Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64.187
Filtrar
1.
Int J Mol Sci ; 22(9)2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34063036

RESUMO

Urinary extracellular vesicles (EVs) and their RNA cargo are a novel source of biomarkers for various diseases. We aimed to identify the optimal method for isolating small (<200 nm) EVs from human urine prior to small RNA analysis. EVs from filtered healthy volunteer urine were concentrated using three methods: ultracentrifugation (UC); a precipitation-based kit (PR); and ultrafiltration (UF). EVs were further purified by size-exclusion chromatography (SEC). EV preparations were analysed with transmission electron microscopy (TEM), Western blotting, nanoparticle tracking analysis (NTA) and an Agilent Bioanalyzer Small RNA kit. UF yielded the highest number of particles both before and after SEC. Small RNA analysis from UF-concentrated urine identified two major peaks at 10-40 nucleotides (nt) and 40-80 nt. In contrast, EV preparations obtained after UC, PR or SEC combined with any concentrating method, contained predominantly 40-80 nt sized small RNA. Protein fractions from UF+SEC contained small RNA of 10-40 nt in size (consistent with miRNAs). These data indicate that most of the microRNA-sized RNAs in filtered urine are not associated with small-sized EVs, and highlights the importance of removing non-vesicular proteins and RNA from urine EV preparations prior to small RNA analysis.


Assuntos
Cromatografia em Gel , Vesículas Extracelulares/genética , MicroRNAs/urina , Sistema Livre de Células , Vesículas Extracelulares/ultraestrutura , Humanos , Ultracentrifugação , Ultrafiltração
2.
Food Chem ; 362: 130170, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34091164

RESUMO

Impact of globulin addition on the functional and protein structural properties of dough and cooked noodles were investigated. The underlying mechanism was explored through analyzing the interaction between globulin and gluten by using SDS-PAGE, size exclusion chromatography, free sulfhydryl/disulfide bond analysis, laser scanning confocal microscopy and Fourier transform infrared spectroscopy. Results showed that the stiffness/hardness and maximum resistance of dough and cooked noodles were both increased when globulin addition was 1.5% or higher. Besides, extensibility of cooked noodles was also improved when the addition up to 3.0%. The addition of globulin facilitated weakening the S-S bonds in the gluten network and cross-linked with SDS-soluble gluten mainly through non-covalent interactions, especially hydrophobic interactions. Meanwhile, a more rigid protein network structure was observed. Additionally, following cooking, globulin addition accelerated the aggregation of protein molecules. When the addition reached 3%, the protein conformation was transformed from ß-sheets and random coils to ß-turns.


Assuntos
Farinha , Globulinas/química , Triticum/química , Cromatografia em Gel , Culinária , Dissulfetos/química , Eletroforese em Gel de Poliacrilamida , Farinha/análise , Qualidade dos Alimentos , Glutens/química , Dureza , Interações Hidrofóbicas e Hidrofílicas , Microscopia Confocal , Proteínas de Vegetais Comestíveis/química , Reologia , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Food Chem ; 362: 130249, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34111693

RESUMO

This study aimed to isolate and identify peptides with intense umami taste from tilapia lower jaw. The aqueous extract was separated using ultrafiltration and Sephadex G-15 gel filtration chromatography. The peptide fraction with an intense umami taste was selected by sensory evaluation. The five novel peptides with strong umami taste were VADLMR, STELFK, FVGLQER, DALKKK, and VVLNPVARVE. Electronic tongue analysis and sensory evaluation showed that five peptides had obvious umami taste characteristics, and the recognition thresholds of umami peptides were in the range 0.125-0.250 mg/mL. Molecular docking was used to study the interaction of the peptides and umami taste receptor T1R1/T1R3. The five peptides could perfectly be inserted into the binding pocket of the Venus flytrap domain in the T1R3 subunit. Hydrogen bonding and hydrophobic interaction were the important interaction forces. The five peptides may bind with Asp219, Glu217, and Glu148 in T1R1/T1R3 receptor and produce the umami taste.


Assuntos
Arcada Osseodentária/química , Peptídeos/química , Peptídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Cromatografia em Gel , Nariz Eletrônico , Simulação de Acoplamento Molecular , Ligação Proteica , Paladar , Tilápia
4.
J Chromatogr A ; 1650: 462251, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34062482

RESUMO

The carbon dots (CDs) from natural nanographite oxide mixture (NGO-MIX) and from its fraction NGO (3.5-10K) recovered after ultrafiltration and dialysis were analyzed by 3D-excitation/emission matrix and high-performance size exclusion chromatography (HPSEC) combined with online fluorescence and absorbance detections. HPSEC chromatograms obtained simultaneously with absorption within the wavelength range 200-500 nm and fluorescence detection at λexc/λem = 270/450 nm/nm showed that NGO-MIX sample is not homogeneous and consist of well resolved CDs fractions with different sizes, absorption spectra and distinct fluorescence and non-fluorescence properties. Despite the twice higher fluorescence intensity of fraction NGO (3.5-10K) compared to the NGO-MIX, some impurity of non-fluorescent components was detected by HPSEC. The absorbance spectra of chromatographic peaks, extracted from the data of multi-wavelength absorbance detector, demonstrated different combinations of absorbance maxima. It means that different chromatographic peaks correspond to sized and chemically different CDs fractions. This study demonstrated for the first time the possibility of separating oxidized nanographite into homogeneous free from non-fluorescent material CDs fractions with their simultaneous spectroscopic characterization.


Assuntos
Carbono , Técnicas de Química Analítica , Cromatografia em Gel , Pontos Quânticos , Carbono/análise , Carbono/isolamento & purificação , Técnicas de Química Analítica/instrumentação , Técnicas de Química Analítica/métodos , Fluorescência , Compostos Orgânicos/análise , Pontos Quânticos/análise , Análise Espectral
5.
Molecules ; 26(9)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064416

RESUMO

The objective of this study was to synthesize and characterize a set of biodegradable block copolymers based on TPGS-block-poly(ε-caprolactone) (TPGS-b-PCL) and to assess their self-assembled structures as a nanodelivery system for paclitaxel (PAX). The conjugation of PCL to TPGS was hypothesized to increase the stability and the drug solubilization characteristics of TPGS micelles. TPGS-b-PCL copolymer with various PCL/TPGS ratios were synthesized via ring opening bulk polymerization of ε-caprolactone using TPGS, with different molecular weights of PEG (1-5 kDa), as initiators and stannous octoate as a catalyst. The synthesized copolymers were characterized using 1H NMR, GPC, FTIR, XRD, and DSC. Assembly of block copolymers was achieved via the cosolvent evaporation method. The self-assembled structures were characterized for their size, polydispersity, and CMC using dynamic light scattering (DLS) technique. The results from the spectroscopic and thermal analyses confirmed the successful synthesis of the copolymers. Only copolymers that consisted of TPGS with PEG molecular weights ≥ 2000 Da were able to self-assemble and form nanocarriers of ≤200 nm in diameter. Moreover, TPGS2000-b-PCL4000, TPGS3500-b-PCL7000, and TPGS5000-b-PCL15000 micelles enhanced the aqueous solubility of PAX from 0.3 µg/mL up to 88.4 ug/mL in TPGS5000-b-PCL15000. Of the abovementioned micellar formulations, TPGS5000-b-PCL15000 showed the slowest in vitro release of PAX. Specifically, the PAX-loaded TPGS5000-b-PCL15000 micellar formulation showed less than 10% drug release within the first 12 h, and around 36% cumulative drug release within 72 h compared to 61% and 100% PAX release, respectively, from the commercially available formulation (Ebetaxel®) at the same time points. Our results point to a great potential for TPGS-b-PCL micelles to efficiently solubilize and control the release of PAX.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Paclitaxel/farmacologia , Poliésteres/química , Vitamina E/química , Varredura Diferencial de Calorimetria , Cromatografia em Gel , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Micelas , Nanopartículas/ultraestrutura , Tamanho da Partícula , Poliésteres/síntese química , Espectroscopia de Prótons por Ressonância Magnética , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Vitamina E/síntese química , Água/química , Difração de Raios X
6.
Int J Mol Sci ; 22(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072234

RESUMO

A silica-bound C-butylpyrogallol[4]arene chromatographic stationary phase was prepared and characterised by thermogravimetric analysis, scanning electron microscopy, NMR and mass spectrometry. The chromatographic performance was investigated by using C60 and C70 fullerenes in reverse phase mode via flash column and high-pressure liquid chromatography (HPLC). The resulting new stationary phase was observed to demonstrate size-selective molecular recognition as postulated from our in-silico studies. The silica-bound C-butylpyrogallol[4]arene flash and HPLC stationary phases were able to separate a C60- and C70-fullerene mixture more effectively than an RP-C18 stationary phase. The presence of toluene in the mobile phase plays a significant role in achieving symmetrical peaks in flash column chromatography.


Assuntos
Cromatografia em Gel/métodos , Cromatografia Líquida de Alta Pressão/métodos , Fulerenos/química , Fulerenos/isolamento & purificação , Técnicas de Química Sintética , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Teoria Quântica , Dióxido de Silício/química , Termogravimetria
7.
Int J Mol Sci ; 22(10)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067755

RESUMO

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a member of the colony-stimulating factor (CSF) family, which functions to enhance the proliferation and differentiation of hematopoietic stem cells and other hematopoietic lineages such as neutrophils, dendritic cells, or macrophages. These proteins have thus generated considerable interest in clinical therapy research. A current obstacle to the prokaryotic production of human GM-CSF (hGM-CSF) is its low solubility when overexpressed and subsequent complex refolding processes. In our present study, the solubility of hGM-CSF was examined when combined with three N-terminal fusion tags in five E. coli strains at three different expression temperatures. In the five E. coli strains BL21 (DE3), ClearColi BL21 (DE3), LOBSTR, SHuffle T7 and Origami2 (DE3), the hexahistidine-tagged hGM-CSF showed the best expression but was insoluble in all cases at each examined temperature. Tagging with the maltose-binding protein (MBP) and the b'a' domain of protein disulfide isomerase (PDIb'a') greatly improved the soluble overexpression of hGM-CSF at 30 °C and 18 °C. The solubility was not improved using the Origami2 (DE3) and SHuffle T7 strains that have been engineered for disulfide bond formation. Two conventional chromatographic steps were used to purify hGM-CSF from the overexpressed PDIb'a'-hGM-CSF produced in ClearColi BL21 (DE3). In the experiment, 0.65 mg of hGM-CSF was isolated from a 0.5 L flask culture of these E. coli and showed a 98% purity by SDS-PAGE analysis and silver staining. The bioactivity of this purified hGM-CSF was measured at an EC50 of 16.4 ± 2 pM by a CCK8 assay in TF-1 human erythroleukemia cells.


Assuntos
Cromatografia em Gel/métodos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/isolamento & purificação , Isomerases de Dissulfetos de Proteínas/metabolismo , Diferenciação Celular , Eletroforese em Gel de Poliacrilamida/métodos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Proteínas Ligantes de Maltose/metabolismo , Células Procarióticas/metabolismo , Isomerases de Dissulfetos de Proteínas/fisiologia , Transporte Proteico , Solubilidade
8.
Methods Enzymol ; 652: 105-123, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34059279

RESUMO

Biochemical measurements of ligand binding to eukaryotic membrane proteins are challenging because they can require large amounts of purified protein. For this reason, ligand binding is preferentially evaluated on soluble domains rather than on the full length proteins. In this chapter, we describe the use of fluorescence size exclusion chromatography-based thermostability (FSEC-TS) as an assay to monitor ligand binding to the full length mammalian ion channel HCN4. FSEC-TS monitors the effect of the ligand on the thermal denaturation curve of the protein by following the fluorescence of a fused GFP protein. Changes in the melting temperature (Tm) provide a quantitative value for measuring ligand-protein interaction. As a proof of concept, we describe here the protocol for monitoring the binding of the second messenger cAMP and of the known HCN drug Ivabradine to the purified GFP-HCN4 channel. cTMP, a known non-binder of HCN channels, is used as a control. Due to the small amount of protein required, the assay represents a high-throughput screening system for evaluating binding of small molecules to full length proteins.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Animais , Cromatografia em Gel , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Ligantes
9.
Nucleic Acids Res ; 49(10): 5956-5966, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33999154

RESUMO

Replication of the ∼30 kb-long coronavirus genome is mediated by a complex of non-structural proteins (NSP), in which NSP7 and NSP8 play a critical role in regulating the RNA-dependent RNA polymerase (RdRP) activity of NSP12. The assembly of NSP7, NSP8 and NSP12 proteins is highly dynamic in solution, yet the underlying mechanism remains elusive. We report the crystal structure of the complex between NSP7 and NSP8 of SARS-CoV-2, revealing a 2:2 heterotetrameric form. Formation of the NSP7-NSP8 complex is mediated by two distinct oligomer interfaces, with interface I responsible for heterodimeric NSP7-NSP8 assembly, and interface II mediating the heterotetrameric interaction between the two NSP7-NSP8 dimers. Structure-guided mutagenesis, combined with biochemical and enzymatic assays, further reveals a structural coupling between the two oligomer interfaces, as well as the importance of these interfaces for the RdRP activity of the NSP7-NSP8-NSP12 complex. Finally, we identify an NSP7 mutation that differentially affects the stability of the NSP7-NSP8 and NSP7-NSP8-NSP12 complexes leading to a selective impairment of the RdRP activity. Together, this study provides deep insights into the structure and mechanism for the dynamic assembly of NSP7 and NSP8 in regulating the replication of the SARS-CoV-2 genome, with important implications for antiviral drug development.


Assuntos
COVID-19 , RNA-Polimerase RNA-Dependente de Coronavírus/química , SARS-CoV-2/enzimologia , Proteínas não Estruturais Virais/química , Cromatografia em Gel , RNA-Polimerase RNA-Dependente de Coronavírus/biossíntese , RNA-Polimerase RNA-Dependente de Coronavírus/genética , Cristalografia por Raios X , Dimerização , Modelos Moleculares , Complexos Multiproteicos , Mutagênese , Mutação , Conformação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/genética , Replicação Viral
10.
Nucleic Acids Res ; 49(10): 5956-5966, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: covidwho-1231040

RESUMO

Replication of the ∼30 kb-long coronavirus genome is mediated by a complex of non-structural proteins (NSP), in which NSP7 and NSP8 play a critical role in regulating the RNA-dependent RNA polymerase (RdRP) activity of NSP12. The assembly of NSP7, NSP8 and NSP12 proteins is highly dynamic in solution, yet the underlying mechanism remains elusive. We report the crystal structure of the complex between NSP7 and NSP8 of SARS-CoV-2, revealing a 2:2 heterotetrameric form. Formation of the NSP7-NSP8 complex is mediated by two distinct oligomer interfaces, with interface I responsible for heterodimeric NSP7-NSP8 assembly, and interface II mediating the heterotetrameric interaction between the two NSP7-NSP8 dimers. Structure-guided mutagenesis, combined with biochemical and enzymatic assays, further reveals a structural coupling between the two oligomer interfaces, as well as the importance of these interfaces for the RdRP activity of the NSP7-NSP8-NSP12 complex. Finally, we identify an NSP7 mutation that differentially affects the stability of the NSP7-NSP8 and NSP7-NSP8-NSP12 complexes leading to a selective impairment of the RdRP activity. Together, this study provides deep insights into the structure and mechanism for the dynamic assembly of NSP7 and NSP8 in regulating the replication of the SARS-CoV-2 genome, with important implications for antiviral drug development.


Assuntos
COVID-19 , RNA-Polimerase RNA-Dependente de Coronavírus/química , SARS-CoV-2/enzimologia , Proteínas não Estruturais Virais/química , Cromatografia em Gel , RNA-Polimerase RNA-Dependente de Coronavírus/biossíntese , RNA-Polimerase RNA-Dependente de Coronavírus/genética , Cristalografia por Raios X , Dimerização , Modelos Moleculares , Complexos Multiproteicos , Mutagênese , Mutação , Conformação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/genética , Replicação Viral
11.
Artigo em Inglês | MEDLINE | ID: mdl-33989987

RESUMO

OBJECTIVE: To optimize a screening method for macroprolactinemia and improve the accuracy of free prolactin (freePRL) detection. METHOD: Overall efficiency, calculated as the product of the immunoglobulin G (IgG) precipitation rate and the freePRL recovery rate were employed to determine the concentration of the precipitant polyethylene glycol (PEG). Then, an optimized screening method for macroprolactinemia was established. The concentrations of freePRL, obtained by gel filtration chromatography (GFC), from 66 cases were used as the gold standard, and the sensitivity, specificity, accuracy and precision of the optimized and traditional methods for detecting macroprolactinemia were compared. RESULTS: (1) The IgG precipitation rate increased with increasing PEG6000 concentration, and the freePRL recovery rate decreased with increasing PEG6000 concentration; the overall efficiency first increased and then decreased. When the IgG concentrations in the mixture were 10 g/L, 25 g/L and 40 g/L, the concentrations of PEG6000 with the highest overall efficiency were 24%, 20% and 18%, respectively. (2) The effect of high and low IgG on the overall efficiency was 4.7% when using 20% PEG6000, which was lower than the effects when using 18% or 24% PEG6000 (9.2% and 13.2%). (3) In the optimized method established using 20% PEG6000, the macroprolactin (macroPRL) chromatographic peak disappeared, but the freePRL chromatographic peak was retained. The sensitivity of this macroprolactinemia screening method was 96.7%, and the specificity was 100%. (4) The freePRL concentrations obtained by the optimized method for samples from 30 macroprolactinemia cases and 36 true hyperprolactinemia cases were 15.8 (10.2-21.4) ng/mL and 60.2 (51.8-79.9) ng/mL; the concentrations were similar to those obtained using the GFC method (16.3 (11.9-27.2) ng/mL and 68.1 (49.5-92.9) ng/mL, respectively (p > 0.05)) and higher than those obtained using the traditional method (9.1 (6.1-17.6) ng/mL and 51.4 (43.7-71.9) ng/mL), respectively, p < 0.05)). (5) The relative deviation between the optimized and GFC methods was -7.0%, which was significantly lower than the relative deviation between the traditional and GFC methods (-21.4%, p < 0.01). (6) The in-batch coefficients of variation (CVs) for the dual-level quality control materials measured by the optimized method were 1.88% and 1.87%, and the within-laboratory CVs were 2.55% and 2.29%, which were slightly lower than the in-batch CVs (1.93% and 2.81%) and within-laboratory CVs (2.75% and 2.81%) measured by the traditional method. CONCLUSION: The established optimized method for screening macroprolactinemia using 20% PEG6000 as a precipitant can completely precipitate macroPRL components and effectively retain freePRL components. Compared with traditional methods, the optimized method is simpler, more accurate and more stable for the quantitative detection of freePRL.


Assuntos
Cromatografia em Gel/métodos , Hiperprolactinemia/diagnóstico , Prolactina/sangue , Precipitação Química , Humanos , Imunoglobulina G/química , Polietilenoglicóis/química , Sensibilidade e Especificidade
12.
Food Chem ; 358: 129830, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33940301

RESUMO

While the harmonized INFOGEST model provides a physiologically relevant platform for simulated digestion, it needs to be combined with adequate analytical methods to enable quantification and comparison of protein digestibility in different food matrices. We have shown that size exclusion chromatography (SEC) can be used to estimate the proportion of small peptides potentially available for uptake. Combined with determination of total dissolved protein, the % of small peptides per total protein was calculated as a physiologically relevant estimate of protein digestibility (DSEC). Values for DSEC differed for casein (87.6%), chicken mince (72.6%), heated pea protein concentrate (67.8%), bread (63%), beef entrecote (57.7%) and pea protein concentrate (57.8%). In contrast to existing methods (TCA soluble protein, free NH2-groups), the proposed SEC based method gives separate insight into the two fundamental processes during protein digestion (solubilization and break-down), while maintaining the ability to rank digestibility of very different food proteins.


Assuntos
Cromatografia em Gel/métodos , Proteínas na Dieta/farmacocinética , Análise de Alimentos/métodos , Animais , Pão , Caseínas/farmacocinética , Bovinos , Digestão , Peptídeos/análise , Proteólise , Carne Vermelha , Solubilidade , Proteínas de Soja/farmacocinética
13.
Food Chem ; 360: 130121, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34034051

RESUMO

Polymer chemistry, rheology and cytotoxicity of cysteine initiated S-S redistribution in cold-extruded whey protein (TWPI) molecules were investigated. The locations of disulfide bonds in whey protein isolate (WPI), WPI dried without being extruded (OWPI) and cold-extruded WPI (TWPI), Cysteine (Cys)-treated WPI (WPI-Cys), OWPI (OWPI-Cys) and TWPI (TWPI-Cys) were precisely analyzed using liquid chromatography electrospray ionization tandem mass spectrometry (LC/MS/MS) combined with pLink software approaches. The numbers of intermolecular disulfide cross-linked peptides identified in Cys-treated samples increased by 4, 6 and 1, respectively, in the order of TWPI-Cys, OWPI-Cys and WPI-Cys. Fourier Transform infrared spectroscopy (FTIR) showed cysteine treatment loosed secondary structure of protein samples. Meanwhile, size exclusion chromatography (SEC) assay demonstrated the extensive polymerization in TWPI-Cys. Furthermore, Cys-treatment decreased the gelling temperature of TWPI to 57 °C sharply. Cys-treated TWPI has 19.11 times storage modulus (G') and 25.86 times loss modulus (G") of Cys-untreated TWPI at 85 °C. Additionally, cell viability with Cys addition indicate modified whey proteins are not toxic to human umbilical vein endothelial cells (HUVECs).


Assuntos
Cisteína/química , Dissulfetos/química , Peptídeos/química , Proteínas do Soro do Leite/química , Sequência de Aminoácidos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Células Endoteliais da Veia Umbilical Humana , Humanos , Peptídeos/metabolismo , Peptídeos/farmacologia , Reologia , Espectrometria de Massas por Ionização por Electrospray , Temperatura , Proteínas do Soro do Leite/metabolismo
14.
J Food Sci ; 86(6): 2457-2467, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34056723

RESUMO

Hydrolysates containing angiotensin I-converting enzyme (ACE)-inhibitory peptide were prepared from protein of Alaska pollack skins using alcalase and trypsin. The protein hydrolysate was separated by ultrafiltration, Sephadex G-25 gel filtration chromatography and reversed phase high-performance liquid chromatography (HPLC), from which a novel purified peptide was obtained. Both random coil structure and ß-sheet in the purified peptide were revealed in Fourier transform infrared spectrum. The amino sequence of the purified peptide was identified as GPLGVP, VLYPVK, VFLENVLR, and FEEF by HPLC-Q-TOF-MS (HPLC-quadrupole time-of-flight mass spectrometry). The peptide GPLGVP whose molecular weight was 538.31 Da showed the highest ACE inhibitory activity (IC50  = 105.8 µM). The purified peptide featured a noncompetitive inhibition kinetic mechanism was shown in the Lineweaver-Burk plots and was susceptible to enzymes as indicated in the studies on stability of gastrointestinal proteases. Moreover, the peptide GPLGVP can combine ACE catalytic pocket through hydrogen bonds and other forces with high binding power as disclosed in molecular docking simulation, which provides the inhibitory effect of GPLGVP on ACE.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/isolamento & purificação , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Fragmentos de Peptídeos/isolamento & purificação , Fragmentos de Peptídeos/farmacologia , Peptidil Dipeptidase A/química , Pele/química , Alaska , Animais , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Gadiformes , Hidrólise , Simulação de Acoplamento Molecular , Hidrolisados de Proteína/química
15.
J Vis Exp ; (169)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33871453

RESUMO

The cell wall of Gram-negative bacteria consists of an inner (cytoplasmic) and outer membrane (OM), separated by a thin peptidoglycan layer. Throughout growth, the outer membrane can bleb to form spherical outer membrane vesicles (OMVs). These OMVs are involved in numerous cellular functions including cargo delivery to host cells and communication with bacterial cells. Recently, the therapeutic potential of OMVs has begun to be explored, including their use as vaccines and drug delivery vehicles. Although OMVs are derived from the OM, it has long been appreciated that the lipid and protein cargo of the OMV differs, often significantly, from that of the OM. More recently, evidence that bacteria can release multiple types of OMVs has been discovered, and evidence exists that size can impact the mechanism of their uptake by host cells. However, studies in this area are limited by difficulties in efficiently separating the heterogeneously sized OMVs. Density gradient centrifugation (DGC) has traditionally been used for this purpose; however, this technique is time-consuming and difficult to scale-up. Size exclusion chromatography (SEC), on the other hand, is less cumbersome and lends itself to the necessary future scale-up for therapeutic use of OMVs. Here, we describe a SEC approach that enables reproducible separation of heterogeneously sized vesicles, using as a test case, OMVs produced by Aggregatibacter actinomycetemcomitans, which range in diameter from less than 150 nm to greater than 350 nm. We demonstrate separation of "large" (350 nm) OMVs and "small" (<150 nm) OMVs, verified by dynamic light scattering (DLS). We recommend SEC-based techniques over DGC-based techniques for separation of heterogeneously sized vesicles due to its ease of use, reproducibility (including user-to-user), and possibility for scale-up.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Cromatografia em Gel/métodos , Heterogeneidade Genética , Reprodutibilidade dos Testes
16.
EMBO J ; 40(11): e102277, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1194823

RESUMO

The ongoing outbreak of severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) demonstrates the continuous threat of emerging coronaviruses (CoVs) to public health. SARS-CoV-2 and SARS-CoV share an otherwise non-conserved part of non-structural protein 3 (Nsp3), therefore named as "SARS-unique domain" (SUD). We previously found a yeast-2-hybrid screen interaction of the SARS-CoV SUD with human poly(A)-binding protein (PABP)-interacting protein 1 (Paip1), a stimulator of protein translation. Here, we validate SARS-CoV SUD:Paip1 interaction by size-exclusion chromatography, split-yellow fluorescent protein, and co-immunoprecipitation assays, and confirm such interaction also between the corresponding domain of SARS-CoV-2 and Paip1. The three-dimensional structure of the N-terminal domain of SARS-CoV SUD ("macrodomain II", Mac2) in complex with the middle domain of Paip1, determined by X-ray crystallography and small-angle X-ray scattering, provides insights into the structural determinants of the complex formation. In cellulo, SUD enhances synthesis of viral but not host proteins via binding to Paip1 in pBAC-SARS-CoV replicon-transfected cells. We propose a possible mechanism for stimulation of viral translation by the SUD of SARS-CoV and SARS-CoV-2.


Assuntos
Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Regulação Viral da Expressão Gênica , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Vírus da SARS/fisiologia , SARS-CoV-2/fisiologia , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias , Cromatografia em Gel , Proteases Semelhantes à Papaína de Coronavírus/química , Cristalografia por Raios X , Genes Reporter , Células HEK293 , Humanos , Imunoprecipitação , Proteínas Luminescentes , Modelos Moleculares , Fatores de Iniciação de Peptídeos/química , Ligação Proteica , Biossíntese de Proteínas , Conformação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas , RNA Viral/genética , Proteínas de Ligação a RNA/química , RNA Polimerase Dependente de RNA/química , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Subunidades Ribossômicas/metabolismo , Vírus da SARS/genética , SARS-CoV-2/genética , Espalhamento a Baixo Ângulo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Proteínas não Estruturais Virais/química , Difração de Raios X
17.
Nucleic Acids Res ; 49(8): 4599-4612, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33849056

RESUMO

The eukaryotic replisome is comprised of three family-B DNA polymerases (Polα, δ and ϵ). Polα forms a stable complex with primase to synthesize short RNA-DNA primers, which are subsequently elongated by Polδ and Polϵ in concert with proliferating cell nuclear antigen (PCNA). In some species of archaea, family-D DNA polymerase (PolD) is the only DNA polymerase essential for cell viability, raising the question of how it alone conducts the bulk of DNA synthesis. We used a hyperthermophilic archaeon, Thermococcus kodakarensis, to demonstrate that PolD connects primase to the archaeal replisome before interacting with PCNA. Whereas PolD stably connects primase to GINS, a component of CMG helicase, cryo-EM analysis indicated a highly flexible PolD-primase complex. A conserved hydrophobic motif at the C-terminus of the DP2 subunit of PolD, a PIP (PCNA-Interacting Peptide) motif, was critical for the interaction with primase. The dissociation of primase was induced by DNA-dependent binding of PCNA to PolD. Point mutations in the alternative PIP-motif of DP2 abrogated the molecular switching that converts the archaeal replicase from de novo to processive synthesis mode.


Assuntos
Proteínas Arqueais/metabolismo , DNA Helicases/metabolismo , DNA Polimerase III/metabolismo , DNA Primase/química , Antígeno Nuclear de Célula em Proliferação/metabolismo , Thermococcus/metabolismo , Motivos de Aminoácidos , Proteínas Arqueais/química , Cromatografia em Gel , DNA Helicases/genética , DNA Polimerase III/química , DNA Primase/genética , DNA Primase/metabolismo , Escherichia coli/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Mutagênese Sítio-Dirigida , Eletroforese em Gel de Poliacrilamida Nativa , Antígeno Nuclear de Célula em Proliferação/genética , Ligação Proteica , Proteínas Recombinantes , Ressonância de Plasmônio de Superfície , Thermococcus/genética
18.
Nucleic Acids Res ; 49(8): 4768-4781, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33856462

RESUMO

Telomerase plays critical roles in cellular aging, in the emergence and/or development of cancer, and in the capacity for stem-cell renewal, consists of a catalytic telomerase reverse transcriptase (TERT) and a template-encoding RNA (TER). TERs from diverse organisms contain two conserved structural elements: the template-pseudoknot (T-PK) and a helical three-way junction (TWJ). Species-specific features of the structure and function of telomerase make obtaining a more in-depth understanding of the molecular mechanism of telomerase particularly important. Here, we report the first structural studies of N-terminally truncated TERTs from Candida albicans and Candida tropicalis in apo form and complexed with their respective TWJs in several conformations. We found that Candida TERT proteins perform only one round of telomere addition in the presence or absence of PK/TWJ and display standard reverse transcriptase activity. The C-terminal domain adopts at least two extreme conformations and undergoes conformational interconversion, which regulates the catalytic activity. Most importantly, we identified a conserved tertiary structural motif, called the U-motif, which interacts with the reverse transcriptase domain and is crucial for catalytic activity. Together these results shed new light on the structure and mechanics of fungal TERTs, which show common TERT characteristics, but also display species-specific features.


Assuntos
Motivos de Aminoácidos , Candida albicans/química , Candida tropicalis/química , Domínio Catalítico , Telomerase/química , Motivos de Aminoácidos/genética , Candida albicans/enzimologia , Candida tropicalis/enzimologia , Catálise , Domínio Catalítico/genética , Cromatografia em Gel , Cristalografia por Raios X , Difusão Dinâmica da Luz , Escherichia coli/metabolismo , Técnicas In Vitro , Modelos Moleculares , Mutação , Proteínas Recombinantes , Telomerase/genética
19.
EMBO J ; 40(11): e102277, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33876849

RESUMO

The ongoing outbreak of severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) demonstrates the continuous threat of emerging coronaviruses (CoVs) to public health. SARS-CoV-2 and SARS-CoV share an otherwise non-conserved part of non-structural protein 3 (Nsp3), therefore named as "SARS-unique domain" (SUD). We previously found a yeast-2-hybrid screen interaction of the SARS-CoV SUD with human poly(A)-binding protein (PABP)-interacting protein 1 (Paip1), a stimulator of protein translation. Here, we validate SARS-CoV SUD:Paip1 interaction by size-exclusion chromatography, split-yellow fluorescent protein, and co-immunoprecipitation assays, and confirm such interaction also between the corresponding domain of SARS-CoV-2 and Paip1. The three-dimensional structure of the N-terminal domain of SARS-CoV SUD ("macrodomain II", Mac2) in complex with the middle domain of Paip1, determined by X-ray crystallography and small-angle X-ray scattering, provides insights into the structural determinants of the complex formation. In cellulo, SUD enhances synthesis of viral but not host proteins via binding to Paip1 in pBAC-SARS-CoV replicon-transfected cells. We propose a possible mechanism for stimulation of viral translation by the SUD of SARS-CoV and SARS-CoV-2.


Assuntos
Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Regulação Viral da Expressão Gênica , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Vírus da SARS/fisiologia , SARS-CoV-2/fisiologia , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias , Cromatografia em Gel , Proteases Semelhantes à Papaína de Coronavírus/química , Cristalografia por Raios X , Genes Reporter , Células HEK293 , Humanos , Imunoprecipitação , Proteínas Luminescentes , Modelos Moleculares , Fatores de Iniciação de Peptídeos/química , Ligação Proteica , Biossíntese de Proteínas , Conformação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas , RNA Viral/genética , Proteínas de Ligação a RNA/química , RNA Polimerase Dependente de RNA/química , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Subunidades Ribossômicas/metabolismo , Vírus da SARS/genética , SARS-CoV-2/genética , Espalhamento a Baixo Ângulo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Proteínas não Estruturais Virais/química , Difração de Raios X
20.
Macromol Rapid Commun ; 42(10): e2100118, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33834582

RESUMO

The preparation of polymers containing sulfur-nitrogen bond derivatives, particularly 2,2,6,6-tetramethylpiperidine-1-sulfanyl (TEMPS) dimers (i.e., BiTEMPS), has been limited to free-radical or conventional step-growth polymerization as result of the inherent thermal lability of the BiTEMPS unit. Accordingly, a novel poly(diaminodisulfide) possessing the BiTEMPS functional group is synthesized via acyclic diene metathesis (ADMET) polymerization at 65-75 °C within 3 h with precise control over the primary polymer structure. Polymer is isolated with an Mn of 20 400 g mol-1 and Ð of 1.9. Importantly, detailed nuclear magnetic resonance (NMR), size exclusion chromatography, attenuated total reflectance Fourier transform infrared (ATR-IR) in addition to elemental analysis studies of the BiTEMPS polymer confirm the successful polymerization, and show that the BiTEMPS unit remains intact during the polymerization process. Furthermore, the previously unexplored UV-responsiveness of the BiTEMPS decorated polymer backbone is investigated for the very first time.


Assuntos
Polienos , Polímeros , Cromatografia em Gel , Piperidinas , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...