Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 897
Filtrar
1.
Arch Insect Biochem Physiol ; 106(2): e21762, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33415772

RESUMO

Bombyx mori nucleopolyhedrovirus (BmNPV) is one of primary silkworm pathogens and causes a serious damage of cocoon losses every year. Recent years, many works have been done to clarify the silkworm anti-BmNPV mechanism, and a significant progress has been made in screening and studying of genes and proteins related to BmNPV infection, but several of them lacked the proofs in vivo. In this study, to further validate the function of seven newly reported genes in vivo, including BmAtlatin-n, Bmferritin-heavy chain (BmFerHCH), Bmthymosin (BmTHY), Bmseroin1, Bmseroin2, Bmnuclear hormone receptors 96 (BmNHR96), and BmE3 ubiquitin-protein ligase SINA-like 10 (BmSINAL10), the response of them in the midgut, fat body, and hemolymph of differentially resistant strains (resistant strain YeA and susceptible strain YeB) at 48 h following BmNPV infection were analyzed. The results showed that the relative stable or upregulated expression level of BmAtlatin-n, BmTHY, Bmseroin1, and Bmseroin2 in YeA resistant strain following BmNPV infection further indicated their antiviral role in vivo, compared with susceptible YeB strain. Moreover, the significant downregulation of BmFerHCH, BmNHR96, and BmSINAL10 in both strains following BmNPV infection revealed their role in benefiting virus infection, as well as the upregulation of BmFerHCH in YeB midgut and BmSINAL10 in YeB hemolymph. These data could be used to complementary the proofs of the function of these genes in response to BmNPV infection.


Assuntos
Bombyx/genética , Bombyx/virologia , Genes de Insetos , Interações Hospedeiro-Patógeno , Nucleopoliedrovírus/fisiologia , Animais , Bombyx/crescimento & desenvolvimento , Bombyx/metabolismo , Corpo Adiposo/metabolismo , Trato Gastrointestinal/metabolismo , Hemolinfa/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/virologia
2.
Chemosphere ; 262: 127891, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32799150

RESUMO

Fluoride generally exists in the natural environment, and has been reported to induce serious environmental hazard to animals, plants, and even humans via ecological cycle. Silkworm, Bombyx mori, which showed significant growth and reproductivity reduction when exposed to fluoride, has become a model to evaluate the toxicity of fluoride. However, the detailed mechanism underlying fluoride toxicity and corresponding transport proteins remain unclear. In this study, we performed RNA-seq of the larval midgut and fat body with fluoride exposure and normal treatment. Differential analysis showed that there were 4405 differentially expressed genes in fat body and 4430 DEGs in midgut with fluoride stress. By Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, we identified several key pathways involved in the fluoride exposure and poisoning. We focused on the oxidative phosphorylation and MAPK signal pathway. QRT-PCR confirmed that oxidative phosphorylation process was remarkably inhibited by fluoride exposure and resulted in the blocking of ATP synthesis. The MAPK signal pathway was stimulated via phosphorylation signal transduction. Moreover, by protein structure analysis combined with the DEGs, we screen 36 potential membrane proteins which might take part in transporting fluoride. Taken together, the results of our study expanded the underlying mechanisms of fluoride poisoning on silkworm larval growth and development, and implied potential fluoride transport proteins in silkworm.


Assuntos
Bombyx/fisiologia , Fluoretos/toxicidade , Substâncias Perigosas/toxicidade , Tecido Adiposo/metabolismo , Animais , Bombyx/metabolismo , Sistema Digestório/metabolismo , Corpo Adiposo/metabolismo , Perfilação da Expressão Gênica/métodos , Inativação Metabólica , Larva/genética , Transcriptoma/fisiologia
3.
Arch Biochem Biophys ; 692: 108540, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32783895

RESUMO

Antheraea mylitta arylphorin protein was extracted from the silk gland of fifth instar larvae and purified by ammonium sulphate precipitation, ion-exchange, and gel filtration chromatography. The N-terminal sequencing of ten amino acids (NH2-SVVHPPHHEV-COOH) showed similarity with Antheraea pernyi arylphorin. Based on N-terminal and C-terminal A. pernyi arylphorin sequences, primers were designed, and A. mylitta arylphorin cDNA was cloned by RT-PCR from silk gland mRNA. Sequencing of complete cDNA including 25 nucleotides at 5' UTR (obtained by 5' RACE) showed that it consisted of an ORF of 2115 nucleotides which could encode a protein of 704 amino acids (predominantly aromatic residues) having molecular weight 83 kDa. Homology modelling was done using A. pernyi arylphorin as a template. Cloned arylphorin cDNA was expressed in E. coli and recombinant His-tagged protein was purified by Ni-NTA affinity chromatography. Analysis of tissue-specific expression of arylphorin by real-time PCR showed maximum expression in the fat body followed by silk gland and integument. 5' flanking region (759 bp) of arylphorin gene was amplified by inverse PCR and the full length gene (5359 nucleotides) containing five exons and four introns was cloned from the A. mylitta genomic DNA and sequenced. Polyclonal antibody was raised against purified arylphorin and more native arylphorin protein (500 kDa) was purified from the fat body by antibody affinity chromatography. Study of mitogenic effect of native and chymotrypsin hydrolysate of arylphorin on different insect cell lines showed that arylphorin could be used as serum substitute for in vitro cultivation of insect cells.


Assuntos
Regiões 5' não Traduzidas , Corpo Adiposo/metabolismo , Regulação da Expressão Gênica , Genes de Insetos , Proteínas de Insetos , Mariposas , Animais , Proteínas de Insetos/biossíntese , Proteínas de Insetos/química , Proteínas de Insetos/genética , Mariposas/genética , Mariposas/metabolismo
4.
PLoS Biol ; 18(8): e3000548, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32745077

RESUMO

Sleep is vital for survival. Yet under environmentally challenging conditions, such as starvation, animals suppress their need for sleep. Interestingly, starvation-induced sleep loss does not evoke a subsequent sleep rebound. Little is known about how starvation-induced sleep deprivation differs from other types of sleep loss, or why some sleep functions become dispensable during starvation. Here, we demonstrate that down-regulation of the secreted cytokine unpaired 2 (upd2) in Drosophila flies may mimic a starved-like state. We used a genetic knockdown strategy to investigate the consequences of upd2 on visual attention and sleep in otherwise well-fed flies, thereby sidestepping the negative side effects of undernourishment. We find that knockdown of upd2 in the fat body (FB) is sufficient to suppress sleep and promote feeding-related behaviors while also improving selective visual attention. Furthermore, we show that this peripheral signal is integrated in the fly brain via insulin-expressing cells. Together, these findings identify a role for peripheral tissue-to-brain interactions in the simultaneous regulation of sleep quality and attention, to potentially promote adaptive behaviors necessary for survival in hungry animals.


Assuntos
Atenção/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Comportamento Alimentar/fisiologia , Inanição/genética , Percepção Visual/fisiologia , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Corpo Adiposo/metabolismo , Feminino , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Insulina/genética , Insulina/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Transdução de Sinais , Sono/fisiologia , Privação do Sono/genética , Privação do Sono/metabolismo , Inanição/metabolismo
5.
Gene ; 760: 144998, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32717304

RESUMO

The life cycle of holometabolous insects involves different stages and cathepsin plays an important role in insect metamorphosis. In the present study, we investigated the function of Bombyx mori cathepsin-L (Bm-CatL) during metamorphosis and analyzed their role in programmed cell death (PCD) of the fat body. The results showed that knockdown of Bm-CatL by RNA interference led to abnormal pupation and a delay in fat body degradation during metamorphosis. Furthermore, PCD inhibition was observed in the fat body after downregulation of Bm-CatL. To confirm this finding, PCD was induced in Bombyx mori embryonic (BmE) cells by ultraviolet ray irradiation. We found that the PCD of BmE cells was weakened after knocking down Bm-CatL. Moreover, overexpression of Bm-CatL in cells promoted PCD. Overall, our results showed that Bm-CatL is involved in the degradation of internal tissues and promotes the PCD of cells involved in the pupation of silkworms. Thus, this study provides us with a better understanding for function of cathepsin-L during metamorphosis.


Assuntos
Bombyx/fisiologia , Catepsina L/metabolismo , Tecido Adiposo/metabolismo , Animais , Apoptose/fisiologia , Bombyx/genética , Bombyx/metabolismo , Corpo Adiposo/metabolismo , Proteínas de Insetos/metabolismo , Metamorfose Biológica , Interferência de RNA
6.
PLoS Genet ; 16(6): e1008778, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32579604

RESUMO

Endurance exercise has broadly protective effects across organisms, increasing metabolic fitness and reducing incidence of several age-related diseases. Drosophila has emerged as a useful model for studying changes induced by chronic endurance exercise, as exercising flies experience improvements to various aspects of fitness at the cellular, organ and organismal level. The activity of octopaminergic neurons is sufficient to induce the conserved cellular and physiological changes seen following endurance training. All 4 octopamine receptors are required in at least one target tissue, but only one, Octß1R, is required for all of them. Here, we perform tissue- and adult-specific knockdown of alpha- and beta-adrenergic octopamine receptors in several target tissues. We find that reduced expression of Octß1R in adult muscles abolishes exercise-induced improvements in endurance, climbing speed, flight, cardiac performance and fat-body catabolism in male Drosophila. Importantly, Octß1R and OAMB expression in the heart is also required cell-nonautonomously for adaptations in other tissues, such as skeletal muscles in legs and adult fat body. These findings indicate that activation of distinct octopamine receptors in skeletal and cardiac muscle are required for Drosophila exercise adaptations, and suggest that cell non-autonomous factors downstream of octopaminergic activation play a key role.


Assuntos
Adaptação Fisiológica , Proteínas de Drosophila/metabolismo , Voo Animal , Coração/fisiologia , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Receptores Acoplados a Proteínas-G/metabolismo , Receptores de Neurotransmissores/metabolismo , Animais , Drosophila , Proteínas de Drosophila/genética , Corpo Adiposo/metabolismo , Músculo Esquelético/fisiologia , Receptores Acoplados a Proteínas-G/genética , Receptores de Neurotransmissores/genética
7.
Proc Natl Acad Sci U S A ; 117(17): 9292-9301, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32277029

RESUMO

In insects, 20-hydroxyecdysone (20E) limits the growth period by triggering developmental transitions; 20E also modulates the growth rate by antagonizing insulin/insulin-like growth factor signaling (IIS). Previous work has shown that 20E cross-talks with IIS, but the underlying molecular mechanisms are not fully understood. Here we found that, in both the silkworm Bombyx mori and the fruit fly Drosophila melanogaster, 20E antagonized IIS through the AMP-activated protein kinase (AMPK)-protein phosphatase 2A (PP2A) axis in the fat body and suppressed the growth rate. During Bombyx larval molt or Drosophila pupariation, high levels of 20E activate AMPK, a molecular sensor that maintains energy homeostasis in the insect fat body. In turn, AMPK activates PP2A, which further dephosphorylates insulin receptor and protein kinase B (AKT), thus inhibiting IIS. Activation of the AMPK-PP2A axis and inhibition of IIS in the Drosophila fat body reduced food consumption, resulting in the restriction of growth rate and body weight. Overall, our study revealed an important mechanism by which 20E antagonizes IIS in the insect fat body to restrict the larval growth rate, thereby expanding our understanding of the comprehensive regulatory mechanisms of final body size in animals.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Tamanho Corporal/fisiologia , Proteína Fosfatase 2/metabolismo , Animais , Bombyx/crescimento & desenvolvimento , Bombyx/metabolismo , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Ecdisterona/metabolismo , Corpo Adiposo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas de Insetos/genética , Insetos/crescimento & desenvolvimento , Insetos/metabolismo , Insulina/metabolismo , Larva/crescimento & desenvolvimento , Receptor de Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Somatomedinas/metabolismo
8.
Nat Cell Biol ; 22(3): 297-309, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32066907

RESUMO

Non-centrosomal microtubule-organizing centres (ncMTOCs) have a variety of roles that are presumed to serve the diverse functions of the range of cell types in which they are found. ncMTOCs are diverse in their composition, subcellular localization and function. Here we report a perinuclear MTOC in Drosophila fat body cells that is anchored by the Nesprin homologue Msp300 at the cytoplasmic surface of the nucleus. Msp300 recruits the microtubule minus-end protein Patronin, a calmodulin-regulated spectrin-associated protein (CAMSAP) homologue, which functions redundantly with Ninein to further recruit the microtubule polymerase Msps-a member of the XMAP215 family-to assemble non-centrosomal microtubules and does so independently of the widespread microtubule nucleation factor γ-Tubulin. Functionally, the fat body ncMTOC and the radial microtubule arrays that it organizes are essential for nuclear positioning and for secretion of basement membrane components via retrograde dynein-dependent endosomal trafficking that restricts plasma membrane growth. Together, this study identifies a perinuclear ncMTOC with unique architecture that regulates microtubules, serving vital functions.


Assuntos
Membrana Basal/metabolismo , Núcleo Celular , Centro Organizador dos Microtúbulos/fisiologia , Actinas/fisiologia , Animais , Membrana Celular , Núcleo Celular/ultraestrutura , Centrossomo , Drosophila/metabolismo , Drosophila/ultraestrutura , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Dineínas/fisiologia , Endossomos/metabolismo , Corpo Adiposo/metabolismo , Corpo Adiposo/ultraestrutura , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/fisiologia , Centro Organizador dos Microtúbulos/ultraestrutura , Microtúbulos/fisiologia , Proteínas Musculares/metabolismo , Tubulina (Proteína)/fisiologia
9.
PLoS One ; 15(1): e0227685, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31935250

RESUMO

The acyl-CoA-binding proteins (ACBP) act by regulating the availability of acyl-CoA in the cytoplasm and must have essential functions in lipid metabolism. The genome of the kissing-bug Rhodnius prolixus encodes five proteins of this family, but little is known about them. In this study we investigated the expression and function of RpACBP-5. Feeding induced RpACBP-5 gene expression in the posterior midgut, and an increase of about four times was observed two days after the blood meal. However, the amount of protein, which was only detected in this organ, did not change during digestion. The RpACBP-5 gene was also highly expressed in pre-vitellogenic and vitellogenic oocytes. Recombinant RpACBP-5 was shown to bind to acyl-CoA of different lengths, and it exhibited nanomolar affinity to lauroyl-CoA in an isothermal titration assay, indicating that RpACBP-5 is a functional ACBP. RpACBP-5 knockdown by RNA interference did not affect digestion, egg laying and hatching, survival, or accumulation of triacylglycerol in the fat body and oocytes. Similarly, double knockdown of RpACBP-1 and RpACBP-5 did not alter egg laying and hatching, survival, accumulation of triacylglycerol in the fat body and oocytes, or the neutral lipid composition of the posterior midgut or hemolymph. These results show that RpACBP-5 is a functional ACBP but indicate that the lack of a detectable phenotype in the knockdown insects may be a consequence of functional overlap of the proteins of the ACBP family found in the insect.


Assuntos
Inibidor da Ligação a Diazepam/genética , Inibidor da Ligação a Diazepam/metabolismo , Rhodnius/genética , Acil Coenzima A/metabolismo , Animais , Proteínas de Transporte/metabolismo , Corpo Adiposo/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Hemolinfa/metabolismo , Proteínas de Insetos/genética , Metabolismo dos Lipídeos/genética , Oócitos/metabolismo , Oviposição , Interferência de RNA/fisiologia , Rhodnius/metabolismo , Triglicerídeos/metabolismo
10.
Biochem Biophys Res Commun ; 524(1): 178-183, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-31982137

RESUMO

The storage of excess nutrients as triglycerides is essential for all organisms to survive when food is scarce; however, the mechanisms by which triglycerides are stored are not completely understood. Genome-wide RNAi screens in Drosophila cells have identified genes involved in mRNA splicing that are important in the regulation of triglyceride storage. Our lab has identified a number of splicing factors important for regulating lipid metabolism; however, the full complement of splicing proteins involved in achieving metabolic homeostasis is unknown. Heterogeneous nuclear ribonucleoproteins (hnRNPs), RNA binding proteins that inhibit the splicing of introns by preventing the assembly of splicing complexes, have no established metabolic functions. To assess any metabolic functions of hnRNPs, we used the GAL4/UAS system to induce RNAi to six hnRNP's: hnRNP-K, rumpelstiltskin (rump), smooth (sm), Hrb27C (also referred to as Hrp48), Hrb98DE, and Hrb87F in the Drosophila fat body. Decreasing the levels of hnRNP-K and rump resulted in a decrease in triglyceride storage, whereas decreasing the levels of sm, Hrb27C, and Hrb98DE resulted in an increase in triglyceride storage. The excess triglyceride phenotype in Hrb27C-RNAi flies resulted from both an increase in the number of fat body cells and the amount of fat stored per cell. In addition, both the splicing of the ß-oxidation gene, CPT1, and the expression of the lipase brummer (bmm) was altered in flies with decreased Hrb27C, providing insight into the lipid storage phenotype in these flies. Together, these results suggest that the hnRNP family of splicing factors have varying metabolic functions and may act on specific metabolic genes to control their expression and processing.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Corpo Adiposo/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Lipídeos/química , Animais , Contagem de Células , Drosophila melanogaster/citologia , Corpo Adiposo/citologia , Comportamento Alimentar , Glicogênio/metabolismo , Lipase/metabolismo , Processamento de RNA/genética , Inanição/metabolismo , Triglicerídeos/metabolismo
11.
Int J Biol Macromol ; 143: 610-618, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31836390

RESUMO

The heat shock 70/90 organizing protein is one of the stress-induced proteins and has extensively been studied in mammals. It mediates the interaction of Hsp70 and Hsp 90 as cochaperone and also implicated in infection-related processes. However, the biological role of heat shock 70/90 organizing protein in silkworm remains to elucidate. Herein, we identified and molecularly characterized a heat shock 70/90 organizing protein homolog gene from the silkworm, Bombyx mori (Hereafter BmHop). The identified BmHop fragment contained a 1626 base pair (bp) open reading frame (ORF), encoding a polypeptide of 541 amino acid residues. The deduced amino acid sequence had a molecular weight of 16.13 kDa and comprised of three tetratricopeptides repeated motif domains (TPR1, TPR2A, and TPR2B) as described in other Hops. Quantitative RT-PCR analysis revealed that BmHop ubiquitously transcribed in various tissues and developmental stages. Thermal stress strongly influenced the transcription levels of BmHop in both the fat body and hemocyte. Additionally, we analyzed the expression patterns of this gene after bacterial treatment, which strongly induced the gene's expression in the immune tissues. Overall, our data suggest that BmHop expression is influenced by both thermal stress and microbial challenge, and possibly in other insects.


Assuntos
Bombyx/genética , Genes de Insetos , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP90/genética , Proteínas de Insetos/genética , Estresse Fisiológico/genética , Sequência de Aminoácidos , Animais , Bacillus subtilis/fisiologia , Sequência de Bases , Bombyx/microbiologia , Clonagem Molecular , Escherichia coli/fisiologia , Corpo Adiposo/metabolismo , Corpo Adiposo/microbiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Hemócitos/metabolismo , Hemócitos/microbiologia , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Larva/genética , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Temperatura
12.
Chemosphere ; 245: 125660, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31869670

RESUMO

A comparative transcriptome analysis was conducted to investigate the gene expression changes in the fat body of silkworm after treatment with different concentrations (50 µM and 200 µM) of selenium (Se). 912 differential expression genes (DEGs) (371 up-regulated and 541 down-regulated) and 1420 DEGs (1078 up-regulated and 342 down-regulated) were identified in silkworm fat body treated with 50 µM and 200 µM of Se, respectively. In case of 50 µM group, DEGs were mainly enriched in the peroxisome pathway and fatty acid metabolism pathway, and later were associated with antioxidant defense and nutrition regulation. After 200 µM Se-treatment, DEGs were mainly located in the glycerolipid metabolism and arachidonic acid metabolism pathways, which further encoded detoxification related genes. Furthermore, 32 candidate DEGs from these pathways had been selected to confirm the RNA-seq data. Among these DEGs, 14 genes were up-regulated in the 50 µM Se-treated group (only three genes in the 200 µM Se-treated group) which were involved in lipid metabolism and antioxidant defense, and 13 up-regulated genes (only two genes were up-regulated in the 50 µM Se-treated group) were involved in detoxification of the 200 µM Se-treated group. These changes showed that lower concentration of Se could regulate the nutrition and promote antioxidation pathways; whereas, high levels of Se promoted the detoxification of silkworm. These findings can be helpful to understand the possible mechanisms of Se action and detoxification in silkworm and other insects.


Assuntos
Bombyx/fisiologia , Selênio/metabolismo , Tecido Adiposo/metabolismo , Animais , Bombyx/genética , Bombyx/metabolismo , Regulação para Baixo , Corpo Adiposo/metabolismo , Corpo Adiposo/fisiologia , Perfilação da Expressão Gênica , Inativação Metabólica , Metabolismo dos Lipídeos , Transcriptoma
13.
Dev Biol ; 457(1): 128-139, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31550483

RESUMO

Hedgehog (Hh) signaling has been shown to regulate multiple developmental processes, however, it is unclear how it regulates lipid metabolism. Here, we demonstrate that Hh signaling exhibits potent activity in Drosophila fat body, which is induced by both locally expressed and midgut-derived Hh proteins. Inactivation of Hh signaling increases, whereas activation of Hh signaling decreases lipid accumulation. The major lipase Brummer (Bmm) acts downstream of Smoothened (Smo) in Hh signaling to promote lipolysis, therefore, the breakdown of triacylglycerol (TAG). We identify a critical Ci binding site in bmm promoter that is responsible to mediate Bmm expression induced by Hh signaling. Genomic mutation of the Ci binding site significantly reduces the expression of Bmm and dramatically decreases the responsiveness to Ci overexpression. Together, our findings provide a model for lipolysis to be regulated by Hh signaling, raising the possibility for Hh signaling to be involved in lipid metabolic and/or lipid storage diseases.


Assuntos
Proteínas de Drosophila/genética , Drosophila/metabolismo , Lipase/genética , Lipólise , Transdução de Sinais , Adipócitos/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/metabolismo , Corpo Adiposo/metabolismo , Feminino , Proteínas Hedgehog/metabolismo , Larva/metabolismo , Masculino , Receptor Smoothened/metabolismo , Fatores de Transcrição/metabolismo
14.
Insect Sci ; 27(2): 202-211, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30203565

RESUMO

Eusocial insects display a caste system in which different castes are morphologically and physiologically specialized for different tasks. Recent studies have revealed that epigenetic modifications, including DNA methylation and histone modification, mediate caste determination and differentiation, longevity, and polyethism in eusocial insects. Although there has been a growing interest in the relationship between epigenetic mechanisms and phenotypic plasticity in termites, there is little information about differential expression levels among castes and expression sites for these genes in termites. Here we show royal-tissue-specific expression of epigenetic modification genes in the termite Reticulitermes speratus. Using RNA-seq, we identified 74 genes, including three DNA methyltransferases, seven sirtuins, 48 Trithorax group proteins, and 16 Polycomb group proteins. Among these genes, 15 showed king-specific expression, and 52 showed age-dependent differential expression in kings and queens. Quantitative real-time PCR revealed that DNA methyltransferase 3 is expressed specifically in the king's testis and fat body, whereas some histone modification genes are remarkably expressed in the king's testis and queen's ovary. These findings imply that epigenetic modification plays important roles in the gamete production process in termite kings and queens.


Assuntos
Epigênese Genética , Isópteros/genética , Animais , Corpo Adiposo/metabolismo , Feminino , Isópteros/metabolismo , Masculino , Ovário/metabolismo , Caracteres Sexuais , Testículo/metabolismo , Transcriptoma
15.
Insect Mol Biol ; 29(1): 66-76, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31301266

RESUMO

Storage proteins are haemolymph-specific proteins in insects, mainly synthesized in the fat body, released into the haemolymph, and then selectively reabsorbed by the fat body before pupation. These storage proteins play an important role in insect metamorphosis and egg development. Some of these storage proteins are responsive to pathogen infection and can even suppress pathogen multiplication. However, the mechanisms of the physiological, biochemical and immune-responsive functions of storage proteins remain unclear. In this study, the expression patterns of Bombyx mori storage protein 1 (BmSP1) during the larval stage were analysed. Then, BmSP1 protein fused with enhanced green fluorescent protein (EGFP) was successfully expressed in a B. mori baculovirus vector expression system. Quantitative real-time PCR showed that the expression level of BmSP1 increased with the advance of instars and reached the highest level in the fifth instar, especially in the fat body. Recombinant BmSP1 expressed in silkworm larvae inhibited haemolymph melanization. Then, proteins that interact with BmSP1 were identified with EGFP used as an antigenic determinant by co-immunoprecipitation. A 30 kDa low molecular weight lipoprotein PBMHP-6 precursor (BmLP6) was shown to interact with BmSP1. Yeast two-hybrid experiments confirmed the interaction between BmSP1 and BmLP6. The results obtained in this study will be helpful for further study of the functions of BmSP1 and BmLP6 in the regulatory network of silkworm development and innate immunity.


Assuntos
Bombyx/crescimento & desenvolvimento , Bombyx/metabolismo , Proteínas de Insetos/metabolismo , Animais , Bombyx/genética , Bombyx/imunologia , Linhagem Celular , Corpo Adiposo/metabolismo , Proteínas de Fluorescência Verde , Hemolinfa/imunologia , Imunidade Inata , Proteínas de Insetos/genética , Larva/genética , Larva/imunologia , Larva/metabolismo , Proteínas Recombinantes
16.
J Biol Chem ; 295(1): 83-98, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31690627

RESUMO

Adipose tissue is essential for whole-body glucose homeostasis, with a primary role in lipid storage. It has been previously observed that lactate production is also an important metabolic feature of adipocytes, but its relationship to adipose and whole-body glucose disposal remains unclear. Therefore, using a combination of metabolic labeling techniques, here we closely examined lactate production of cultured and primary mammalian adipocytes. Insulin treatment increased glucose uptake and conversion to lactate, with the latter responding more to insulin than did other metabolic fates of glucose. However, lactate production did not just serve as a mechanism to dispose of excess glucose, because we also observed that lactate production in adipocytes did not solely depend on glucose availability and even occurred independently of glucose metabolism. This suggests that lactate production is prioritized in adipocytes. Furthermore, knocking down lactate dehydrogenase specifically in the fat body of Drosophila flies lowered circulating lactate and improved whole-body glucose disposal. These results emphasize that lactate production is an additional metabolic role of adipose tissue beyond lipid storage and release.


Assuntos
Adipócitos/metabolismo , Homeostase , Ácido Láctico/biossíntese , Células 3T3 , Animais , Células Cultivadas , Drosophila , Corpo Adiposo/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Ácido Láctico/metabolismo , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley
17.
PLoS One ; 14(12): e0226039, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31846465

RESUMO

The fat body, a multifunctional organ analogous to the liver and fat tissue of vertebrates, plays an important role in insect life cycles. The fat body is involved in protein storage, energy metabolism, elimination of xenobiotics, and production of immunity regulator-like proteins. However, the molecular mechanism of the fat body's physiological functions in the tephritid stem gall-forming fly, Procecidochares utilis, are still unknown. In this study, we performed transcriptome analysis of the fat body of P. utilis using Illumina sequencing technology. In total, 3.71 G of clean reads were obtained and assembled into 30,559 unigenes, with an average length of 539 bp. Among those unigenes, 21,439 (70.16%) were annotated based on sequence similarity to proteins in NCBI's non-redundant protein sequence database (Nr). Sequences were also compared to NCBI's non-redundant nucleotide sequence database (Nt), a manually curated and reviewed protein sequence database (SwissProt), and KEGG and gene ontology annotations were applied to better understand the functions of these unigenes. A comparative analysis was performed to identify unigenes related to detoxification, immunity and energy metabolism. Many unigenes involved in detoxification were identified, including 50 unigenes of putative cytochrome P450s (P450s), 18 of glutathione S-transferases (GSTs), 35 of carboxylesterases (CarEs) and 26 of ATP-binding cassette (ABC) transporters. Many unigenes related to immunity were identified, including 17 putative serpin genes, five peptidoglycan recognition proteins (PGRPs) and four lysozyme genes. In addition, unigenes potentially involved in energy metabolism, including 18 lipase genes, five fatty acid synthase (FAS) genes and six elongases of very long chain fatty acid (ELOVL) genes, were identified. This transcriptome improves our genetic understanding of P. utilis and the identification of a numerous transcripts in the fat body of P. utilis offer a series of valuable molecular resources for future studies on the functions of these genes.


Assuntos
Metabolismo Energético/genética , Corpo Adiposo/metabolismo , Imunidade/genética , Inativação Metabólica/genética , Tephritidae/genética , Transcriptoma , Transportadores de Cassetes de Ligação de ATP/classificação , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Hidrolases de Éster Carboxílico/classificação , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Sistema Enzimático do Citocromo P-450/classificação , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Bases de Dados Genéticas , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites , Filogenia , Análise de Sequência de DNA
18.
Nat Commun ; 10(1): 5634, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822677

RESUMO

The blood-feeding behavior of Anopheles females delivers essential nutrients for egg development and drives parasite transmission between humans. Plasmodium growth is adapted to the vector reproductive cycle, but how changes in the reproductive cycle impact parasite development remains unclear. Here, we show that the bloodmeal-induced miR-276-5p fine-tunes the expression of branched-chain amino acid transferase to terminate the reproductive cycle. Silencing of miR-276 prolongs high rates of amino acid (AA) catabolism and increases female fertility, suggesting that timely termination of AA catabolism restricts mosquito investment into reproduction. Prolongation of AA catabolism in P. falciparum-infected females also compromises the development of the transmissible sporozoite forms. Our results suggest that Plasmodium sporogony exploits the surplus mosquito resources available after reproductive investment and demonstrate the crucial role of the mosquito AA metabolism in within-vector parasite proliferation and malaria transmission.


Assuntos
Anopheles/fisiologia , MicroRNAs/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Aminoácidos/metabolismo , Animais , Anopheles/efeitos dos fármacos , Sequência de Bases , Ecdisona/farmacologia , Corpo Adiposo/metabolismo , Feminino , Inativação Gênica , MicroRNAs/genética , Modelos Biológicos , Reprodução/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Esteroides/metabolismo , Transaminases/metabolismo
19.
PLoS Genet ; 15(11): e1008487, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31725726

RESUMO

Maintenance of normal lipid homeostasis is crucial to heart function. On the other hand, the heart is now recognized to serve an important role in regulating systemic lipid metabolism; however, the molecular basis remains unclear. In this study, we identify the Drosophila Snail family of transcription factors (herein termed Sna TFs) as new mediators of the heart control of systemic lipid metabolism. Overexpression of Sna TF genes specifically in the heart promotes whole-body leanness whereas their knockdown in the heart promotes obesity. In addition, flies that are heterozygous for a snail deficiency chromosome also exhibit systemic obesity, and that cardiac-specific overexpression of Sna substantially reverses systemic obesity in these flies. We further show that genetically manipulating Sna TF levels in the fat body and intestine do not affect systemic lipid levels. Mechanistically, we find that flies bearing the overexpression or inhibition of Sna TFs in the postnatal heart only exhibit systemic lipid metabolic defects but not heart abnormalities. Cardiac-specific alterations of Sna TF levels also do not perturb cardiac morphology, viability, lipid metabolism or fly food intake. On the other hand, cardiac-specific manipulations of Sna TF levels alter lipogenesis and lipolysis gene expression, mitochondrial biogenesis and respiration, and lipid storage droplet 1 and 2 (Lsd-1 and Lsd-2) levels in the fat body. Together, our results reveal a novel and specific role of Sna TFs in the heart on systemic lipid homeostasis maintenance that is independent of cardiac development and function and involves the governance of triglyceride synthesis and breakdown, energy utilization, and lipid droplet dynamics in the fat body.


Assuntos
Metabolismo dos Lipídeos/genética , Miocárdio/metabolismo , Obesidade/genética , Fatores de Transcrição da Família Snail/genética , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Corpo Adiposo/metabolismo , Regulação da Expressão Gênica/genética , Coração/fisiologia , Humanos , Gotículas Lipídicas/metabolismo , Lipídeos/genética , Miocárdio/patologia , Obesidade/patologia , Biogênese de Organelas , Oxirredutases N-Desmetilantes/genética , Fatores de Transcrição/genética
20.
PLoS One ; 14(10): e0223456, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31600260

RESUMO

Expression of the Alzheimer's disease associated polypeptide Aß42 and the human polypeptide hormon islet amyloid polypeptide (hIAPP) and the prohormone precursor (hproIAPP) in neurons of Drosophila melanogaster leads to the formation of protein aggregates in the fat body tissue surrounding the brain. We determined the structure of these membrane-encircled protein aggregates using transmission electron microscopy (TEM) and observed the dissolution of protein aggregates after starvation. Electron tomography (ET) as an extension of transmission electron microscopy revealed that these aggregates were comprised of granular subunits having a diameter of 20 nm aligned into highly ordered structures in all three dimensions. The three dimensional (3D) lattice of hIAPP granules were constructed of two unit cells, a body centered tetragonal (BCT) and a triclinic unit cell. A 5-fold twinned structure was observed consisting of the cyclic twinning of the BCT and triclinic unit cells. The interaction between the two nearest hIAPP granules in both unit cells is not only governed by the van der Waals forces and the dipole-dipole interaction but potentially also by filament-like structures that can connect the nearest neighbors. Hence, our 3D structural analysis provides novel insight into the aggregation process of hIAPP in the fat body tissue of Drosophila melanogaster.


Assuntos
Drosophila melanogaster/metabolismo , Imageamento Tridimensional , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Animais , Cristalização , Drosophila melanogaster/ultraestrutura , Corpo Adiposo/metabolismo , Corpo Adiposo/ultraestrutura , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/ultraestrutura , Agregados Proteicos , Subunidades Proteicas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...