Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.036
Filtrar
1.
Enzymes ; 45: 27-57, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31627880

RESUMO

Repair of damaged DNA plays a crucial role in maintaining genomic integrity and normal cell function. The base excision repair (BER) pathway is primarily responsible for removing modified nucleobases that would otherwise cause deleterious and mutagenic consequences and lead to disease. The BER process is initiated by a DNA glycosylase, which recognizes and excises the target nucleobase lesion, and is completed via downstream enzymes acting in a well-coordinated manner. A majority of our current understanding about how BER enzymes function comes from in vitro studies using free duplex DNA as a simplified model. In eukaryotes, however, BER is challenged by the packaging of genomic DNA into chromatin. The fundamental structural repeating unit of chromatin is the nucleosome, which presents a more complex substrate context than free duplex DNA for repair. In this chapter, we discuss how BER enzymes, particularly glycosylases, engage in the context of packaged DNA with insights obtained from both in vivo and in vitro studies. Furthermore, we review factors and mechanisms that can modify chromatin architecture and/or influence DNA accessibility to BER machinery, such as the geometric location of the damage site, nucleosomal DNA unwrapping, histone post-translational modifications, histone variant incorporation, and chromatin remodeling.


Assuntos
Cromatina/química , Cromatina/genética , Dano ao DNA , Reparo do DNA , DNA/química , DNA/metabolismo , Montagem e Desmontagem da Cromatina , DNA/genética , Histonas/química , Histonas/metabolismo , Nucleossomos/química , Nucleossomos/genética
2.
Postepy Biochem ; 65(3): 202-211, 2019 10 01.
Artigo em Polonês | MEDLINE | ID: mdl-31643167

RESUMO

Advances in high resolution microscopy techniques and development of high throughput DNA analyses allow to reconsider the views concerning bacterial chromosome (nucleoid). Recent reports show that nucleoid exhibits a hierarchical organization, similarly to the eukaryotic chromatin. However, bacterial chromosome undergoes constant modifications and topological rearrangements due to the ongoing DNA replication, transcription and translation processes. Organization of dynamic and highly compacted nucleoid structure depends on physical factors acting on chromosome molecule inside small cell compartment, and is a consequence of action of many different DNA-binding proteins. The main goal of this review is to present the recent reports on bacterial chromatin structure and to elucidate the physical and molecular factors influencing its intracellular organization.


Assuntos
Bactérias/genética , Cromatina/metabolismo , Cromossomos Bacterianos/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Bactérias/metabolismo , Cromatina/química , Cromatina/genética , Cromossomos Bacterianos/química , Cromossomos Bacterianos/genética , Replicação do DNA , DNA Bacteriano/química , DNA Bacteriano/genética , Proteínas de Ligação a DNA/metabolismo
3.
Chem Commun (Camb) ; 55(82): 12340-12343, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31556887

RESUMO

A new nucleus-localized singlet oxygen generator was designed and synthesized. Its capability to label nucleus-localized biomolecules through spatially-restricted oxidation under visible light was validated using fluorescence confocal microscopy. Western blot and RT-qPCR were performed to verify the desirable spatial resolution through enriching chromatin-associated RNAs and proteins.


Assuntos
Cromatina/química , Luz , Proteínas/química , RNA/química , Western Blotting , Microscopia Confocal , Microscopia de Fluorescência , Oxirredução , Reação em Cadeia da Polimerase em Tempo Real , Oxigênio Singlete/análise
4.
Genome Biol ; 20(1): 148, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31362752

RESUMO

BACKGROUND: The number of reported examples of chromatin architecture alterations involved in the regulation of gene transcription and in disease is increasing. However, no genome-wide testing has been performed to assess the abundance of these events and their importance relative to other factors affecting genome regulation. This is particularly interesting given that a vast majority of genetic variations identified in association studies are located outside coding sequences. This study attempts to address this lack by analyzing the impact on chromatin spatial organization of genetic variants identified in individuals from 26 human populations and in genome-wide association studies. RESULTS: We assess the tendency of structural variants to accumulate in spatially interacting genomic segments and design an algorithm to model chromatin conformational changes caused by structural variations. We show that differential gene transcription is closely linked to the variation in chromatin interaction networks mediated by RNA polymerase II. We also demonstrate that CTCF-mediated interactions are well conserved across populations, but enriched with disease-associated SNPs. Moreover, we find boundaries of topological domains as relatively frequent targets of duplications, which suggest that these duplications can be an important evolutionary mechanism of genome spatial organization. CONCLUSIONS: This study assesses the critical impact of genetic variants on the higher-order organization of chromatin folding and provides insight into the mechanisms regulating gene transcription at the population scale, of which local arrangement of chromatin loops seems to be the most significant. It provides the first insight into the variability of the human 3D genome at the population scale.


Assuntos
Cromatina/química , Genoma Humano , Variação Estrutural do Genoma , Algoritmos , Grupos de Populações Continentais/genética , Regulação da Expressão Gênica , Humanos , Modelos Moleculares , Transcrição Genética
5.
Genome Biol ; 20(1): 157, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31391082

RESUMO

BACKGROUND: Chromatin provides a tunable platform for gene expression control. Besides the well-studied core nucleosome, H1 linker histones are abundant chromatin components with intrinsic potential to influence chromatin function. Well studied in animals, little is known about the evolution of H1 function in other eukaryotic lineages for instance plants. Notably, in the model plant Arabidopsis, while H1 is known to influence heterochromatin and DNA methylation, its contribution to transcription, molecular, and cytological chromatin organization remains elusive. RESULTS: We provide a multi-scale functional study of Arabidopsis linker histones. We show that H1-deficient plants are viable yet show phenotypes in seed dormancy, flowering time, lateral root, and stomata formation-complemented by either or both of the major variants. H1 depletion also impairs pluripotent callus formation. Fine-scale chromatin analyses combined with transcriptome and nucleosome profiling reveal distinct roles of H1 on hetero- and euchromatin: H1 is necessary to form heterochromatic domains yet dispensable for silencing of most transposable elements; H1 depletion affects nucleosome density distribution and mobility in euchromatin, spatial arrangement of nanodomains, histone acetylation, and methylation. These drastic changes affect moderately the transcription but reveal a subset of H1-sensitive genes. CONCLUSIONS: H1 variants have a profound impact on the molecular and spatial (nuclear) chromatin organization in Arabidopsis with distinct roles in euchromatin and heterochromatin and a dual causality on gene expression. Phenotypical analyses further suggest the novel possibility that H1-mediated chromatin organization may contribute to the epigenetic control of developmental and cellular transitions.


Assuntos
Arabidopsis/genética , Cromatina/química , Histonas/fisiologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Epigênese Genética , Eucromatina/química , Regulação da Expressão Gênica de Plantas , Heterocromatina/química , Histonas/genética , Histonas/metabolismo , Mutação , Nucleossomos
6.
Adv Exp Med Biol ; 1166: 1-28, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31301043

RESUMO

Spermatozoa genome has unique features that make it a fascinating field of investigation: first, because, with oocyte genome, it can be transmitted generation after generation; second, because of genetic shuffling during meiosis, each spermatozoon is virtually unique in terms of genetic content, with consequences for species evolution; and finally, because its chromatin organization is very different from that of somatic cells or oocytes, as it is not based on nucleosomes but on nucleoprotamines which confer a higher order of packaging. Histone-to-protamine transition involves many actors, such as regulators of spermatid gene expression, components of the nuclear envelop, histone-modifying enzymes and readers, chaperones, histone variants, transition proteins, protamines, and certainly many more to be discovered.In this book chapter, we will present what is currently known about sperm chromatin structure and how it is established during spermiogenesis, with the aim to list the genetic factors that regulate its organization.


Assuntos
Cromatina/química , Cromatina/genética , Espermatozoides , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Humanos , Masculino , Protaminas/metabolismo , Espermátides , Espermatogênese
7.
Adv Exp Med Biol ; 1166: 149-167, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31301051

RESUMO

Cryopreservation is a technique that can keep sperm alive indefinitely, enabling the conservation of male fertility. It involves the cooling of semen samples and their storage at -196 °C in liquid nitrogen. At this temperature all metabolic processes are arrested. Sperm cryopreservation is of fundamental importance for patients undergoing medical or surgical treatments that could induce sterility, such as cancer patients about to undergo genotoxic chemotherapy or radiotherapy, as it offers these patients not only the hope of future fertility but also psychological support in dealing with the various stages of the treatment protocols.Despite its importance for assisted reproduction technology (ART) and its success in terms of babies born, this procedure can cause cell damage and impaired sperm function. Various studies have evaluated the impact of cryopreservation on chromatin structure, albeit with contradictory results. Some, but not all, authors found significant sperm DNA damage after cryopreservation. However, studies attempting to explain the mechanisms involved in the aetiology of cryopreservation-induced DNA damage are still limited. Some reported an increase in sperm with activated caspases after cryopreservation, while others found an increase in the percentage of oxidative DNA damage. There is still little and contradictory information on the mechanism of the generation of DNA fragmentation after cryopreservation. A number of defensive strategies against cryoinjuries have been proposed in the last decade. Most studies focused on supplementing cryoprotectant medium with various antioxidant molecules, all aimed at minimising oxidative damage and thus improving sperm recovery. Despite the promising results, identification of the ideal antioxidant treatment method is still hampered by the heterogeneity of the studies, which describe the use of different antioxidant regimens at different concentrations or in different combinations. For this reason, additional studies are needed to further investigate the use of antioxidants, individually and in combination, in the cryopreservation of human sperm, to determine the most beneficial conditions for optimal sperm recovery and preservation of fertility.


Assuntos
Cromatina , Criopreservação , Preservação do Sêmen , Cromatina/química , Cromatina/patologia , Criopreservação/métodos , Criopreservação/normas , Crioprotetores , Fragmentação do DNA , Humanos , Masculino , Preservação do Sêmen/métodos , Preservação do Sêmen/normas , Espermatozoides/patologia
8.
Nat Commun ; 10(1): 2908, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31266948

RESUMO

Cohesin and CTCF are master regulators of genome topology. How these ubiquitous proteins contribute to cell-type specific genome structure is poorly understood. Here, we explore quantitative aspects of topologically associated domains (TAD) between pluripotent embryonic stem cells (ESC) and lineage-committed cells. ESCs exhibit permissive topological configurations which manifest themselves as increased inter- TAD interactions, weaker intra-TAD interactions, and a unique intra-TAD connectivity whereby one border makes pervasive interactions throughout the domain. Such 'stripe' domains are associated with both poised and active chromatin landscapes and transcription is not a key determinant of their structure. By tracking the developmental dynamics of stripe domains, we show that stripe formation is linked to the functional state of the cell through cohesin loading at lineage-specific enhancers and developmental control of CTCF binding site occupancy. We propose that the unique topological configuration of stripe domains represents a permissive landscape facilitating both productive and opportunistic gene regulation and is important for cellular identity.


Assuntos
Fator de Ligação a CCCTC/química , Fator de Ligação a CCCTC/metabolismo , Elementos Facilitadores Genéticos , Células-Tronco Pluripotentes/metabolismo , Fator de Ligação a CCCTC/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem da Célula , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Células-Tronco Pluripotentes/química , Ligação Proteica , Domínios Proteicos , Especificidade da Espécie
9.
Genome Biol ; 20(1): 145, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31349852

RESUMO

The CRISPR/Cas9 system is unable to edit all targetable genomic sites with full efficiency in vivo. We show that Cas9-mediated editing is more efficient in open chromatin regions than in closed chromatin regions in rice. A construct (Cas9-TV) formed by fusing a synthetic transcription activation domain to Cas9 edits target sites more efficiently, even in closed chromatin regions. Moreover, combining Cas9-TV with a proximally binding dead sgRNA (dsgRNA) further improves editing efficiency up to several folds. The use of Cas9-TV/dsgRNA thus provides a novel strategy for obtaining efficient genome editing in vivo, especially at nuclease-refractory target sites.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Cromatina/química , Edição de Genes , Ativação Transcricional , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Oryza/genética , RNA/genética , Transativadores/genética
10.
J Chem Phys ; 150(21): 215102, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31176328

RESUMO

A central question in epigenetics is how histone modifications influence the 3D structure of eukaryotic genomes and, ultimately, how this 3D structure is manifested in gene expression. The wide range of length scales that influence the 3D genome structure presents important challenges; epigenetic modifications to histones occur on scales of angstroms, yet the resulting effects of these modifications on genome structure can span micrometers. There is a scarcity of computational tools capable of providing a mechanistic picture of how molecular information from individual histones is propagated up to large regions of the genome. In this work, a new molecular model of chromatin is presented that provides such a picture. This new model, referred to as 1CPN, is structured around a rigorous multiscale approach, whereby free energies from an established and extensively validated model of the nucleosome are mapped onto a reduced coarse-grained topology. As such, 1CPN incorporates detailed physics from the nucleosome, such as histone modifications and DNA sequence, while maintaining the computational efficiency that is required to permit kilobase-scale simulations of genomic DNA. The 1CPN model reproduces the free energies and dynamics of both single nucleosomes and short chromatin fibers, and it is shown to be compatible with recently developed models of the linker histone. It is applied here to examine the effects of the linker DNA on the free energies of chromatin assembly and to demonstrate that these free energies are strongly dependent on the linker DNA length, pitch, and even DNA sequence. The 1CPN model is implemented in the LAMMPS simulation package and is distributed freely for public use.


Assuntos
Cromatina/química , Modelos Químicos , Montagem e Desmontagem da Cromatina , DNA/química , Epigênese Genética , Histonas/química , Conformação de Ácido Nucleico , Nucleossomos/química
11.
Plant Physiol Biochem ; 141: 325-331, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31207493

RESUMO

Type 2C protein phosphatases (PP2Cs) counteract protein kinases, thereby inhibiting the abscisic acid (ABA)-mediated response to abiotic stress in Arabidopsis thaliana. In the absence of stress, the promoters of PP2C genes (e.g., ABI1, ABI2, and HAI1) are negatively regulated by repressors that suppress gene transcription in a signal-independent manner. Quantitative reverse transcription PCR (RT-qPCR) and chromatin immunoprecipitation (ChIP) assays revealed that the levels of PP2C gene transcripts and RNA polymerase II (RNAPII) that stalled at the transcription start sites (TSS) of PP2C gene loci were increased under salt stress. The salt-induced increases in RNA polymerase-mediated transcription were reduced in 35S:AtMYB44 plants, confirming that AtMYB44 acts as a repressor of PP2C gene transcription. ChIP assays revealed that AtMYB44 repressors are released and nucleosomes are evicted from the promoter regions in response to salt stress. Under these conditions, histone H3 acetylation (H3ac) and methylation (H3K4me3) around the TSS regions significantly increased. The salt-induced increases in PP2C gene transcription were reduced in abf3 plants, indicating that ABF3 activates PP2C gene transcription. Overall, our data indicate that salt stress converts PP2C gene chromatin from a repressor-associated suppression status to an activator-mediated transcription status. In addition, we observed that the Arabidopsis mutant brm-3, which is moderately defective in SWI2/SNF2 chromatin remodeling ATPase BRAHMA (BRM) activity, produced more PP2C gene transcripts under salt stress conditions, indicating that BRM ATPase contributes to the repression of PP2C gene transcription.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cromatina/química , Nucleossomos/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Estresse Salino , Trifosfato de Adenosina/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Montagem e Desmontagem da Cromatina , Metilação de DNA , RNA Polimerases Dirigidas por DNA/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Genética
12.
Nat Methods ; 16(6): 489-492, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31133759

RESUMO

Modular domains of long non-coding RNAs can serve as scaffolds to bring distant regions of the linear genome into spatial proximity. Here, we present HiChIRP, a method leveraging bio-orthogonal chemistry and optimized chromosome conformation capture conditions, which enables interrogation of chromatin architecture focused around a specific RNA of interest down to approximately ten copies per cell. HiChIRP of three nuclear RNAs reveals insights into promoter interactions (7SK), telomere biology (telomerase RNA component) and inflammatory gene regulation (lincRNA-EPS).


Assuntos
Cromatina/química , Cromatina/genética , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica , RNA Longo não Codificante/genética , RNA/química , Telomerase/química , Animais , Células Cultivadas , Cromossomos , Células-Tronco Embrionárias/citologia , Genoma , Camundongos , Regiões Promotoras Genéticas , RNA/genética , Telomerase/genética
13.
Nat Commun ; 10(1): 2049, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-31053705

RESUMO

The new advances in various experimental techniques that provide complementary information about the spatial conformations of chromosomes have inspired researchers to develop computational methods to fully exploit the merits of individual data sources and combine them to improve the modeling of chromosome structure. Here we propose GEM-FISH, a method for reconstructing the 3D models of chromosomes through systematically integrating both Hi-C and FISH data with the prior biophysical knowledge of a polymer model. Comprehensive tests on a set of chromosomes, for which both Hi-C and FISH data are available, demonstrate that GEM-FISH can outperform previous chromosome structure modeling methods and accurately capture the higher order spatial features of chromosome conformations. Moreover, our reconstructed 3D models of chromosomes revealed interesting patterns of spatial distributions of super-enhancers which can provide useful insights into understanding the functional roles of these super-enhancers in gene regulation.


Assuntos
Cromossomos/química , Imagem Tridimensional/métodos , Modelos Moleculares , Conformação de Ácido Nucleico , Linhagem Celular , Cromatina/química , Cromatina/genética , Cromossomos/genética , Simulação por Computador , Conjuntos de Dados como Assunto , Elementos Facilitadores Genéticos/genética , Genoma Humano/genética , Humanos , Hibridização in Situ Fluorescente/métodos
14.
Science ; 364(6439)2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-31048460

RESUMO

Studying the genetic basis of gene expression and chromatin organization is key to characterizing the effect of genetic variability on the function and structure of the human genome. Here we unravel how genetic variation perturbs gene regulation using a dataset combining activity of regulatory elements, gene expression, and genetic variants across 317 individuals and two cell types. We show that variability in regulatory activity is structured at the intra- and interchromosomal levels within 12,583 cis-regulatory domains and 30 trans-regulatory hubs that highly reflect the local (that is, topologically associating domains) and global (that is, open and closed chromatin compartments) nuclear chromatin organization. These structures delimit cell type-specific regulatory networks that control gene expression and coexpression and mediate the genetic effects of cis- and trans-acting regulatory variants on genes.


Assuntos
Cromatina/metabolismo , Regulação da Expressão Gênica , Cromatina/química , Variação Genética , Genoma Humano , Humanos , Locos de Características Quantitativas , Elementos Reguladores de Transcrição
15.
Nat Commun ; 10(1): 1930, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31036827

RESUMO

Many chromatin features play critical roles in regulating gene expression. A complete understanding of gene regulation will require the mapping of specific chromatin features in small samples of cells at high resolution. Here we describe Cleavage Under Targets and Tagmentation (CUT&Tag), an enzyme-tethering strategy that provides efficient high-resolution sequencing libraries for profiling diverse chromatin components. In CUT&Tag, a chromatin protein is bound in situ by a specific antibody, which then tethers a protein A-Tn5 transposase fusion protein. Activation of the transposase efficiently generates fragment libraries with high resolution and exceptionally low background. All steps from live cells to sequencing-ready libraries can be performed in a single tube on the benchtop or a microwell in a high-throughput pipeline, and the entire procedure can be performed in one day. We demonstrate the utility of CUT&Tag by profiling histone modifications, RNA Polymerase II and transcription factors on low cell numbers and single cells.


Assuntos
Cromatina/química , Epigenômica/métodos , Perfilação da Expressão Gênica/métodos , Análise de Célula Única/métodos , Coloração e Rotulagem/métodos , Cromatina/metabolismo , Regulação da Expressão Gênica , Biblioteca Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Código das Histonas , Histonas/genética , Histonas/metabolismo , Humanos , Células K562 , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteína Estafilocócica A/genética , Proteína Estafilocócica A/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transposases/genética , Transposases/metabolismo
16.
Nat Commun ; 10(1): 1931, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31036804

RESUMO

Polycomb group (PcG) proteins play critical roles in the epigenetic inheritance of cell fate. The Polycomb Repressive Complexes PRC1 and PRC2 catalyse distinct chromatin modifications to enforce gene silencing, but how transcriptional repression is propagated through mitotic cell divisions remains a key unresolved question. Using reversible tethering of PcG proteins to ectopic sites in mouse embryonic stem cells, here we show that PRC1 can trigger transcriptional repression and Polycomb-dependent chromatin modifications. We find that canonical PRC1 (cPRC1), but not variant PRC1, maintains gene silencing through cell division upon reversal of tethering. Propagation of gene repression is sustained by cis-acting histone modifications, PRC2-mediated H3K27me3 and cPRC1-mediated H2AK119ub1, promoting a sequence-independent feedback mechanism for PcG protein recruitment. Thus, the distinct PRC1 complexes present in vertebrates can differentially regulate epigenetic maintenance of gene silencing, potentially enabling dynamic heritable responses to complex stimuli. Our findings reveal how PcG repression is potentially inherited in vertebrates.


Assuntos
Cromatina/metabolismo , Epigênese Genética , Inativação Gênica , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 2/genética , Processamento de Proteína Pós-Traducional , Animais , Linhagem Celular , Cromatina/química , Retroalimentação Fisiológica , Histonas/genética , Histonas/metabolismo , Padrões de Herança , Camundongos , Mitose , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Transcrição Genética
17.
Nat Commun ; 10(1): 1897, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015486

RESUMO

The cellular decision regarding whether to undergo proliferation or death is made at the restriction (R)-point, which is disrupted in nearly all tumors. The identity of the molecular mechanisms that govern the R-point decision is one of the fundamental issues in cell biology. We found that early after mitogenic stimulation, RUNX3 binds to its target loci, where it opens chromatin structure by sequential recruitment of Trithorax group proteins and cell-cycle regulators to drive cells to the R-point. Soon after, RUNX3 closes these loci by recruiting Polycomb repressor complexes, causing the cell to pass through the R-point toward S phase. If the RAS signal is constitutively activated, RUNX3 inhibits cell cycle progression by maintaining R-point-associated genes in an open structure. Our results identify RUNX3 as a pioneer factor for the R-point and reveal the molecular mechanisms by which appropriate chromatin modifiers are selectively recruited to target loci for appropriate R-point decisions.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Cromatina/química , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Animais , Butadienos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromatina/efeitos dos fármacos , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Subunidade alfa 3 de Fator de Ligação ao Core/antagonistas & inibidores , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Células HEK293 , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Imidazóis/farmacologia , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 4/antagonistas & inibidores , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Nitrilos/farmacologia , Piperazinas/farmacologia , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
18.
Biosci Trends ; 13(2): 152-159, 2019 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-30971639

RESUMO

The objective of this study is to evaluate the predictive value of sperm DNA fragmentation Index (DFI) in unexplained recurrent spontaneous abortion (RSA) and to investigate its correlation with conventional sperm parameters. Besides, we aimed to reveal the necessity of establishing a DFI clinical threshold of each laboratory for the prognostic diagnosis of RSA and establish our own DFI threshold. Semen samples were collected from male partners of RSA patients (n = 139) and healthy recent fathers (control, n = 200). DFI was tested using SCSA and conventional semen analysis was performed using an automatic semen analyzer. The DFI value and distribution were compared between the two groups using corresponding statistical software. The diagnostic threshold value was established by ROC curve. The correlation between DFI and the conventional semen parameters of the 139 cases was further analyzed using Student's t test and Mann-Whitney U test. Our result showed that DFI was significantly higher in RSA patients compared with normal donor controls. We established our own DFI threshold at 13.59%. There was only a weak partial correlation between DFI values and conventional sperm analysis parameters. Our present study suggested that DFI might be used as a valuable predictor for RSA independent of conventional sperm parameters. Additionally, we recommend that each laboratory should establish its own clinical DFI threshold for more precise prediction of RSA and we recommend that sperm DNA fragmentation test should be included in complete sperm quality assessment in addition to conventional semen analysis for RSA male partners.


Assuntos
Aborto Habitual/diagnóstico , Bioensaio/métodos , Cromatina/química , Fragmentação do DNA , Parceiros Sexuais , Espermatozoides/metabolismo , Fluorescência , Humanos , Masculino , Curva ROC
19.
Nat Commun ; 10(1): 1720, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30979890

RESUMO

ATP-dependent chromatin remodelling enzymes (remodellers) regulate DNA accessibility in eukaryotic genomes. Many remodellers reposition (slide) nucleosomes, however, how DNA is propagated around the histone octamer during this process is unclear. Here we examine the real-time coordination of remodeller-induced DNA movements on both sides of the nucleosome using three-colour single-molecule FRET. During sliding by Chd1 and SNF2h remodellers, DNA is shifted discontinuously, with movement of entry-side DNA preceding that of exit-side DNA. The temporal delay between these movements implies a single rate-limiting step dependent on ATP binding and transient absorption or buffering of at least one base pair. High-resolution cross-linking experiments show that sliding can be achieved by buffering as few as 3 bp between entry and exit sides of the nucleosome. We propose that DNA buffering ensures nucleosome stability during ATP-dependent remodelling, and provides a means for communication between remodellers acting on opposite sides of the nucleosome.


Assuntos
Adenosina Trifosfatases/metabolismo , Cromatina/química , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/análise , Nucleossomos/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/química , Animais , Tampões (Química) , DNA Helicases/química , Transferência Ressonante de Energia de Fluorescência , Histonas/química , Humanos , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Xenopus
20.
BMC Genomics ; 20(Suppl 2): 186, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30967119

RESUMO

BACKGROUND: Recent advances in genome analysis have established that chromatin has preferred 3D conformations, which bring distant loci into contact. Identifying these contacts is important for us to understand possible interactions between these loci. This has motivated the creation of the Hi-C technology, which detects long-range chromosomal interactions. Distance geometry-based algorithms, such as ChromSDE and ShRec3D, have been able to utilize Hi-C data to infer 3D chromosomal structures. However, these algorithms, being matrix-based, are space- and time-consuming on very large datasets. A human genome of 100 kilobase resolution would involve ∼30,000 loci, requiring gigabytes just in storing the matrices. RESULTS: We propose a succinct representation of the distance matrices which tremendously reduces the space requirement. We give a complete solution, called SuperRec, for the inference of chromosomal structures from Hi-C data, through iterative solving the large-scale weighted multidimensional scaling problem. CONCLUSIONS: SuperRec runs faster than earlier systems without compromising on result accuracy. The SuperRec package can be obtained from http://www.cs.cityu.edu.hk/~shuaicli/SuperRec .


Assuntos
Algoritmos , Cromatina/química , Cromossomos Humanos/química , Biologia Computacional/métodos , Genoma Humano , Cromatina/genética , Cromossomos Humanos/genética , Simulação por Computador , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA