Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.657
Filtrar
1.
Adv Exp Med Biol ; 1287: 9-30, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33034023

RESUMO

The Notch signal transduction cascade requires cell-to-cell contact and results in the proteolytic processing of the Notch receptor and subsequent assembly of a transcriptional coactivator complex containing the Notch intracellular domain (NICD) and transcription factor RBPJ. In the absence of a Notch signal, RBPJ remains at Notch target genes and dampens transcriptional output. Like in other signaling pathways, RBPJ is able to switch from activation to repression by associating with corepressor complexes containing several chromatin-modifying enzymes. Here, we focus on the recent advances concerning RBPJ-corepressor functions, especially in regard to chromatin regulation. We put this into the context of one of the best-studied model systems for Notch, blood cell development. Alterations in the RBPJ-corepressor functions can contribute to the development of leukemia, especially in the case of acute myeloid leukemia (AML). The versatile role of transcription factor RBPJ in regulating pivotal target genes like c-MYC and HES1 may contribute to the better understanding of the development of leukemia.


Assuntos
Regulação da Expressão Gênica , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Receptores Notch/metabolismo , Cromatina/genética , Cromatina/metabolismo , Humanos , Transdução de Sinais
2.
Nat Commun ; 11(1): 4928, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004791

RESUMO

High-altitude adaptation of Tibetans represents a remarkable case of natural selection during recent human evolution. Previous genome-wide scans found many non-coding variants under selection, suggesting a pressing need to understand the functional role of non-coding regulatory elements (REs). Here, we generate time courses of paired ATAC-seq and RNA-seq data on cultured HUVECs under hypoxic and normoxic conditions. We further develop a variant interpretation methodology (vPECA) to identify active selected REs (ASREs) and associated regulatory network. We discover three causal SNPs of EPAS1, the key adaptive gene for Tibetans. These SNPs decrease the accessibility of ASREs with weakened binding strength of relevant TFs, and cooperatively down-regulate EPAS1 expression. We further construct the downstream network of EPAS1, elucidating its roles in hypoxic response and angiogenesis. Collectively, we provide a systematic approach to interpret phenotype-associated noncoding variants in proper cell types and relevant dynamic conditions, to model their impact on gene regulation.


Assuntos
Aclimatação/genética , Cromatina/metabolismo , Grupos Étnicos/genética , Redes Reguladoras de Genes , Modelos Genéticos , Altitude , Doença da Altitude/etnologia , Doença da Altitude/genética , Doença da Altitude/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hipóxia Celular/genética , Células Cultivadas , Cromatina/genética , Sequenciamento de Cromatina por Imunoprecipitação , Resistência à Doença/genética , Feminino , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Oxigênio/metabolismo , Polimorfismo de Nucleotídeo Único , Gravidez , Cultura Primária de Células , RNA-Seq , Elementos Reguladores de Transcrição/genética , Seleção Genética , Tibet/etnologia , Fatores de Transcrição/metabolismo , Sequenciamento Completo do Genoma
3.
PLoS One ; 15(8): e0238322, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32866178

RESUMO

Space-filling curves have been used for decades to study the folding principles of globular proteins, compact polymers, and chromatin. Formally, space-filling curves trace a single circuit through a set of points (x,y,z); informally, they correspond to a polymer melt. Although not quite a melt, the folding principles of Human chromatin are likened to the Hilbert curve: a type of space-filling curve. Hilbert-like curves in general make biologically compelling models of chromatin; in particular, they lack knots which facilitates chromatin folding, unfolding, and easy access to genes. Knot complexity has been intensely studied with the aid of Alexander polynomials; however, the approach does not generalize well to cases of more than one chromosome. Crossing complexity is an understudied alternative better suited for quantifying entanglement between chromosomes. Do Hilbert-like configurations limit crossing complexity between chromosomes? How does crossing complexity for Hilbert-like configurations compare to equilibrium configurations? To address these questions, we extend the Mansfield algorithm to enable sampling of Hilbert-like space filling curves on a simple cubic lattice. We use the extended algorithm to generate equilibrium, intermediate, and Hilbert-like configurational ensembles and compute crossing complexity between curves (chromosomes) in each configurational snapshot. Our main results are twofold: (a) Hilbert-like configurations limit entanglement between chromosomes and (b) Hilbert-like configurations do not limit entanglement in a model of S-phase DNA. Our second result is particularly surprising yet easily rationalized with a geometric argument. We explore ergodicity of the extended algorithm and discuss our results in the context of more sophisticated models of chromatin.


Assuntos
DNA/química , DNA/genética , Fase S/genética , Algoritmos , Cromatina/química , Cromatina/genética , Cromossomos/química , Cromossomos/genética , Humanos , Polímeros/química
4.
Nat Commun ; 11(1): 4402, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32879318

RESUMO

Genome-wide association studies have identified genetic variation contributing to complex disease risk. However, assigning causal genes and mechanisms has been more challenging because disease-associated variants are often found in distal regulatory regions with cell-type specific behaviours. Here, we collect ATAC-seq, Hi-C, Capture Hi-C and nuclear RNA-seq data in stimulated CD4+ T cells over 24 h, to identify functional enhancers regulating gene expression. We characterise changes in DNA interaction and activity dynamics that correlate with changes in gene expression, and find that the strongest correlations are observed within 200 kb of promoters. Using rheumatoid arthritis as an example of T cell mediated disease, we demonstrate interactions of expression quantitative trait loci with target genes, and confirm assigned genes or show complex interactions for 20% of disease associated loci, including FOXO1, which we confirm using CRISPR/Cas9.


Assuntos
Artrite Reumatoide/genética , Linfócitos T CD4-Positivos/metabolismo , Cromatina , Proteína Forkhead Box O1/genética , Doenças Autoimunes/genética , Linfócitos T CD4-Positivos/citologia , Cromatina/química , Cromatina/genética , Elementos Facilitadores Genéticos , Proteína Forkhead Box O1/metabolismo , Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Células HEK293 , Humanos , Cultura Primária de Células , Regiões Promotoras Genéticas , Locos de Características Quantitativas
5.
PLoS Comput Biol ; 16(9): e1008173, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32946435

RESUMO

Single-cell Hi-C (scHi-C) interrogates genome-wide chromatin interaction in individual cells, allowing us to gain insights into 3D genome organization. However, the extremely sparse nature of scHi-C data poses a significant barrier to analysis, limiting our ability to tease out hidden biological information. In this work, we approach this problem by applying topic modeling to scHi-C data. Topic modeling is well-suited for discovering latent topics in a collection of discrete data. For our analysis, we generate nine different single-cell combinatorial indexed Hi-C (sci-Hi-C) libraries from five human cell lines (GM12878, H1Esc, HFF, IMR90, and HAP1), consisting over 19,000 cells. We demonstrate that topic modeling is able to successfully capture cell type differences from sci-Hi-C data in the form of "chromatin topics." We further show enrichment of particular compartment structures associated with locus pairs in these topics.


Assuntos
Cromatina , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Célula Única/métodos , Linhagem Celular , Cromatina/química , Cromatina/genética , Análise por Conglomerados , Biblioteca Gênica , Humanos , Processamento de Linguagem Natural
7.
Am J Hum Genet ; 107(3): 564-574, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32822602

RESUMO

KAT5 encodes an essential lysine acetyltransferase, previously called TIP60, which is involved in regulating gene expression, DNA repair, chromatin remodeling, apoptosis, and cell proliferation; but it remains unclear whether variants in this gene cause a genetic disease. Here, we study three individuals with heterozygous de novo missense variants in KAT5 that affect normally invariant residues, with one at the chromodomain (p.Arg53His) and two at or near the acetyl-CoA binding site (p.Cys369Ser and p.Ser413Ala). All three individuals have cerebral malformations, seizures, global developmental delay or intellectual disability, and severe sleep disturbance. Progressive cerebellar atrophy was also noted. Histone acetylation assays with purified variant KAT5 demonstrated that the variants decrease or abolish the ability of the resulting NuA4/TIP60 multi-subunit complexes to acetylate the histone H4 tail in chromatin. Transcriptomic analysis in affected individual fibroblasts showed deregulation of multiple genes that control development. Moreover, there was also upregulated expression of PER1 (a key gene involved in circadian control) in agreement with sleep anomalies in all of the individuals. In conclusion, dominant missense KAT5 variants cause histone acetylation deficiency with transcriptional dysregulation of multiples genes, thereby leading to a neurodevelopmental syndrome with sleep disturbance, cerebellar atrophy, and facial dysmorphisms, and suggesting a recognizable syndrome.


Assuntos
Atrofia/genética , Doenças Cerebelares/genética , Deficiência Intelectual/genética , Lisina Acetiltransferase 5/genética , Anormalidades Múltiplas/diagnóstico por imagem , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/fisiopatologia , Adolescente , Adulto , Atrofia/diagnóstico por imagem , Atrofia/fisiopatologia , Doenças Cerebelares/diagnóstico por imagem , Doenças Cerebelares/fisiopatologia , Pré-Escolar , Cromatina/genética , Montagem e Desmontagem da Cromatina/genética , Reparo do DNA/genética , Epilepsia/diagnóstico por imagem , Epilepsia/genética , Epilepsia/fisiopatologia , Feminino , Heterozigoto , Histonas/genética , Humanos , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/fisiopatologia , Masculino , Mutação de Sentido Incorreto/genética , Processamento de Proteína Pós-Traducional/genética
8.
Virology ; 548: 124-131, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32838933

RESUMO

SP1 binding in SV40 chromatin in vitro and in vivo was characterized in order to better understand its role during the initiation of early transcription. We observed that chromatin from disrupted virions, but not minichromosomes, was efficiently bound by HIS-tagged SP1 in vitro, while the opposite was true for the presence of endogenous SP1 introduced in vivo. Using ChIP-Seq to compare the location of SP1 to nucleosomes carrying modified histones, we found that SP1 could occupy its whole binding site in virion chromatin but only the early side of its binding site in most of the minichromosomes carrying modified histones due to the presence of overlapping nucleosomes. The results suggest that during the initiation of an SV40 infection, SP1 binds to an open region in SV40 virion chromatin but quickly triggers chromatin reorganization and its own removal.


Assuntos
Cromatina/virologia , Infecções por Polyomavirus/metabolismo , Infecções por Polyomavirus/virologia , Vírus 40 dos Símios/metabolismo , Fator de Transcrição Sp1/metabolismo , Vírion/metabolismo , Cromatina/genética , Cromatina/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Nucleossomos/genética , Nucleossomos/metabolismo , Infecções por Polyomavirus/genética , Ligação Proteica , Vírus 40 dos Símios/genética , Fator de Transcrição Sp1/genética , Vírion/genética
9.
PLoS Genet ; 16(8): e1008962, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32750047

RESUMO

Haspin, a highly conserved kinase in eukaryotes, has been shown to be responsible for phosphorylation of histone H3 at threonine 3 (H3T3ph) during mitosis, in mammals and yeast. Here we report that haspin is the kinase that phosphorylates H3T3 in Drosophila melanogaster and it is involved in sister chromatid cohesion during mitosis. Our data reveal that haspin also phosphorylates H3T3 in interphase. H3T3ph localizes in broad silenced domains at heterochromatin and lamin-enriched euchromatic regions. Loss of haspin compromises insulator activity in enhancer-blocking assays and triggers a decrease in nuclear size that is accompanied by changes in nuclear envelope morphology. We show that haspin is a suppressor of position-effect variegation involved in heterochromatin organization. Our results also demonstrate that haspin is necessary for pairing-sensitive silencing and it is required for robust Polycomb-dependent homeotic gene silencing. Haspin associates with the cohesin complex in interphase, mediates Pds5 binding to chromatin and cooperates with Pds5-cohesin to modify Polycomb-dependent homeotic transformations. Therefore, this study uncovers an unanticipated role for haspin kinase in genome organization of interphase cells and demonstrates that haspin is required for homeotic gene regulation.


Assuntos
Cromatina/genética , Proteínas de Drosophila/genética , Mitose/genética , Proteínas Serina-Treonina Quinases/genética , Animais , Proteínas de Ciclo Celular/genética , Centrômero/genética , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos/genética , Drosophila melanogaster/genética , Inativação Gênica , Heterocromatina/genética , Histonas/genética , Interfase/genética , Fosforilação , Proteínas do Grupo Polycomb/genética , Troca de Cromátide Irmã/genética , Treonina/genética
10.
PLoS One ; 15(7): e0236666, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32735574

RESUMO

Deciphering long-range chromatin interactions is critical for understanding temporal and tissue-specific gene expression regulated by cis- and trans-acting factors. By combining the chromosome conformation capture (3C) and biotinylated dCas9 system, we previously established a method CAPTURE-3C-seq to unbiasedly identify high-resolution and locus-specific long-range DNA interactions. Here we present the statistical model and a flexible pipeline, C3S, for analysing CAPTURE-3C-seq or similar experimental data from raw sequencing reads to significantly interacting chromatin loci. C3S provides all steps for data processing, quality control and result illustration. It can automatically define the bin size based on the binding peak of the dCas9-targeted regions. Furthermore, it supports the analysis of intra- and inter-chromosomal interactions for different mammalian cell types. We successfully applied C3S across multiple datasets in human K562 cells and mouse embryonic stem cells (mESC) for detecting known and new chromatin interactions at multiple scales. Integrative and topological analysis of the interacted loci at the human ß-globin gene cluster provides new insights into mechanisms in developmental gene regulation and network structure in local chromosomal architecture. Furthermore, computational results in mESCs reveal a role for chromatin interacting loops between enhancers and promoters in regulating alternative transcripts of the pluripotency gene OCT4.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Cromatina/química , Cromatina/metabolismo , Modelos Moleculares , Cromatina/genética , Ligação Proteica , Conformação Proteica
11.
Mol Cell ; 79(6): 881-901, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32768408

RESUMO

Nucleosomes package genomic DNA into chromatin. By regulating DNA access for transcription, replication, DNA repair, and epigenetic modification, chromatin forms the nexus of most nuclear processes. In addition, dynamic organization of chromatin underlies both regulation of gene expression and evolution of chromosomes into individualized sister objects, which can segregate cleanly to different daughter cells at anaphase. This collaborative review shines a spotlight on technologies that will be crucial to interrogate key questions in chromatin and chromosome biology including state-of-the-art microscopy techniques, tools to physically manipulate chromatin, single-cell methods to measure chromatin accessibility, computational imaging with neural networks and analytical tools to interpret chromatin structure and dynamics. In addition, this review provides perspectives on how these tools can be applied to specific research fields such as genome stability and developmental biology and to test concepts such as phase separation of chromatin.


Assuntos
Cromatina/genética , Cromossomos/genética , DNA/genética , Nucleossomos/genética , Reparo do DNA/genética , Replicação do DNA/genética , Epigênese Genética/genética , Humanos
12.
Nat Cell Biol ; 22(7): 856-867, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32601372

RESUMO

The ESCRT-III membrane fission machinery maintains the integrity of the nuclear envelope. Although primary nuclei resealing takes minutes, micronuclear envelope ruptures seem to be irreversible. Instead, micronuclear ruptures result in catastrophic membrane collapse and are associated with chromosome fragmentation and chromothripsis, complex chromosome rearrangements thought to be a major driving force in cancer development. Here we use a combination of live microscopy and electron tomography, as well as computer simulations, to uncover the mechanism underlying micronuclear collapse. We show that, due to their small size, micronuclei inherently lack the capacity of primary nuclei to restrict the accumulation of CHMP7-LEMD2, a compartmentalization sensor that detects loss of nuclear integrity. This causes unrestrained ESCRT-III accumulation, which drives extensive membrane deformation, DNA damage and chromosome fragmentation. Thus, the nuclear-integrity surveillance machinery is a double-edged sword, as its sensitivity ensures rapid repair at primary nuclei while causing unrestrained activity at ruptured micronuclei, with catastrophic consequences for genome stability.


Assuntos
Núcleo Celular/patologia , Cromatina/metabolismo , Aberrações Cromossômicas , Dano ao DNA , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Instabilidade Genômica , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Células HeLa , Humanos
13.
Nucleic Acids Res ; 48(15): 8360-8373, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32619236

RESUMO

Coordinated regulation of ribosomal RNA (rRNA) synthesis and ribosomal protein gene (RPG) transcription by eukaryotic RNA polymerases (RNAP) is a key requirement for growth control. Although evidence for balance between RNPI-dependent 35S rRNA production and RNAPII-mediated RPG transcription have been described, the molecular basis is still obscure. Here, we found that Rph1 modulates the transcription status of both rRNAs and RPGs in yeast. We show that Rph1 widely associates with RNAPI and RNAPII-transcribed genes. Deletion of RPH1 remarkably alleviates cell slow growth caused by TORC1 inhibition via derepression of rRNA and RPG transcription under nutrient stress conditions. Mechanistically, Rim15 kinase phosphorylates Rph1 upon rapamycin treatment. Phosphorylation-mimetic mutant of Rph1 exhibited more resistance to rapamycin treatment, decreased association with ribosome-related genes, and faster cell growth compared to the wild-type, indicating that Rph1 dissociation from chromatin ensures cell survival upon nutrient stress. Our results uncover the role of Rph1 in coordination of RNA polymerases-mediated transcription to control cell growth under nutrient stress conditions.


Assuntos
Proliferação de Células/genética , Histona Desmetilases/genética , Proteínas Quinases/genética , RNA Ribossômico/genética , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Cromatina/genética , Regulação Fúngica da Expressão Gênica/genética , Fosforilação , Proteínas Ribossômicas/genética , Ribossomos/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Transdução de Sinais/genética , Transcrição Genética
14.
Nucleic Acids Res ; 48(15): 8349-8359, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32621610

RESUMO

Alternative splicing (AS) and alternative polyadenylation (APA) generate diverse transcripts in mammalian genomes during development and differentiation. Epigenetic marks such as trimethylation of histone H3 lysine 36 (H3K36me3) and DNA methylation play a role in generating transcriptome diversity. Intragenic CpG islands (iCGIs) and their corresponding host genes exhibit dynamic epigenetic and gene expression patterns during development and between different tissues. We hypothesise that iCGI-associated H3K36me3, DNA methylation and transcription can influence host gene AS and/or APA. We investigate H3K36me3 and find that this histone mark is not a major regulator of AS or APA in our model system. Genomewide, we identify over 4000 host genes that harbour an iCGI in the mammalian genome, including both previously annotated and novel iCGI/host gene pairs. The transcriptional activity of these iCGIs is tissue- and developmental stage-specific and, for the first time, we demonstrate that the premature termination of host gene transcripts upstream of iCGIs is closely correlated with the level of iCGI transcription in a DNA-methylation independent manner. These studies suggest that iCGI transcription, rather than H3K36me3 or DNA methylation, interfere with host gene transcription and pre-mRNA processing genomewide and contributes to the spatiotemporal diversification of both the transcriptome and proteome.


Assuntos
Epigênese Genética , Processamento de Proteína Pós-Traducional/genética , Precursores de RNA/genética , Transcrição Genética , Animais , Diferenciação Celular/genética , Cromatina/genética , Ilhas de CpG/genética , Metilação de DNA/genética , Genoma/genética , Código das Histonas/genética , Humanos , Regiões Promotoras Genéticas , Pseudogenes/genética , Precursores de RNA/metabolismo
15.
Nucleic Acids Res ; 48(15): 8408-8430, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32663283

RESUMO

The chromatin remodelers SWI/SNF and RSC function in evicting promoter nucleosomes at highly expressed yeast genes, particularly those activated by transcription factor Gcn4. Ino80 remodeling complex (Ino80C) can establish nucleosome-depleted regions (NDRs) in reconstituted chromatin, and was implicated in removing histone variant H2A.Z from the -1 and +1 nucleosomes flanking NDRs; however, Ino80C's function in transcriptional activation in vivo is not well understood. Analyzing the cohort of Gcn4-induced genes in ino80Δ mutants has uncovered a role for Ino80C on par with SWI/SNF in evicting promoter nucleosomes and transcriptional activation. Compared to SWI/SNF, Ino80C generally functions over a wider region, spanning the -1 and +1 nucleosomes, NDR and proximal genic nucleosomes, at genes highly dependent on its function. Defects in nucleosome eviction in ino80Δ cells are frequently accompanied by reduced promoter occupancies of TBP, and diminished transcription; and Ino80 is enriched at genes requiring its remodeler activity. Importantly, nuclear depletion of Ino80 impairs promoter nucleosome eviction even in a mutant lacking H2A.Z. Thus, Ino80C acts widely in the yeast genome together with RSC and SWI/SNF in evicting promoter nucleosomes and enhancing transcription, all in a manner at least partly independent of H2A.Z editing.


Assuntos
Histonas/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Genética , Ativação Transcricional/genética , Adenosina Trifosfatases/genética , Cromatina/genética , Montagem e Desmontagem da Cromatina/genética , Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica/genética , Nucleossomos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Fatores de Transcrição/genética
16.
Mol Genet Genomics ; 295(6): 1431-1442, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32685987

RESUMO

DNase I hypersensitive sites (DHSs) are highly sensitive active chromatin regions to DNase I enzymes, which provide the basis for the study of gene transcriptional regulation mechanism and play an important role in the analysis of gene expression regulatory elements. The identification of DHSs has contributed to biomedical research and genome analysis. There are already southern blotting technology and high-throughput sequencing technology to identify DHSs, but these experimental methods are often time-consuming and expensive, thus, novel and powerful computational methods are needed to predict DHSs. It is understood that researchers in related fields have proposed many feasible methods for the identification of DNase I hypersensitive sites. However, the accuracy of these methods is not satisfactory, so it is necessary to use more effective methods to predict DHSs. Therefore, on the basis of previous studies, we design a novel predictor called iDHS-DXG. First of all, we choose three sequence-derived feature representation methods to extract features, including kmer, mismatch and the dinucleotide property matrix based on Moran coefficient. Truncated singular value decomposition is selected for reducing the dimensionality of the benchmark dataset, and the optimal dimension is obtained through the test. Then, synthetic minority over-sampling technique is utilized to balance the positive and negative samples. After that, we introduce extreme gradient boosting ensemble classifier to predict DHSs. Compared with the previous research results, the main performance evaluation metrics of our method have been improved after five-fold cross-validation test. DHSs were identified on two human genome datasets with an accuracy of 90.84% and 91.27% respectively. This result shows that our method is a feasible, effective and competitive tool for the analysis of gene regulatory elements. Our research is helpful for biologists and geneticists to study genome analysis and gene regulation mechanism. Meanwhile, it is also of great significance to the development of human disease and drug design. Furthermore, the datasets and codes of iDHS-DXG can be obtained from the website: http://github.com/Xtian-696/iDHS-DXG/ .


Assuntos
Algoritmos , Cromatina/metabolismo , Desoxirribonuclease I/metabolismo , Repetições de Dinucleotídeos/genética , Genoma Humano , Cromatina/genética , Desoxirribonuclease I/química , Humanos , Sequências Reguladoras de Ácido Nucleico
17.
Nat Genet ; 52(8): 811-818, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32632335

RESUMO

We developed cis-X, a computational method for discovering regulatory noncoding variants in cancer by integrating whole-genome and transcriptome sequencing data from a single cancer sample. cis-X first finds aberrantly cis-activated genes that exhibit allele-specific expression accompanied by an elevated outlier expression. It then searches for causal noncoding variants that may introduce aberrant transcription factor binding motifs or enhancer hijacking by structural variations. Analysis of 13 T-lineage acute lymphoblastic leukemias identified a recurrent intronic variant predicted to cis-activate the TAL1 oncogene, a finding validated in vivo by chromatin immunoprecipitation sequencing of a patient-derived xenograft. Candidate oncogenes include the prolactin receptor PRLR activated by a focal deletion that removes a CTCF-insulated neighborhood boundary. cis-X may be applied to pediatric and adult solid tumors that are aneuploid and heterogeneous. In contrast to existing approaches, which require large sample cohorts, cis-X enables the discovery of regulatory noncoding variants in individual cancer genomes.


Assuntos
Elementos Facilitadores Genéticos/genética , Variação Genética/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , RNA não Traduzido/genética , Adolescente , Alelos , Criança , Pré-Escolar , Cromatina/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Oncogenes/genética , Transcrição Genética/genética
18.
PLoS Genet ; 16(7): e1008964, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32716939

RESUMO

Chromatin regulation of eukaryotic genomes depends on the formation of nucleosome complexes between histone proteins and DNA. Histone variants, which are diversified by sequence or expression pattern, can profoundly alter chromatin properties. While variants in histone H2A and H3 families are well characterized, the extent of diversification of histone H2B proteins is less understood. Here, we report a systematic analysis of the histone H2B family in plants, which have undergone substantial divergence during the evolution of each major group in the plant kingdom. By characterising Arabidopsis H2Bs, we substantiate this diversification and reveal potential functional specialization that parallels the phylogenetic structure of emergent clades in eudicots. In addition, we identify a new class of highly divergent H2B variants, H2B.S, that specifically accumulate during chromatin compaction of dry seed embryos in multiple species of flowering plants. Our findings thus identify unsuspected diverse properties among histone H2B proteins in plants that has manifested into potentially novel groups of histone variants.


Assuntos
Arabidopsis/genética , Cromatina/genética , Evolução Molecular , Histonas/genética , Arabidopsis/classificação , Eucariotos , Genoma de Planta/genética , Histonas/classificação , Família Multigênica/genética
19.
Nature ; 583(7815): 296-302, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32612232

RESUMO

The mammalian immune system implements a remarkably effective set of mechanisms for fighting pathogens1. Its main components are haematopoietic immune cells, including myeloid cells that control innate immunity, and lymphoid cells that constitute adaptive immunity2. However, immune functions are not unique to haematopoietic cells, and many other cell types display basic mechanisms of pathogen defence3-5. To advance our understanding of immunology outside the haematopoietic system, here we systematically investigate the regulation of immune genes in the three major types of structural cells: epithelium, endothelium and fibroblasts. We characterize these cell types across twelve organs in mice, using cellular phenotyping, transcriptome sequencing, chromatin accessibility profiling and epigenome mapping. This comprehensive dataset revealed complex immune gene activity and regulation in structural cells. The observed patterns were highly organ-specific and seem to modulate the extensive interactions between structural cells and haematopoietic immune cells. Moreover, we identified an epigenetically encoded immune potential in structural cells under tissue homeostasis, which was triggered in response to systemic viral infection. This study highlights the prevalence and organ-specific complexity of immune gene activity in non-haematopoietic structural cells, and it provides a high-resolution, multi-omics atlas of the epigenetic and transcriptional networks that regulate structural cells in the mouse.


Assuntos
Endotélio/imunologia , Células Epiteliais/imunologia , Fibroblastos/imunologia , Regulação da Expressão Gênica/imunologia , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Especificidade de Órgãos/imunologia , Imunidade Adaptativa , Animais , Cromatina/genética , Cromatina/metabolismo , Endotélio/citologia , Epigênese Genética/imunologia , Epigenoma/genética , Células Epiteliais/citologia , Feminino , Fibroblastos/citologia , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/imunologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Sistema Imunitário/virologia , Imunidade Inata , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Masculino , Camundongos , Especificidade de Órgãos/genética , Transcrição Genética/imunologia , Transcriptoma/genética
20.
Proc Natl Acad Sci U S A ; 117(29): 17019-17030, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32611815

RESUMO

DNA double-strand breaks (DSBs) trigger transient pausing of nearby transcription, an emerging ATM-dependent response that suppresses chromosomal instability. We screened a chemical library designed to target the human kinome for new activities that mediate gene silencing on DSB-flanking chromatin, and have uncovered the DYRK1B kinase as an early respondent to DNA damage. We showed that DYRK1B is swiftly and transiently recruited to laser-microirradiated sites, and that genetic inactivation of DYRK1B or its kinase activity attenuated DSB-induced gene silencing and led to compromised DNA repair. Notably, global transcription shutdown alleviated DNA repair defects associated with DYRK1B loss, suggesting that DYRK1B is strictly required for DSB repair on active chromatin. We also found that DYRK1B mediates transcription silencing in part via phosphorylating and enforcing DSB accumulation of the histone methyltransferase EHMT2. Together, our findings unveil the DYRK1B signaling network as a key branch of mammalian DNA damage response circuitries, and establish the DYRK1B-EHMT2 axis as an effector that coordinates DSB repair on transcribed chromatin.


Assuntos
Cromatina , Reparo do DNA/genética , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Transcrição Genética/genética , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Quebras de DNA de Cadeia Dupla , Inativação Gênica , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA