mg/L) happened within 20 h of incubation at pH 8 and temperature 32 ± 0.2 °C under microaerophilic condition. Decolourization was monitored with the shifting of absorbance peak in UV-Vis spectrophotometry and HPLC analysis. The changes in the functional groups were confirmed by the presence of new peaks in FT-IR data. GC-MS analysis helped in recognizing the degraded dye compounds thus elucidating the proposed pathway for Procion Red-H3B. The potential of bioremediation process was completed by phytotoxicity test using two plants Vigna radiata and Cicer arietinum. Our study concludes that the strain Pseudomonas stutzeri SPM-1, with its rapid decolourization efficiency holds noteworthy prospective in industrial application for textile wastewater treatment.


Assuntos
Compostos Azo/metabolismo , Biodegradação Ambiental , Corantes/metabolismo , Pseudomonas stutzeri/metabolismo , Triazinas/metabolismo , Cicer/efeitos dos fármacos , Corantes/química , Corantes/toxicidade , Cromatografia Gasosa-Espectrometria de Massas , Lacase/metabolismo , Nitrorredutases/metabolismo , Estudos Prospectivos , Quinona Redutases/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Têxteis , Triazinas/toxicidade , Vigna/efeitos dos fármacos , Águas Residuárias/microbiologia , Purificação da Água
14.
Artigo em Inglês | MEDLINE | ID: mdl-33678149

RESUMO

In present study, dyeing wastewater samples were collected from three typical dyeing wastewater treatment plants in Wujiang, Shengze and Shanghai, China. Physicochemical properties and biotoxicity indicators (luminescent bacteria acute toxicity and umu genotoxicity) were tested and the relationships among them were analyzed. The results revealed that two biotoxicity indicators varied significantly among different treatment units of three plants. After treatment by plant A, luminescent bacteria acute toxicity of dyeing wastewater reduced effectively, while umu genotoxicity increased significantly. Two biotoxicity indicators exhibited decrease and increase trends during the treatment processes of plant B and plant C, respectively. Correlation analysis indicated that there was little correlation among biotoxicity indicators and physicochemical properties, meanwhile two kinds of biotoxicity indicators were relatively independent. Therefore, it was recommended that comprehensive evaluation of dyeing wastewater toxicity needs the combination of various biotoxicity indicators, and the relationship among biotoxicity indicators and physicochemical properties of dyeing wastewater should be established individually. The results of this study would offer a general understanding and evaluation of biotoxicity during actual dyeing wastewater treatment processes and provide database for toxicity reduction and management of dyeing wastewater.


Assuntos
Corantes/toxicidade , Águas Residuárias/toxicidade , Poluentes Químicos da Água/toxicidade , Purificação da Água/estatística & dados numéricos , China , Corantes/análise , Monitoramento Ambiental , Mutagênicos/análise , Mutagênicos/toxicidade , Eliminação de Resíduos Líquidos , Águas Residuárias/química , Águas Residuárias/microbiologia , Poluentes Químicos da Água/análise
15.
J Hazard Mater ; 405: 124176, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33131941

RESUMO

Biodegradation and metabolic pathways of three anthraquinone dyes, Reactive Blue 4 (RB4), Remazol Brilliant Blue - R (RBBR), and Acid Blue 129 (AB129) by Trametes hirsuta D7 fungus immobilized in light expanded clay aggregate (LECA) were investigated. Morphological characteristics observed with scanning electron microscope (SEM) showed successful immobilization of the fungus in LECA. Based on UV absorbance measurement, immobilized T. hirsuta D7 effectively degraded 90%, 95%, and 96% of RB4, RBBR and AB129, respectively. Metabolites were identified with high-resolution mass spectrometry (HRMS) and degradation pathway of the dyes by T. hirsuta D7 was proposed. Toxicity assay on human dermal fibroblast (HDF) showed that anthraquinone dyes exhibits significant toxicity of 35%, 40%, and 34% reduction of cell viability by RB4, RBBR, and AB129, respectively. Fungal treatment resulted in an abatement of the toxicity and cell viability was increased up to 94%. The data clearly showed the effectiveness of immobilized T. hirsuta D7 in LECA on detoxification of anthraquinone dyes. This study provides potential and fundamental understanding of wastewater treatment using the newly isolated fungus T. hirsuta D7.


Assuntos
Antraquinonas , Trametes , Antraquinonas/toxicidade , Biodegradação Ambiental , Argila , Corantes/toxicidade , Humanos , Lacase , Redes e Vias Metabólicas , Polyporaceae
16.
Environ Geochem Health ; 43(2): 649-662, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31679080

RESUMO

One of the major environmental issues of textile industries is the discharge of large quantities of textile effluents, which are source of contamination of water bodies on surface of earth and quality of groundwater. The effluents are toxic, non-biodegradable, carcinogenic and prodigious threats to human and aquatic creatures. Since textile effluents can be treated efficiently and effectively by various advanced oxidation processes (AOPs). Among the various AOPs, cold atmospheric pressure plasma is a promising method among many prominent techniques available to treat the effluents. In this paper, we report about the degradation of simulated effluent, namely Direct Orange-S (DO-S) aqueous solution, using nonthermal atmospheric pressure plasma jet. The plasma treatment of DO-S aqueous solution was carried out as a function of various operating parameters such as potential and treatment time. The change in properties of treated DO-S dye was investigated by means of various analytical techniques such as high-performance liquid chromatography, UV-visible (UV-Vis) spectroscopy and determination of total organic content (TOC). The reactive species present in the samples were identified using optical emission spectrometry (OES). OES results confirmed that the formation of reactive oxygen and nitrogen species during the plasma treatment in the liquid surface was responsible for dye oxidation and degradation. Degradation efficiency, as monitored by color removal efficiency, of 96% could be achieved after 1 h of treatment. Concurrently, the TOC values were found to decrease with plasma treatment, implying that the plasma treatment process enhanced the non-toxicity nature of DO-S aqueous solution. Toxicity of the untreated and plasma-treated dye solution samples was studied using Escherichia coli (E. coli) and Staphylococcus (S. aureus) organisms, which demonstrated that the plasma-treated dye solution was non-toxic in nature compared with untreated one.


Assuntos
Corantes/metabolismo , Resíduos Industriais , Gases em Plasma , Indústria Têxtil , Poluentes Químicos da Água/metabolismo , Pressão Atmosférica , Corantes/toxicidade , Escherichia coli/efeitos dos fármacos , Humanos , Nitrogênio , Staphylococcus aureus/efeitos dos fármacos
17.
Curr Pharm Biotechnol ; 22(3): 423-432, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32351177

RESUMO

BACKGROUND: Paraphenylenediamine (PPD) is a highly toxic compound used for hair-dyeing worldwide. PPD self-poisoning had significantly increased in recent times with increased mortality rates. OBJECTIVE: This study aims to evaluate the toxic effects of PPD and the protective potential of its prospective antidote Virgin Coconut Oil (Cocos nucifera). METHODS: PPD was identified and validated by FT-IR and UV mass spectrometer. PPD toxicity was induced in-vivo by single intraperitoneal injection (40 mg/kg and 60 mg/kg). Single-injection of Virgin Coconut Oil (VCO) was administered in the presence of PPD at doses of 5 mg/kg and 10 mg/kg. Blood was analyzed for renal, hepatic and cardiac biomarkers. Relevant organs were collected, weighed and preserved for histopathological examination. Statistical analysis was carried out to note mortality rate, survival duration and serum biochemical parameter. Molecular docking studies were performed to assess attachment of PPD with histaminergic receptors. RESULTS: PPD injection achieved 100% mortality rate with short survival span, and disturbed hepatic, renal, and cardiac serum markers with marked histopathological changes. VCO notably decreased mortality rate, raised treatment time window with marked adjustment in hepatic, renal, and cardiac markers. Docking studies proved that PPD attaches robustly with histaminergic receptors. CONCLUSION: The study concludes that VCO possesses lifesaving protection against PPD toxicity and can be a suitable antidote.


Assuntos
Óleo de Coco/administração & dosagem , Cocos , Corantes/toxicidade , Citoproteção/efeitos dos fármacos , Fenilenodiaminas/toxicidade , Animais , Óleo de Coco/química , Óleo de Coco/isolamento & purificação , Citoproteção/fisiologia , Feminino , Rim/efeitos dos fármacos , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Simulação de Acoplamento Molecular/métodos , Estudos Prospectivos , Estrutura Secundária de Proteína , Ratos , Ratos Wistar , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
18.
Artigo em Inglês | MEDLINE | ID: mdl-33285322

RESUMO

Common textile dyes used in various industrial sectors are organic compounds and considered for the aquatic environment as pollutants. The textile dye industry is one of the main sectors that have serious impacts on the environment due to a large amount of wastewater released into the ecosystem. Maxilon blue 5G (MB-5G) and Reactive Blue 203 (RB-203) are widely used textile dyes. However, their potential toxicity on living organisms remains to be elucidated. Here, we investigate the acute toxicity and genotoxicity of MB-5G and RB-203 dyes using the zebrafish embryos/larvae. Embryos treated with each dye for 96 h revealed LC50 values of acute toxicity as 166.04 mg L-1 and 278.32 mg L-1 for MB-5G and RB 203, respectively. When exposed to MB-5G and RB-203 at different concentrations (1, 10, and 100 mg L-1) for 96 h, the expression of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a marker of oxidative DNA damage, significantly increased in brain tissues as compared to control. MB-5G and RB-203 resulted in common developmental abnormalities including tail malformation, microphthalmia, pericardial edema, curved body axis, and yolk sac/pericardial edemas. Moreover, at its highest dose (100 mg L-1), RB-203 caused premature hatching after 48 h, while MG-5G did not. Our results collectively reveal that the textile dyes MB-5G and RB-203 cause genotoxicity and teratogenicity during embryonic and larval development of zebrafish. Thus, it is necessary to eliminate these compounds from wastewater or reduce their concentrations to safe levels before discharging the textile industry wastewater into the environment.


Assuntos
Corantes/toxicidade , Dano ao DNA , Desenvolvimento Embrionário/efeitos dos fármacos , Triazinas/toxicidade , Peixe-Zebra/embriologia , Animais , Embrião não Mamífero/efeitos dos fármacos , Têxteis , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
19.
Environ Toxicol Pharmacol ; 82: 103550, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33227413

RESUMO

Persistent organic and inorganic contaminants generated by industrial effluent wastes poses a threat to the maintenance of aquatic ecosystems and public health. The Khniss and Hamdoun rivers, located in the central-east of Tunisia, receive regularly domestic and textile wastewater load. The present study aimed to survey the water quality of these rivers using physicochemical, analytical and toxicological approaches. In the physicochemical analysis, the recorded levels of COD and TSS in both samples exceed the Tunisian standards. Using the analytical approach, several metals and some textile dyes were detected. Indeed, 17 metals were detected in both samples in varying concentrations, which do not exceed the Tunisian standards. The sources of metals pollution can be of natural and anthropogenic origin. Three textile disperse dyes were detected with high levels compared to other studies: the disperse orange 37 was detected in the Khniss river with a concentration of 6.438 µg/L and the disperse red 1 and the disperse yellow 3 were detected in the Hamdoun river with concentrations of 3.873 µg/L and 1895 µg/L, respectively. Textile activities were the major sources of disperse dyes. For both samples, acute and chronic ecotoxicity was observed in all the studied organisms, however, no genotoxic activity was detected. The presence of metals and textile disperse dyes could be associated with the ecotoxicological effects observed in the river waters, in particular due to the industrial activity, a fact that could deteriorate the ecosystem and therefore threaten the human health of the population living in the study areas. Combining chemical and biological approaches, allowed the detection of water ecotoxicity in testing organisms and the identification of possible contributors to the toxicity observed in these multi-stressed water reservoirs.


Assuntos
Poluentes Químicos da Água/toxicidade , Aliivibrio fischeri/efeitos dos fármacos , Aliivibrio fischeri/metabolismo , Animais , Arsênio/análise , Arsênio/toxicidade , Clorofíceas/efeitos dos fármacos , Clorofíceas/crescimento & desenvolvimento , Corantes/análise , Corantes/toxicidade , Daphnia , Disruptores Endócrinos/análise , Disruptores Endócrinos/toxicidade , Monitoramento Ambiental , Resíduos Industriais , Lepidium sativum/efeitos dos fármacos , Lepidium sativum/crescimento & desenvolvimento , Metais/análise , Metais/toxicidade , Parabenos/análise , Parabenos/toxicidade , Praguicidas/análise , Praguicidas/toxicidade , Fenóis/análise , Fenóis/toxicidade , Rios , Testes de Toxicidade , Tunísia , Águas Residuárias , Poluentes Químicos da Água/análise
20.
Environ Toxicol Pharmacol ; 82: 103552, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33246139

RESUMO

Microalgae are ecologically important species in aquatic ecosystems due to their role as primary producers. The inhibition of growth of microalgae due to dye pollution results in an upheaval in the trophic transfer of nutrients and energy in aquatic ecosystems. Therefore, this investigation aimed to evaluate the toxicity of a textile dye Methylene blue (MB) on two microalgae viz. Chlorella vulgaris and Spirulina platensis. An exposure of the unialgal populations of both the microalgae towards graded concentrations of the dye showed a concentration-dependent decrease in specific growth rate, pigment and protein content. In the toxicity study of 24 -96-h, following the OECD guidelines 201, the EC50 values of C. vulgaris and S. platensis ranged from 61.81 to 5.43 mg/L and 5.83 to 1.08 mg/L respectively revealing that S. platensis exhibited a higher level of susceptibility towards the dye as compared to C. vulgaris and the latter is more tolerant to the dye toxicity even at higher concentrations. The findings indicate that the response to dye is a species-specific phenomenon. Given the differences in the cell structure and enzymatic pathways in Spirulina platensis (a prokaryote) and Chlorella vulgaris (an eukaryote), the tolerance levels can differ. After 96-h exposure of C. vulgaris to MB (100 mg/L), the chlorophyll-a, b and carotenoid content were reduced 2.5, 5.96 and 3.57 times in comparison to control whereas in S. platensis exposure to MB (10 mg/L), the chlorophyll-a and carotenoid content were reduced 3.59 and 5.08 times in comparison to control. After 96-h exposure of C. vulgaris and S. platensis to the dye (20 mg/L), the protein content was found to be 4.34 and 2.75 times lower than the control. The protein content has decreased in accordance with the increase in dye concentration.


Assuntos
Chlorella vulgaris/efeitos dos fármacos , Corantes/toxicidade , Azul de Metileno/toxicidade , Microalgas/efeitos dos fármacos , Spirulina/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Carotenoides/metabolismo , Chlorella vulgaris/crescimento & desenvolvimento , Chlorella vulgaris/metabolismo , Clorofila/metabolismo , Água Doce , Resíduos Industriais , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Proteínas de Plantas/metabolismo , Spirulina/crescimento & desenvolvimento , Spirulina/metabolismo , Têxteis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...