Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83.188
Filtrar
1.
J Enzyme Inhib Med Chem ; 34(1): 1426-1438, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31401883

RESUMO

Anaplastic lymphoma kinase (ALK) has been recognised as a promising molecular target of targeted therapy for NSCLC. We performed SAR study of pyrazolo[3,4-b]pyridines to override crizotinib resistance caused by ALK-L1196M mutation and identified a novel and potent L1196M inhibitor, 10g. 10g displayed exceptional enzymatic activities (<0.5 nM of IC50) against ALK-L1196M as well as against ALK-wt. In addition, 10g is an extremely potent inhibitor of ROS1 (<0.5 nM of IC50) and displays excellent selectivity over c-Met. Moreover, 10g strongly suppresses proliferation of ALK-L1196M-Ba/F3 and H2228 cells harbouring EML4-ALK via apoptosis and the ALK signalling blockade. The results of molecular docking studies reveal that, in contrast to crizotinib, 10g engages in a favourable interaction with M1196 in the kinase domain of ALK-L1196M and hydrogen bonding with K1150 and E1210. This SAR study has provided a useful insight into the design of novel and potent inhibitors against ALK gatekeeper mutant.


Assuntos
Quinase do Linfoma Anaplásico/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Pirazóis/farmacologia , Piridinas/farmacologia , Quinase do Linfoma Anaplásico/metabolismo , Apoptose/efeitos dos fármacos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Linhagem Celular Transformada , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida , Cristalografia por Raios X , Inibidores Enzimáticos/química , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Espectroscopia de Prótons por Ressonância Magnética , Pirazóis/química , Piridinas/química , Transdução de Sinais/efeitos dos fármacos , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade
2.
Acta Crystallogr C Struct Chem ; 75(Pt 8): 1031-1035, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31380784

RESUMO

Mycobacterium tuberculosis (Mtb), the principal etiological agent of tuberculosis (TB), infects over one-quarter of humanity and is now the leading cause of infectious disease mortality by a single pathogen. Macozinone {2-[4-(cyclohexylmethyl)piperazin-1-yl]-8-nitro-6-(trifluoromethyl)-4H-1,3-benzothiazin-4-one, C20H23F3N4O3S} is a promising new drug for treating drug-sensitive and drug-resistant TB that has successfully completed phase I clinical trials. We report the complete spectroscopic and structural characterization by 1H NMR, 13C NMR, HRMS, IR, and X-ray crystallography. The cyclohexyl moiety is observed to be nearly perpendicular to the core formed by the 1,3-benzothiazin-4-one and piperazine groups. The central piperazine ring adopts a slightly distorted chair conformation caused by sp2-hybridization of the nitro N atom, which donates into the electron-deficient 1,3-benzothiazin-4-one group.


Assuntos
Antituberculosos/química , Antituberculosos/síntese química , Cristalografia por Raios X , Farmacorresistência Bacteriana , Ligações de Hidrogênio , Conformação Molecular , Tuberculose Pulmonar/tratamento farmacológico
3.
Acta Crystallogr C Struct Chem ; 75(Pt 8): 1091-1101, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31380792

RESUMO

A new set of differently hydrated barium and strontium squarates, namely poly[[triaqua(µ-1,2-dioxocyclobut-3-ene-1,2-diolato)barium] monohydrate], {[Ba(C4O4)(H2O)3]·H2O}n (1), poly[[diaqua(µ-1,2-dioxocyclobut-3-ene-1,2-diolato)strontium] monohydrate], {[Sr(C4O4)(H2O)2]·H2O}n (2), and poly[[triaqua(µ-1,2-dioxocyclobut-3-ene-1,2-diolato)barium/strontium(0.85/0.15)] monohydrate], {[Ba0.85Sr0.15(C4O4)(H2O)3]·H2O}n (3), is reported. The study of their crystal structures indicates that all the complexes crystallize in the triclinic space group P-1. Complexes 1 and 3 have a rare combination of squarate units coordinated through monodentate O atoms to two different metal atoms and through two bidentate O atoms to three different metal atoms. Furthermore, they have three coordinated water molecules to give a coordination number of nine. The squarate ligands in complex 2 exhibit two different coordination modes: (i) monodentate O atoms coordinated to four different Sr atoms and (ii) two monodentate O atoms coordinated to two different metal atoms with the other two O atoms bidentate to four different Sr atoms. All the compounds decompose to give the respective carbonates when heated to 800 °C, as evidenced by thermogravimetry/differential thermal analysis (TG-DTA), which are clusters of nanoparticles. Complexes 1 and 3 show additional endothermic peaks at 811 and 820 °C, respectively, indicating the phase transition of BaCO3 from an orthorhombic (α-Pmcn) to a trigonal phase (ß-R3m). All three complexes have significant DNA-binding constants, ranging from 2.45 × 104 to 9.41 × 104 M-1 against EB-CT (ethidium bromide-calf thymus) DNA and protein binding constants ranging from 1.1 × 105 to 8.6 × 105 with bovine serum albumin. The in vitro cytotoxicity of the complexes is indicated by the IC50 values, which range from 128.8 to 261.3 µg ml-1. Complex 3 shows better BSA binding, antioxidant activity against the DPPH radical and cytotoxicity than complexes 1 and 2.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Ciclobutanos/farmacologia , Depuradores de Radicais Livres/farmacologia , Substâncias Intercalantes/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/metabolismo , Bário/química , Bovinos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Cristalografia por Raios X , Ciclobutanos/síntese química , Ciclobutanos/química , Ciclobutanos/metabolismo , DNA/metabolismo , Depuradores de Radicais Livres/síntese química , Depuradores de Radicais Livres/química , Depuradores de Radicais Livres/metabolismo , Humanos , Ligações de Hidrogênio , Substâncias Intercalantes/síntese química , Substâncias Intercalantes/química , Substâncias Intercalantes/metabolismo , Ligantes , Células MCF-7 , Estrutura Molecular , Ligação Proteica , Soroalbumina Bovina/metabolismo , Estrôncio/química , Água/química
4.
J Enzyme Inhib Med Chem ; 34(1): 1474-1480, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31414611

RESUMO

The discovery of allosteric modulators is a multi-disciplinary approach, which is time- and cost-intensive. High-throughput screening combined with novel computational tools can reduce these factors. Thus, we developed an enzyme activity assay, which can be included in the drug discovery work-flow subsequent to the in-silico library screening. While the in-silico screening yields in the identification of potential allosteric modulators, the developed in-vitro assay allows for the characterisation of them. Candida rugosa lipase (CRL), a glyceride hydrolysing enzyme, has been selected for the pilot development. The assay conditions were adjusted to CRL's properties including pH, temperature and substrate specificity for two different substrates. The optimised assay conditions were validated and were used to characterise Tropolone, which was identified as an allosteric modulator. In conclusion, the assay is a reliable, reproducible, and robust tool, which can be streamlined with in-silico screening and incorporated in an automated high-throughput screening workflow.


Assuntos
Lipase/metabolismo , Miniaturização , Regulação Alostérica , Candida/enzimologia , Cristalografia por Raios X , Estabilidade Enzimática , Ensaios de Triagem em Larga Escala , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Cinética , Limite de Detecção , Lipase/química , Reprodutibilidade dos Testes , Especificidade por Substrato , Temperatura Ambiente
5.
Chem Pharm Bull (Tokyo) ; 67(7): 609-619, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31257315

RESUMO

To develop potent ligands for the vitamin D receptor (VDR), we designed and synthesized a series of vitamin D analogues with and without 22-alkyl substituents. These analogues exhibited agonistic, partial agonistic, or antagonistic activity. To elucidate the mechanism of action of the analogues, we conducted crystal structure analyses of the ligand-binding domain (LBD) of VDR complexed with the analogues. The VDR-LBD/agonist complex exhibited precise interactions, which clearly explained VDR agonism. The VDR-LBD/partial agonist complex showed two conformers (agonist and antagonist binding conformers) in a single crystal, demonstrating that partial agonism could be explained by the sum of the agonistic and antagonistic activities. Antagonist binding to the VDR-LBD structure was elucidated using both crystal structure analysis and in-solution structural analyses with the small-angle X-ray scattering (SAXS)-molecular dynamics (MD) and hydrogen/deuterium exchange coupled with mass spectrometry (HDX-MS) methods. Several antagonist-binding structures were detected. We found that the antagonist binding structures differed depending on the structure of the antagonist itself, and those structures clearly explained the VDR antagonism. Furthermore, the apo VDR-LBD structure without the ligand in the ligand-binding pocket was revealed and found to have an entrance to accommodate the ligand. Thus we elucidated the mechanisms of action of agonists, partial agonists, and antagonists based on structural changes (differences) in the receptor protein induced by ligand binding.


Assuntos
Ligantes , Receptores de Calcitriol/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Humanos , Simulação de Dinâmica Molecular , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Receptores de Calcitriol/agonistas , Receptores de Calcitriol/antagonistas & inibidores , Vitamina D/análogos & derivados , Vitamina D/metabolismo
6.
J Phys Chem A ; 123(28): 5995-6002, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31268326

RESUMO

High-resolution X-ray crystallography and two-dimensional NMR studies demonstrate that water-mediated conventional hydrogen-bonding interactions (N-H···N, O-H···N, etc.) bridging two or more amino acid residues contribute to the stability of proteins and protein-ligand complexes. In this work, we have investigated single water-mediated selenium hydrogen-bonding interactions (unconventional hydrogen-bonding) between amino acid residues in proteins through extensive protein data bank (PDB) analysis coupled with gas-phase spectroscopy and quantum chemical calculation of a model complex consisting of indole, dimethyl selenide, and water. Here, indole and dimethyl selenide represent the amino acid residues tryptophan and selenomethionine, respectively. The current investigation demonstrates that the most stable structure of the model complex observed in the IR spectroscopy mimics single water-mediated selenium hydrogen-bonded structural motifs present in the crystal structures of proteins. The present work establishes that water-mediated Se hydrogen-bonding interactions are ubiquitous in proteins and the number of these interactions observed in the PDB is more than that of direct Se hydrogen-bonds present there.


Assuntos
Proteínas/química , Selênio/química , Água/química , Biologia Computacional , Cristalografia por Raios X , Bases de Dados de Proteínas , Ligações de Hidrogênio , Indóis/química , Ligantes , Modelos Moleculares , Compostos Organosselênicos/química , Teoria Quântica , Selenometionina/química , Espectrofotometria Infravermelho , Triptofano/química
7.
Inorg Chem ; 58(15): 10129-10138, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31310108

RESUMO

A series of 16 "3 + 2" mixed-ligand complexes of the general composition [ReO(L1)(L2)] (H2L1a-H2L1d = tridentate thiosemicarbazones having a phenyl group with 4-H, 4-F, 3,5-di-F, and 4-CF3 substituents; HL2a-HL2d = bidentate N,N-diethyl-N'-benzoylthioureas with 4-H, 4-F, 3,5-di-F, and 4-CF3 substituents at the benzoyl groups) have been synthesized and characterized by spectroscopic methods and X-ray diffraction. Irrespective of the individual fluorine substitution, the complexes are stable and possess the same general structure. Some systematic electronic effects of the fluorine-substitution patterns of the ligands have been found on the 13C NMR chemical shifts of the N-C═N carbon atoms of the {L1}2- and the C═O carbon atoms of the {L2}- ligands. Antiparasitic properties of the rhenium complexes have been tested against epimastigotes and trypomastigotes forms of two Trypanosoma cruzi strains and the amastigotes form of one of them. The results of this study indicate that the activity of the rhenium complexes can clearly be modulated by fluorine substitution of their ligands. Some of the fluorinated compounds show a high activity against epimastigotes and trypomastigotes forms of the parasites. Reactions between (NBu4)[TcOCl4] and two representatives of the fluorinated ligands (H2L1b, 4-F-substituted, and H2L1c, 4-CF3-substituted) form stable complexes of the composition [TcOCl(L1b)] and [TcOCl(L1c)]. Subsequent reactions of these products with HL2b (4-F-substituted) give the corresponding [TcO(L1)(L2)] mixed-ligand complexes. Also, the technetium compounds are stable as solids and in solutions and have structures corresponding to those of their rhenium analogues.


Assuntos
Complexos de Coordenação/farmacologia , Halogenação , Rênio/farmacologia , Tiossemicarbazonas/farmacologia , Tioureia/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cristalografia por Raios X , Haplorrinos , Ligantes , Modelos Moleculares , Estrutura Molecular , Testes de Sensibilidade Parasitária , Rênio/química , Tiossemicarbazonas/química , Tioureia/química , Tripanossomicidas/síntese química , Tripanossomicidas/química
8.
Inorg Chem ; 58(15): 9773-9784, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31318533

RESUMO

In recent years, transition metal complexes have been developed for catalytical degradation of a phosphate ester bond, particularly in RNA and DNA; however, less consideration has been given for development of complexes for the degradation of a phosphorothioate bond, as they are the foremost used pesticides in the environment and are toxic to human beings. In this context, we have developed copper complexes of benzimidazolium based ligands for catalytical degradation of a series of organophosphates (parathion, paraoxon, methyl-parathion) at ambient conditions. The copper complexes (assigned as N1-N3) were characterized using single X-ray crystallography which revealed that all three complexes are mononuclear and distorted square planner in geometry. Further, the solution state studies of the prepared complexes were carried out using UV-visible absorption, fluorescence spectroscopy, and cyclic voltametry. The complexes N1 and N2 have benzimidazolium ionic liquid as base attached with two 2-mercapto-benzimidazole pods, whereas complex N3 contains a nonionic ligand. The synthesized copper complexes were evaluated for their catalytic activity for degradation of organophosphates. It is interesting that the complex containing the ionic ligand efficiently degrades phosphorothioate pesticides, whereas complex N3 was not found to be appropriate for degradation due to a weaker conversion rate. The organophosphate degradation studies were monitored by recording absorbance spectra of parathion in the presence of catalyst, i.e., copper complexes with respect to time. The parathion was hydrolyzed into para-nitrophenol and diethyl thiophosphate. Moreover, to analyze the inhibition activity of the pesticides toward acetylcholine esterase enzyme in the presence of prepared metal complexes, Ellman's assay was performed and revealed that, within 20 min, the inhibition of acetylcholine esterase enzyme decreases by up to 13%.


Assuntos
Acetilcolina/metabolismo , Esterases/metabolismo , Estruturas Metalorgânicas/química , Praguicidas/química , Praguicidas/toxicidade , Fosfatos/química , Acetilcolina/análise , Benzimidazóis/química , Catálise , Cobre/química , Cristalografia por Raios X , Esterases/análise , Estruturas Metalorgânicas/síntese química , Modelos Moleculares , Estrutura Molecular , Fosfatos/toxicidade
9.
J Agric Food Chem ; 67(31): 8573-8580, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31293156

RESUMO

Glycosylation endows both natural and synthetic small molecules with modulated physicochemical and biological properties. Plant and bacterial glycosyltransferases capable of decorating various privileged scaffolds have been extensively studied, but those from kingdom Fungi still remain underexploited. Here, we use a combination of genome mining and heterologous expression techniques to identify four novel glycosyltransferase-methyltransferase (GT-MT) functional modules from Hypocreales fungi. These GT-MT modules display decent substrate promiscuity and regiospecificity, methylglucosylating a panel of natural products such as flavonoids, stilbenoids, anthraquinones, and benzenediol lactones. Native GT-MT modules can be split up and regrouped into hybrid modules with similar or even improved efficacy as compared with native pairs. Methylglucosylation of kaempferol considerably improves its insecticidal activity against the larvae of oriental armyworm Mythimna separata (Walker). Our work provides a set of efficient biocatalysts for the combinatorial biosynthesis of small molecule glycosides that may have significant importance to the pharmaceutical, agricultural, and food industries.


Assuntos
Proteínas Fúngicas/química , Glicosiltransferases/química , Hypocreales/enzimologia , Metiltransferases/química , Fenóis/química , Animais , Biocatálise , Cristalografia por Raios X , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicosilação , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Hypocreales/genética , Inseticidas/química , Inseticidas/farmacologia , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Mariposas/efeitos dos fármacos , Fenóis/farmacologia , Especificidade por Substrato
10.
J Agric Food Chem ; 67(31): 8527-8535, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31298526

RESUMO

l-Valine belongs to the branched-chain amino acids (BCAAs) and is an essential amino acid that is crucial for all living organisms. l-Valine is industrially produced by the nonpathogenic bacterium Corynebacterium glutamicum and is synthesized by the BCAA biosynthetic pathway. Ketol-acid reductoisomerase (KARI) is the second enzyme in the BCAA pathway and catalyzes the conversion of (S)-2-acetolactate into (R)-2,3-dihydroxy-isovalerate, or the conversion of (S)-2-aceto-2-hydroxybutyrate into (R)-2,3-dihydroxy-3-methylvalerate. To elucidate the enzymatic properties of KARI from C. glutamicum (CgKARI), we successfully produced CgKARI protein and determined its crystal structure in complex with NADP+ and two Mg2+ ions. Based on the complex structure, docking simulations, and site-directed mutagenesis experiments, we revealed that CgKARI belongs to Class I KARI and identified key residues involved in stabilization of the substrate, metal ions, and cofactor. Furthermore, we confirmed the difference in the binding of metal ions that depended on the conformational change.


Assuntos
Proteínas de Bactérias/química , Corynebacterium glutamicum/enzimologia , Cetol-Ácido Redutoisomerase/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Domínio Catalítico , Corynebacterium glutamicum/química , Corynebacterium glutamicum/genética , Cristalografia por Raios X , Cetol-Ácido Redutoisomerase/genética , Cetol-Ácido Redutoisomerase/metabolismo , Metais/química , Metais/metabolismo , Simulação de Acoplamento Molecular , NADP/química , NADP/metabolismo
11.
Inorg Chem ; 58(14): 9067-9075, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31268715

RESUMO

The binuclear platinum(II) boron-dipyrromethene (BODIPY) complex [{Pt(dach)}2(µ-Dcrb)] (DP), where dach is 1,2-diaminocyclohexane and H4Dcrb is a morpholine-conjugated BODIPY-linked dicatechol bridging ligand, was prepared for lysosome organelle targeting and near-IR (NIR) light (600-720 nm) induced photocytotoxic activity. The platinum complex [Pt(dach)(cat)] (CP), where H2cat is catechol, was synthesized and used as a control complex without bearing the BODIPY unit. The complex DP displayed a band at 660 nm (ε = 2.1 × 104 M-1 cm-1) in the red region of the UV-visible spectrum recorded in 10% dimethyl sulfoxide/Dulbecco's Modified Eagle's Medium (DMSO/DMEM, pH 7.2). The complex DP and the BODIPY ligand displayed emission in 10% DMSO-DMEM (pH 7.2) giving an λem value of 668 nm (λex = 650 nm) with a ΦF value of 0.02 for DP and 0.16 for H4Dcrb (ΦF, fluorescence quantum yield). Titration experiments using 1,3-diphenylisobenzofuran (DPBF) indicated that the complex DP and H4Dcrb on irradiation with near-IR light of 600-720 nm generated singlet oxygen (1O2) as the ROS (reactive oxygen species). The complex DP showed significant lysosomal localization and remarkable apoptotic photodynamic therapy (PDT) effects, giving half-maximal inhibitory concentration values (IC50) within 0.6-3.4 µM in HeLa cervical cancer, A549 lung cancer, and MDA-MB231 multidrug resistant cancer cells, while being essentially nontoxic in the dark and in the HPL1D immortalized lung epithelial normal cells. The acridine orange assay using A549 cells showed lysosomal membrane permeabilization by the complex DP under near-IR light (600-720 nm). This complex on near-IR light (600-720 nm) activation in A549 cells induced apoptotic cell death, as observed from an Annexin-V FITC assay.


Assuntos
Compostos de Boro/química , Lisossomos/química , Fotoquimioterapia , Compostos de Platina/química , Pirróis/química , Compostos de Boro/farmacologia , Linhagem Celular Tumoral , Cristalografia por Raios X , Humanos , Potenciais da Membrana/efeitos dos fármacos , Estrutura Molecular , Compostos de Platina/farmacologia
12.
Chem Commun (Camb) ; 55(53): 7639-7642, 2019 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-31198914

RESUMO

We describe an unexpected, cyclic supramolecular complex that results from self-assembly of the nonsteroidal anti-inflammatory drug, diclofenac and 4,4'-azopyridine. The cycles self-assemble into 1D columns occupied by solvent, which can be removed at elevated temperatures (>100 °C) while retaining crystallinity. The complex exhibits solvent exchange ability that occurs through crystal-to-crystal transformations. Finally, the complex can be synthesized using mechanochemistry. Materials exhibiting the structural framework and robustness described here could be applied to removal of hazardous materials or undesirable solvents.


Assuntos
Anti-Inflamatórios não Esteroides/química , Diclofenaco/química , Anti-Inflamatórios não Esteroides/síntese química , Cristalografia por Raios X , Diclofenaco/síntese química , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Modelos Moleculares , Estrutura Molecular
13.
Nat Commun ; 10(1): 2519, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31175275

RESUMO

The ribosome, the largest RNA-containing macromolecular machinery in cells, requires metal ions not only to maintain its three-dimensional fold but also to perform protein synthesis. Despite the vast biochemical data regarding the importance of metal ions for efficient protein synthesis and the increasing number of ribosome structures solved by X-ray crystallography or cryo-electron microscopy, the assignment of metal ions within the ribosome remains elusive due to methodological limitations. Here we present extensive experimental data on the potassium composition and environment in two structures of functional ribosome complexes obtained by measurement of the potassium anomalous signal at the K-edge, derived from long-wavelength X-ray diffraction data. We elucidate the role of potassium ions in protein synthesis at the three-dimensional level, most notably, in the environment of the ribosome functional decoding and peptidyl transferase centers. Our data expand the fundamental knowledge of the mechanism of ribosome function and structural integrity.


Assuntos
Potássio/metabolismo , Ribossomos/ultraestrutura , Difração de Raios X , Cátions , Microscopia Crioeletrônica , Cristalização , Cristalografia por Raios X , Escherichia coli , Biossíntese de Proteínas , Conformação Proteica , RNA de Transferência/metabolismo , Ribossomos/metabolismo , Thermus thermophilus/metabolismo
14.
Biochemistry (Mosc) ; 84(5): 520-528, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31234766

RESUMO

In our recent X-ray study, we demonstrated that substitution of the natural leucine residue M196 with histidine in the reaction center (RC) from Rhodobacter (Rba.) sphaeroides leads to formation of a close contact between the genetically introduced histidine and the primary electron donor P (bacteriochlorophylls (BChls) PA and PB dimer) creating a novel pigment-protein interaction that is not observed in native RCs. In the present work, the possible nature of this novel interaction and its effects on the electronic properties of P and the photochemical charge separation in isolated mutant RCs L(M196)H are investigated at room temperature using steady-state absorption spectroscopy, light-induced difference FTIR spectroscopy, and femtosecond transient absorption spectroscopy. The results are compared with the data obtained for the RCs from Rba. sphaeroides pseudo-wild type strain. It is shown that the L(M196)H mutation results in a decrease in intensity and broadening of the long-wavelength Qy absorption band of P at ~865 nm. Due to the mutation, there is also weakening of the electronic coupling between BChls in the radical cation P+ and increase in the positive charge localization on the PA molecule. Despite the significant perturbations of the electronic structure of P, the mutant RCs retain high electron transfer rates and quantum yield of the P+QA- state (QA is the primary quinone acceptor), which is close to the one observed in the native RCs. Comparison of our results with the literature data suggests that the imidazole group of histidine M196 forms a π-hydrogen bond with the π-electron system of the PB molecule in the P dimer. It is likely that the specific (T-shaped) spatial organization of the π-hydrogen interaction and its potential heterogeneity in relation to the bonding energy is, at least partially, the reason that this type of interaction between the protein and the pigment and quinone cofactors is not realized in the native RCs.


Assuntos
Proteínas de Bactérias/metabolismo , Histidina/metabolismo , Leucina/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Rhodobacter sphaeroides/metabolismo , Proteínas de Bactérias/genética , Cristalografia por Raios X , Transporte de Elétrons , Histidina/genética , Cinética , Leucina/genética , Mutagênese Sítio-Dirigida , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Nat Commun ; 10(1): 2534, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31182716

RESUMO

The suppressor of cytokine signaling 2 (SOCS2) acts as substrate recognition subunit of a Cullin5 E3 ubiquitin ligase complex. SOCS2 binds to phosphotyrosine-modified epitopes as degrons for ubiquitination and proteasomal degradation, yet the molecular basis of substrate recognition has remained elusive. Here, we report co-crystal structures of SOCS2-ElonginB-ElonginC in complex with phosphorylated peptides from substrates growth hormone receptor (GHR-pY595) and erythropoietin receptor (EpoR-pY426) at 1.98 Å and 2.69 Å, respectively. Both peptides bind in an extended conformation recapitulating the canonical SH2 domain-pY pose, but capture different conformations of the EF loop via specific hydrophobic interactions. The flexible BG loop is fully defined in the electron density, and does not contact the substrate degron directly. Cancer-associated SNPs located around the pY pocket weaken substrate-binding affinity in biophysical assays. Our findings reveal insights into substrate recognition and specificity by SOCS2, and provide a blueprint for small molecule ligand design.


Assuntos
Proteínas Supressoras da Sinalização de Citocina/química , Ubiquitina-Proteína Ligases/química , Cristalografia por Raios X , Humanos , Fosfotirosina/química , Polimorfismo de Nucleotídeo Único , Conformação Proteica , Receptores da Eritropoetina/química , Receptores da Somatotropina/química , Alinhamento de Sequência , Especificidade por Substrato , Proteínas Supressoras da Sinalização de Citocina/genética , Ubiquitinação
16.
Top Curr Chem (Cham) ; 377(3): 18, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31161309

RESUMO

Manganese(III) porphyrin complexes with various metal-containing/non-metal bridges reported during the past two decades, including their structural characteristics and magnetic properties, are summarized. As the porphyrin ligands usually adopt a planar chelate form, it is possible that the porphyrin-based complexes, being a coordination-acceptor building block, have two coordination labile sites in trans positions. In particular, the coordination labile sites in an octahedral field face the direction of the Jahn-Teller elongated axis occupying the dz2 orbital. As a result of this characteristic orbital arrangement, the activity and magnetic-electronic properties of the manganese complexes can be tuned by modulating the porphyrin ligand, which is equatorially located around the manganese ion and coupled with the dx2-y2 orbital. The high-spin Mn(III) porphyrin complexes (S = 2) display strong magnetic uniaxial anisotropy with the Jahn-Teller axis as the magnetic easy axis. So far, various manganese(III) porphyrin magnetism systems, including multinuclear clusters, one-dimensional chains, and two- or three-dimensional networks, have been designed and structurally and magnetically characterized. This review shows that the manganese(III) porphyrin complexes have potential as versatile sources for the design of unique magnetic materials as well as other molecular functional materials with various structures.


Assuntos
Imãs/química , Metaloporfirinas/química , Complexos de Coordenação/química , Cristalografia por Raios X , Cianetos/química , Dimerização , Magnetismo/métodos , Modelos Moleculares
17.
Chem Pharm Bull (Tokyo) ; 67(6): 556-565, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31155561

RESUMO

Aldose reductase (AR) is associated with the onset of diabetic complications. Botryllazine A and its analogues were synthesized and evaluated for human AR inhibitory activity. Analogues possessing aromatic bicyclic systems at the C5 position of the central pyrazine ring exhibited superior AR inhibiting activity relative to the parent botryllazine A. In addition, the benzoyl groups at positions C2 and C3 of the pyrazine ring were dispensable for this improved inhibitory activity. Conversely, a benzoyl group-containing phenolic hydroxyl groups-at either position C2 or C3 of the pyrazine ring was essential for attainment of high inhibitory activity approaching that of sorbinil (a highly effective AR inhibitor).


Assuntos
Aldeído Redutase/metabolismo , Inibidores Enzimáticos/síntese química , Pirazinas/química , Aldeído Redutase/antagonistas & inibidores , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Humanos , Ligações de Hidrogênio , Concentração Inibidora 50 , Conformação Molecular , Simulação de Acoplamento Molecular , Pirazinas/síntese química , Pirazinas/metabolismo
18.
Nat Commun ; 10(1): 2385, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31160589

RESUMO

Venetoclax is a first-in-class cancer therapy that interacts with the cellular apoptotic machinery promoting apoptosis. Treatment of patients suffering chronic lymphocytic leukaemia with this BCL-2 antagonist has revealed emergence of a drug-selected BCL-2 mutation (G101V) in some patients failing therapy. To understand the molecular basis of this acquired resistance we describe the crystal structures of venetoclax bound to both BCL-2 and the G101V mutant. The pose of venetoclax in its binding site on BCL-2 reveals small but unexpected differences as compared to published structures of complexes with venetoclax analogues. The G101V mutant complex structure and mutant binding assays reveal that resistance is acquired by a knock-on effect of V101 on an adjacent residue, E152, with venetoclax binding restored by a E152A mutation. This provides a framework for considering analogues of venetoclax that might be effective in combating this mutation.


Assuntos
Antineoplásicos/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Sulfonamidas/metabolismo , Antineoplásicos/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Cristalização , Cristalografia por Raios X , Humanos , Mutação , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sulfonamidas/uso terapêutico , Ressonância de Plasmônio de Superfície
19.
Anal Bioanal Chem ; 411(20): 5277-5285, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31161325

RESUMO

Rapid, highly sensitive detection of tau protein and other neurodegenerative biomarkers remains a significant hurdle for diagnostic tests for Alzheimer's disease. In this work, we developed a novel tyrosinase (TYR)-induced tau aptamer-tau-tau antibody (anti-tau) sandwich fluorescence immunoassay to detect tau protein that used dopamine (DA)-functionalized CuInS2/ZnS quantum dots as the fluorophore. CuInS2/ZnS core/shell quantum dots with high luminescence, low toxicity, and excellent biocompatibility were successfully fabricated and decorated with DA through amide conjugation. Meanwhile, TYR was conjugated with anti-tau by a click reaction. When DA-functionalized CuInS2/ZnS quantum dots were added to the sandwich system, TYR catalyzed the transformation of DA to dopamine quinone, which acted as an effective electron acceptor and triggered fluorescence quenching. The fluorescence intensity of the immunoassay based on DA-functionalized CuInS2/ZnS quantum dots shows good performance in terms of linearity with the logarithm of tau protein concentration, with a linear concentration range from 10 pM to 200 nM. This work is the first to use a TYR-induced fluorescence immunoassay for the rapid detection of tau protein, paving a new way for the detection of disease biomarkers. Graphical abstract.


Assuntos
Cobre/química , Imunofluorescência/métodos , Índio/química , Monofenol Mono-Oxigenase/química , Pontos Quânticos/química , Selênio/química , Sulfetos/química , Compostos de Zinco/química , Proteínas tau/análise , Cristalografia por Raios X , Dopamina/análogos & derivados , Dopamina/química , Microscopia Eletrônica de Transmissão , Análise Espectral/métodos
20.
Adv Exp Med Biol ; 1073: 1-22, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31236837

RESUMO

The proteome represents the total set of proteins produced by an organism or a system at a particular time or state, with proteomics being the study of the proteome. The proteome is a dynamic system wherein proteins are interconnected and serve to facilitate cellular processes in a concurrent and coordinated manner. Over the years, various biochemical and biophysical methods have been developed to elucidate the identities, structures and functions of proteins in order to understand their roles in complex biological systems. The success of proteomic approaches hinges on efficient protein extraction and sample preparation; however, these preliminary steps are often considered a bottleneck in proteomic workflows. Every biological sample is unique and complex, and sample processing needs to be tailored to the nature of the protein sample due to its vulnerability towards post-collection degradation and the complexity of its non-protein constituents. Sample pretreatment steps often employ buffers, solvents, salts and detergents that are not always compatible with the downstream analytical tools. This chapter will provide an overview of sample pretreatment techniques commonly used in conjunction with proteomics tools and discuss protein analysis methods. Such methods include the use of antibody-based techniques, separation sciences (e.g. chromatography, SDS-PAGE), detection methods (e.g. mass spectrometry) and structural techniques (e.g. NMR and X-ray crystallography).


Assuntos
Proteoma , Proteômica/métodos , Anticorpos/química , Cromatografia , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Espectroscopia de Ressonância Magnética , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA