Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.303
Filtrar
1.
Environ Pollut ; 340(Pt 2): 122712, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37813144

RESUMO

The dragonfly species Orthetrum albistylum, can accumulate heavy metals from its aquatic environment and thus serves as a biological indicator for monitoring and evaluating water quality. Heat shock proteins (HSPs) play important biological roles in resistance to various types of environmental stress. The full-length cDNA sequences of the heat shock cognate (hsc) 70 and heat shock protein (hsp) 70 genes were cloned from O. albistylum larvae. Relative levels of expression of hsc70 and hsp70 in the head, epidermis, midgut, and adipose tissue were measured by qRT-PCR after chronic and acute contamination of 5-8 instar larvae with chromium (Cr) solution, and under control conditions. Activities of superoxide dismutase (SOD) and catalase (CAT) in chronically contaminated larvae were also measured. Phylogenetic analysis revealed that the cloned hsc70 and hsp70 genes were highly homologous to known HSP70 family members reported in other insects. The mRNA levels of hsc70 and hsp70 did not differ significantly in various larval tissues. Under chronic chromium stress, hsc70 and hsp70 expression were upregulated to a maximum and then downregulated; hsp70 mRNA levels were higher than those of hsc70 at all concentrations of chromium. Under acute chromium stress, hsc70 expression was inhibited at low chromium concentrations and upregulated at chromium concentrations higher than 125 mg/L. However, hsp70 expression was higher than that in the control group and markedly higher than that of hsc70. Changes in SOD and CAT activities displayed consistent trends for different chronic chromium concentrations, first increasing and then decreasing over time. Collectively, these findings demonstrated the response of the HSP family of genes and antioxidant enzymes following exposure to heavy metal stress, as well as their potential applicability as biomarkers for monitoring environmental pollutants.


Assuntos
Proteínas de Choque Térmico , Odonatos , Animais , Antioxidantes , Cromo/toxicidade , Larva , Filogenia , Proteínas de Choque Térmico HSP70/genética , Superóxido Dismutase/genética , RNA Mensageiro
2.
Artigo em Inglês | MEDLINE | ID: mdl-37884255

RESUMO

We have developed a zebrafish model to explore the alterations in neurobehaviors resulting from both acute and chronic exposure to chromium (Cr). Zebrafish exposed to half (HC group: 19.7 mg/L) and a quarter (LC group: 9.85 mg/L) of the LD50 concentration of Cr for a span of 2 weeks exhibited aberrant locomotion, heightened anxiety, cognitive impairment, and reduced aggression - hallmark traits reminiscent of an Alzheimer's Disease (AD)-like syndrome. Furthermore, zebrafish exposed to an environmentally relevant concentration of Cr (EC group: 100 µg/L) for an extended period of 9 weeks exhibited behaviors comparable to those observed in the HC group. Moreover, the study investigated the neuroprotective effects of donepezil (Don), galantamine (Gal) and resveratrol (Res) drugs in response to neurobehavioral impairments induced by Cr (VI) exposure in zebrafish. Don and Res effectively protect the zebrafish from Cr (VI)-induced anxiety, and memory impairment. Furthermore, Cr (VI) exposure induced heightened oxidative stress while simultaneously diminishing antioxidant enzyme levels. Remarkably, these effects were counteracted in the drug-treated groups. Likewise, exposure to Cr (VI) led to an increase in the expression of genes linked to AD and neuroinflammation. Nevertheless, drug treatment reversed this effect in Cr (VI)-exposed fish. The results of our study highlight the potentials of zebrafish model in demonstrating neurobehavioral impairments induced by Cr (VI), thereby paving the way for its utilization in vivo neurobehaviors investigations and pharmaceutical screening.


Assuntos
Cromo , Peixe-Zebra , Animais , Cromo/toxicidade , Peixe-Zebra/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo
3.
Sci Total Environ ; 908: 168208, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37914115

RESUMO

In recent years, the use of plant hormones, such as abscisic acid (ABA) and 6-benzylaminopurine (6-BAP), has gained significant attention for their role in mitigating abiotic stresses across various plant species. These hormones have been shown to play a vital role in enhancing the ascorbate-glutathione cycle and eliciting a wide range of plant growth and biomass, photosynthetic efficiency, oxidative stress and response of antioxidants and other physiological responses. While previous research has been conducted on the individual impact of ABA and 6-BAP in metal stress resistance among various crop species, their combined effects in the context of heavy metal-stressed conditions remain underexplored. The current investigation is to assess the beneficial effects of single and combined ABA (5 and 10 µM L-1) and 6-BAP (5 and 10 µM L-1) applications in rice (Oryza sativa L.) cultivated in chromium (Cr)-contaminated soil (100 µM). Our results showed that the Cr toxicity in the soil showed a significant declined in the growth, gas exchange attributes, sugars, AsA-GSH cycle, cellular fractionation, proline metabolism in O. sativa. However, Cr toxicity significantly increased oxidative stress biomarkers, organic acids, enzymatic and non-enzymatic antioxidants including their gene expression in O. sativa seedlings. Although, the application of ABA and 6-BAP showed a significant increase in the plant growth and biomass, gas exchange characteristics, enzymatic and non-enzymatic compounds and their gene expression and also decreased the oxidative stress, And Cr uptake. In addition, individual or combined application of ABA and 6-BAP enhanced the cellular fractionation and decreases the proline metabolism and AsA-GSH cycle in rice plants. These results open new insights for sustainable agriculture practices and hold immense promise in addressing the pressing challenges of heavy metal contamination in agricultural soils.


Assuntos
Ácido Abscísico , Oryza , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Oryza/metabolismo , Cromo/toxicidade , Cromo/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo , Plântula , Solo , Prolina/metabolismo , Prolina/farmacologia
4.
J Hazard Mater ; 463: 132882, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37939559

RESUMO

The simulated in-vitro gastrointestinal method provides a simple way to evaluate the health risk of human body exposed to soil contaminants. Several in-vitro methods have been successfully established for soil As, Pb, and Cd. However, the method development for soil Cr failed up to now, which could be resulted from alteration in the species of Cr (e.g., Cr(VI)/Cr(III)) caused by the gastrointestinal digestion components, ultimately affecting the accessibility of Cr. This study explored the transformation and bioaccessibility of Cr in two Cr-contaminated soils during the physiologically based extraction test. The water-soluble and exchangeable Cr in soil was dissolved in gastrointestinal tract, accompanied with reduction of Cr(VI) into Cr(III), and the reduction occurred after the chemical extraction in two soils rather than during the extraction. Pepsin and organic acids in gastric phase could reduce Cr(VI) into Cr(III) and reduction efficiency were 20.4%- 53.0%, while in intestinal phase, pancreatin and bile salt had little effect on the Cr(VI) reduction, instead, more Cr(VI) was released from soil. In the gastric solution, Cr(VI) was mainly present as HCrO4- and Cr(III) as free Cr3+ ion. In the intestinal phase, Cr(VI) mainly occurred as CrO42- and Cr(III) as Cr(OH)3 (aq). Cr in the soil solid phase was dominated as the precipitates of Cr-Fe oxide, which was hardly extracted. Bioaccessibility of Cr in gastric phase increased as extraction duration increased and decreased in the intestinal phase, the contrary trend was observed for the hazard quotient of Cr in two phases due to Cr(VI)/Cr(III) transformation. This study indicates that the gastrointestinal components could influence the Cr transformation and subsequently affect the Cr bioaccessibility, which would help for a successful establishment of in vitro determination method for soil Cr bioaccessibility.


Assuntos
Poluentes do Solo , Solo , Humanos , Cromo/toxicidade , Cromo/análise , Estômago/química , Digestão , Poluentes do Solo/análise
5.
J Hazard Mater ; 461: 132485, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-37714006

RESUMO

Cr(VI) released into the environment inevitably co-exists with other contaminants, such as heavy metal ions, thus altering the performance of bacteria for Cr(VI) reduction; however, the mechanism underlying Cr(VI)-reducing bacterial response to heavy metal ions remains elusive. Herein, we investigate the toxic effects of Cu(II) and Cr(VI) on Cr(VI)-reducing bacterium Pannonibacter phragmitetus D-6 (hereafter D-6), which changes the primary metabolic pattern of Cr(VI). At Cu(II) concentrations of 10-100 mg/L, the efficiency of Cr(VI) reduction increases significantly. The co-exposure of Cr(VI) and Cu(II) induces D-6 to preferentially respond to Cu(II) through electrostatic forces, which is then reduced to Cu(I) outside and inside the bacterial cells. The original pathways for Cr(VI) reduction are weakened via downregulating genes related to Cr(VI) transport and reduction. A new mechanism involving Cu(II)-mediated electron transfer from D-6 to Cr(VI) is elucidated. Specially, Cu(II) accumulates around the cells as an electron shuttle and promotes Cr(VI) reduction. Genes encoding cytochromes involved in electron transfer are significantly up-regulated, thus promoting Cu(II) reduction. The Cu(II)/Cu(I) redox cycle ensures the continuous bioremoval of Cr(VI) in a cycle test. This study reveals an overlooked mechanism for Cr(VI) reduction, which provides theoretical guidance for designing practical microbial process to remediate Cr(VI) contamination.


Assuntos
Cobre , Metais Pesados , Elétrons , Cromo/toxicidade , Cromo/metabolismo , Metais Pesados/metabolismo , Oxirredução , Bactérias/metabolismo , Íons
6.
Sci Rep ; 13(1): 21220, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040785

RESUMO

Food safety has become a serious global concern because of the accumulation of potentially toxic metals (PTMs) in crops cultivated on contaminated agricultural soils. Amongst these toxic elements, arsenic (As), cadmium (Cd), chromium (Cr), and lead (Pb) receive worldwide attention because of their ability to cause deleterious health effects. Thus, an assessment of these toxic metals in the soils, irrigation waters, and the most widely consumed vegetables in Nigeria; Spinach (Amaranthushybridus), and Cabbage (Brassica oleracea) was evaluated using inductively coupled plasma-optical emission spectroscopy (ICP-OES). The mean concentration (measured in mg kg-1) of the PTMs in the soils was in the sequence Cr (81.77) > Pb(19.91) > As(13.23) > Cd(3.25), exceeding the WHO recommended values in all cases. This contamination was corroborated by the pollution evaluation indices. The concentrations (measured in mg l-1) of the PTMs in the irrigation water followed a similar pattern i.e. Cr(1.87) > Pb(1.65) > As(0.85) > Cd(0.20). All the PTMs being studied, were found in the vegetables with Cr (5.37 and 5.88) having the highest concentration, followed by Pb (3.57 and 4.33), and As (1.09 and 1.67), while Cd (0.48 and 1.04) had the lowest concentration (all measured in mg kg-1) for cabbage and spinach, respectively. The concentration of the toxic metals was higher in spinach than in cabbage, which may be due to the redistribution of the greater proportion of the metals above the ground tissue, caused by the bioavailability of metals in the aqueous phase. Expectedly, the hazard index (HI),and carcinogenic risk values of spinach were higher than that of cabbage. This implies that spinach poses potentially higher health risks. Similarly, the Monte Carlo simulation results reveal that the 5th percentile, 95th percentile, and 50th percentile of the cumulative probability of cancer risks due to the consumption of these vegetables exceeds the acceptable range of 1.00E-6 and 1.00E-4. Thus, the probable risk of a cancerous effect is high, and necessary remedial actions are recommended.


Assuntos
Arsênio , Brassica , Metais Pesados , Poluentes do Solo , Humanos , Verduras/química , Metais Pesados/análise , Cádmio/toxicidade , Solo/química , Método de Monte Carlo , Chumbo , Intoxicação por Metais Pesados , Arsênio/toxicidade , Cromo/toxicidade , Água , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Medição de Risco/métodos , Monitoramento Ambiental
7.
BMC Plant Biol ; 23(1): 535, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37919670

RESUMO

BACKGROUND: Chromium (Cr) contamination in soil poses a serious hazard because it hinders plant growth, which eventually reduces crop yield and raises the possibility of a food shortage. Cr's harmful effects interfere with crucial plant functions like photosynthesis and respiration, reducing energy output, causing oxidative stress, and interfering with nutrient intake. In this study, the negative effects of Cr on mung beans are examined, as well as investigate the effectiveness of Azospirillum brasilense and salicylic acid in reducing Cr-induced stress. RESULTS: We investigated how different Cr levels (200, 300, and 400 mg/kg soil) affected the growth of mung bean seedlings with the use of Azospirillum brasilense and salicylic acid. Experiment was conducted with randomized complete block design with 13 treatments having three replications. Significant growth retardation was caused by Cr, as were important factors like shoot and root length, plant height, dry weight, and chlorophyll content significantly reduced. 37.15% plant height, 71.85% root length, 57.09% chlorophyll contents, 82.34% crop growth rate was decreased when Cr toxicity was @ 50 µM but this decrease was remain 27.80%, 44.70%, 38.97% and 63.42%, respectively when applied A. brasilense and Salicylic acid in combine form. Use of Azospirillum brasilense and salicylic acid significantly increased mung bean seedling growth (49%) and contributed to reducing the toxic effect of Cr stress (34% and 14% in plant height, respectively) due to their beneficial properties in promoting plant growth. CONCLUSIONS: Mung bean seedlings are severely damaged by Cr contamination, which limits their growth and physiological characteristics. Using Azospirillum brasilense and salicylic acid together appears to be a viable way to combat stress brought on by Cr and promote general plant growth. Greater nutrient intake, increased antioxidant enzyme activity, and greater root growth are examples of synergistic effects. This strategy has the ability to reduce oxidative stress brought on by chromium, enhancing plant resistance to adverse circumstances. The study offers new perspectives on sustainable practices that hold potential for increasing agricultural output and guaranteeing food security.


Assuntos
Azospirillum brasilense , Fabaceae , Vigna , Antioxidantes/farmacologia , Clorofila , Cromo/toxicidade , Folhas de Planta , Ácido Salicílico/farmacologia , Solo
8.
World J Microbiol Biotechnol ; 40(1): 21, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37996766

RESUMO

Cr(VI) is a hazardous environmental pollutant that poses significant risks to ecosystems and human health. We successfully isolated a novel strain of Bacillus mobilis, strain CR3, from Cr(VI)-contaminated soil. Strain CR3 showed 86.70% removal capacity at 200 mg/L Cr(VI), and a good Cr(VI) removal capacity at different pH, temperature, coexisting ions, and electron donor conditions. Different concentrations of Cr(VI) affected the activity of CR3 cells and the removal rate of Cr(VI), and approximately 3.46% of total Cr was immobilized at the end of the reaction. The combination of SEM-EDS and TEM-EDS analysis showed that Cr accumulated both on the cell surface and inside the cells after treatment with Cr(VI). XPS analysis showed that both Cr(III) and Cr(VI) were present on the cell surface, and FTIR results indicated that the presence of Cr on the cell surface was mainly related to functional groups, such as O-H, phosphate, and -COOH. The removal of Cr(VI) was mainly achieved through bioreduction, which primarily occurred outside the cell. Metabolomics analysis revealed the upregulation of five metabolites, including phenol and L-carnosine, was closely associated with Cr(VI) reduction, heavy metal chelation, and detoxification mechanisms. In addition, numerous metabolites were linked to cellular homeostasis exhibited differential expression. Cr(VI) exerted inhibitory effects on the division rate and influenced critical pathways, including energy metabolism, nucleotide metabolism, and amino acid synthesis and catabolism. These findings reveal the molecular mechanism of Cr(VI) removal by strain CR3 and provide valuable insights to guide the remediation of Cr(VI)-contaminated sites.


Assuntos
Bacillus , Ecossistema , Humanos , Bacillus/genética , Bacillus/metabolismo , Cromo/toxicidade , Cromo/metabolismo , Biodegradação Ambiental
9.
Chemosphere ; 345: 140495, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865204

RESUMO

Chromium (Cr) is classified as a toxic metal as it exerts harmful effects on plants and human life. Bacterial-assisted nano-phytoremediation is an emerging and environment friendly technique that can be used for the detoxification of such pollutants. In current study, pot experiment was conducted in which spinach plants were grown in soil containing chromium (0, 5, 10, 20 mgkg-1) and treated with selected strain of Bacillus sp. and Cu-O nanoparticle (CuONPs). Data related to plant's growth, physiological parameters, and biochemical tests was collected and analyzed using an appropriate statistical test. It was observed that under chromium stress, all plant's growth parameters were significantly enhanced in response to co-application of CuONPs and Bacillus sp. Similarly, higher levels of catalase, superoxide dismutase, malondialdehyde, and hydrogen peroxide were also observed. However, contents of anthocyanin, carotenoid, total chlorophyll, chlorophyll a & b, were lowered under chromium stress, which were raised in response to the combined application of CuONPs and Bacillus sp. Moreover, this co-application has significant positive effect on total soluble protein, free amino acid, and total phenolics. From this study, it was evident that combined application of Bacillus sp. and CuONP alleviated metal-induced toxicity in spinach plants. The findings from current study may provide new insights for agronomic research for the utilization of bacterial-assisted nano-phytoremediation of contaminated sites.


Assuntos
Bacillus , Nanopartículas , Poluentes do Solo , Humanos , Cromo/toxicidade , Cromo/metabolismo , Cobre/toxicidade , Cobre/metabolismo , Spinacia oleracea/metabolismo , Solo/química , Clorofila A/metabolismo , Bacillus/metabolismo , Biodegradação Ambiental , Nanopartículas/toxicidade , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo
10.
Toxicol Appl Pharmacol ; 479: 116711, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37805091

RESUMO

Hexavalent chromium [Cr(VI)] is a human lung carcinogen with widespread exposure risks. Cr(VI) causes DNA double strand breaks that if unrepaired, progress into chromosomal instability (CIN), a key driving outcome in Cr(VI)-induced tumors. The ability of Cr(VI) to cause DNA breaks and inhibit repair is poorly understood in human lung epithelial cells, which are extremely relevant since pathology data show Cr(VI)-induced tumors originate from bronchial epithelial cells. In the present study, we considered immortalized and primary human bronchial epithelial cells. Cells were treated with zinc chromate at concentrations ranging 0.05 to 0.4µg/cm2 for acute (24 h) and prolonged (120 h) exposures. DNA double strand breaks (DSBs) were measured by neutral comet assay and the status of homologous recombination repair, the main pathway to fix Cr(VI)-induced DSBs, was measured by RAD51 foci formation with immunofluorescence, RAD51 localization with confocal microscopy and sister chromatid exchanges. We found acute and prolonged Cr(VI) exposure induced DSBs. Acute exposure induced homologous recombination repair, but prolonged exposure inhibited it resulting in chromosome instability in immortalized and primary human bronchial epithelial cells.


Assuntos
Cromo , Neoplasias , Humanos , Cromo/toxicidade , Cromo/metabolismo , Pulmão/metabolismo , Instabilidade Cromossômica , Células Epiteliais/metabolismo , Neoplasias/metabolismo , DNA/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo
11.
Environ Geochem Health ; 45(12): 9691-9707, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37812370

RESUMO

This study focuses on a flushing-electrokinetic remediation technology of hexavalent chromium from the chromium slag dump site. A suspension of nanoscale zero-valent iron/nickel fabricated from green tea (GT-nZVI/Ni), was employed as an eluent to degrade Cr (VI) and enhance the remediation effectiveness of a single EK. The removal efficiency of Cr (VI) was compared under different voltages, electrode spacings and pH values of the anolyte. The results demonstrated that the combined flushing and EK achieved a removal rate of Cr (VI) in the soil throughout all the experiments ranging from 83.08 to 96.97% after 120 h. The optimal result was obtained when the voltage was 28 V, the pH value of anolyte was 3 and the electrode spacing was 15 cm. The removal of Cr (VI) reached 91.49% and the energy consumption was 0.32606 kW·h·g-1. The underlying mechanisms responsible for the removal of Cr (VI) by GT-nZVI/Ni flushing-EK primarily involved electromigration, reduction and adsorption co-precipitation processes. The fractionation analysis of Cr (VI) concentration in the soil after remediation showed that the presence of GT-nZVI/Ni facilitated the conversion of Cr (VI) into oxidizable and residual states with low mobility and toxicity. The results of toxicity characteristic leaching procedure (TCLP) indicated that the leaching concentration of Cr (VI) was below 1 mg·L-1, complying with the standards set by the Environmental Protection Agency. Additionally, the phytotoxicity testing revealed that the germination index (GI) of the remediated soil reached 54.75%, indicating no potential harm to plants.


Assuntos
Recuperação e Remediação Ambiental , Poluentes Químicos da Água , Ferro/análise , Níquel/análise , Chá , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Solo , Cromo/toxicidade , Cromo/análise , Adsorção
12.
Environ Geochem Health ; 45(12): 9757-9784, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37843689

RESUMO

This study aimed to determine the environmental and health risks of the heavy metal levels in the Danube River in Hungary. The metals, including Fe, Mn, Zn, Cu, Ni, Cr, Pb, and As, were measured in the period from 2013 to 2019. The Spearman correlation and heatmap cluster analysis were utilized to determine the origin of pollution and the factors that control surface water quality. Several indices, such as the heavy metal pollution index (HPI), metal index (MI), hazard quotient oral and dermal (HQ), hazard index oral and dermal (HI), and carcinogenic risk (CR), were conducted to evaluate the potential risks for the environment and human health. The values of the HPI were between the range of 15 < HPI < 30, which indicated moderate pollution; however, the MI results showed high pollution in Dunaföldvár and Hercegszántó cities. The ecological risk (RI < 30) and HI values (< 1) showed low environmental risks and non-carcinogenic impacts of the existing metals, either on adults or children. The mean CR value of oral arsenic was 2.2E-04 and 2.5E-04 during April-September and October-March, respectively, indicating that children were the most vulnerable to arsenic-carcinogenic oral effects. While lead's CR oral values for children during April-September exceeded the threshold of 1.0E-04, chromium's oral and dermal CR values for both adults and children were 2.08E-04, 6.11E-04, 1.97E-04, and 5.82E-04 during April-September and October-March, respectively. These results demonstrate the potential carcinogenic risks related to chromium exposure within the two pathways in Hungary and highlight the need for effective measures to mitigate these risks.


Assuntos
Arsênio , Boidae , Metais Pesados , Criança , Adulto , Animais , Humanos , Arsênio/toxicidade , Arsênio/análise , Rios , Hungria , Método de Monte Carlo , Monitoramento Ambiental , Metais Pesados/toxicidade , Metais Pesados/análise , Cromo/toxicidade , Cromo/análise , Medição de Risco , China
13.
Regul Toxicol Pharmacol ; 145: 105521, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37863416

RESUMO

Hexavalent chromium [Cr(VI)] is present in drinking water from natural and anthropogenic sources at approximately 1 ppb. Several regulatory bodies have recently developed threshold-based safety criteria for Cr(VI) of 30-100 ppb based on evidence that small intestine tumors in mice following exposure to ≥20,000 ppb are the result of a non-mutagenic mode of action (MOA). In contrast, U.S. EPA has recently concluded that Cr(VI) acts through a mutagenic MOA based, in part, on scoring numerous in vivo genotoxicity studies as having low confidence; and therefore derived a cancer slope factor (CSF) of 0.5 (mg/kg-day)-1, equivalent to ∼0.07 ppb. Herein, we demonstrate how physiologically based pharmacokinetic (PBPK) models and intestinal segment-specific tumor incidence data can form a robust dataset supporting derivation of alternative CSF values that equate to Cr(VI) concentrations ranging from below background to concentrations similar to those derived using threshold approaches-depending on benchmark response level and risk tolerance. Additionally, we highlight weaknesses in the rationale EPA used to discount critical in vivo genotoxicity studies. While the data support a non-genotoxic MOA, these alternative toxicity criteria require only PBPK models, robust tumor data, and fair interpretation of published in vivo genotoxicity data for Cr(VI).


Assuntos
Neoplasias Intestinais , Neoplasias Bucais , Camundongos , Animais , Cromo/toxicidade , Neoplasias Intestinais/patologia , Mutagênese , Mutagênicos/toxicidade
14.
Environ Sci Pollut Res Int ; 30(55): 117562-117576, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37870671

RESUMO

Plants are usually provoked by a variety of heavy metal (HM) stressors that have adverse effects on their growth and other biochemical characterizations. Among the HMs, chromium has been considered the most toxic for both plants and animals. The present study was conducted to compare the phytotoxic effects of increasing chromium (VI) salt and nanoparticles (NPs) concentrations on various growth indexes of rice (Oryza sativa L. var. swat 1) seedlings grown in a hydroponic system. The 7-day rice seedlings were exposed to Cr (VI) salt and NPs hydroponic suspensions which were adjusted to the concentration of 0, 50, 100, 150, 200 and 250 mg/L. Both the Cr (VI) salt and NPs with lower concentrations (up to 100mg/L) exerted minimum inhibitory effects on the growth performance of rice seedlings. However, a significant decrease in shoot and root length and their fresh and dry weight was recorded at higher doses of Cr (VI) salt (200 mg/L) and NPs (250 mg/L). The stress induced by Cr (VI) salt has drastically affected the roots, whereas, Cr (VI) NPs significantly affected the shoot tissues. Photosynthetic pigments decreased significantly in a dose-dependent manner, and the reduction was more pronounced in rice seedlings exposed to Cr (VI) NPs compared to Cr (VI) salt. Cr (VI) NPs enhanced the membrane permeability in shoots and roots as compared to that of Cr (VI) salt, which resulted in higher concentration of reactive oxygen species (ROS) and increased lipid peroxidation. The activities of antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) increased significantly in shoot/root tissue following exposure to higher doses of Cr (VI) salt (200 mg/L) and NPs stress (250 mg/L), while minor changes in CAT and APX activities were observed in root and shoot tissues after exposure to higher concentration of Cr (VI) NP. Furthermore, the increasing concentrations of Cr (VI) NPs increased the length of stomatal guard cells. Conclusively, Cr (VI) salt and NPs in higher concentrations have higher potential to damage the growth and induce oxidative stress in rice plants.


Assuntos
Nanopartículas , Oryza , Plântula , Antioxidantes/metabolismo , Estresse Oxidativo , Cromo/toxicidade , Cloreto de Sódio/farmacologia , Cloreto de Sódio na Dieta , Nanopartículas/toxicidade , Raízes de Plantas/metabolismo
15.
Environ Pollut ; 337: 122461, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37689131

RESUMO

The three-dimensional electrokinetic remediation (3D EKR) achieved efficient removal of chromium (Cr) from the soil through mechanisms including electromigration, electroosmosis, and redox reactions. In this study, the long-term stability, leaching toxicity, bioavailability, and phytotoxicity of Cr in remediated soils were systematically analyzed to comprehensively evaluate the effectiveness of the 3D EKR method. The results showed that the concentration of hexavalent chromium (Cr (VI)) in the leachate of the 3D EKR system with sulfidated nano-scale zerovalent iron (S-nZVI) was more than 40% lower than those of the other 3D electrode groups, and the time required to reach the level III standard of groundwater quality criterion in China (0.05 mg/L, GB/T 14848-2017) was significantly shortened. The stabilization of Cr(VI) in contaminated soil after 3D EKR was maintained for 300 pore volumes (PVs), indicating that the treated Cr(VI) had good long-term stability. The leaching toxicity and bioaccessibility of Cr were assessed by the synthetic precipitation leaching procedure (SPLP), the toxicity characteristic leaching procedure (TCLP), and the physiologically based extraction test (PBET). The concentration of Cr(VI) in the SPLP, TCLP, and PBET leachates of the S-nZVI group decreased by more than 25% compared to the other 3D electrode groups, corresponding to the decrease in leaching toxicity and bioavailability of the treated Cr during the 15-day remediation period. In addition, the germination rate of wheat seeds and the average biomass of wheat seedlings in the S-nZVI group under alkaline conditions (EE) were higher than those in the non-polluting group (Blank-OH), indicating that the remediated soil had no obvious toxicity to wheat. In summary, 3D EKR achieved a satisfactory and stable remediation effect on Cr-contaminated soil, especially when using S-nZVI as the 3D electrode.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Ferro , Cromo/toxicidade , Cromo/análise , Solo
16.
Toxicol Appl Pharmacol ; 477: 116693, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37742872

RESUMO

Hexavalent chromium [Cr(VI)] is extensively used in many industrial processes. Previous studies reported that Cr(VI) exposures during early embryonic development reduced body weight with musculoskeletal malformations in rodents while exposures in adult mice increased serum creatine kinase activity, a marker of muscle damage. However, the impacts of Cr(VI) on muscle differentiation remain largely unknown. Here, we report that acute exposures to Cr(VI) in mouse C2C12 myoblasts inhibit myogenic differentiation in a dose-dependent manner. Exposure to 2 µM of Cr(VI) resulted in delayed myotube formation, as evidenced by a significant decrease in myotube formation and expression of muscle-specific markers, such as muscle creatine kinase (Mck), Myocyte enhancer factor 2 (Mef2), Myomaker (Mymk) and Myomixer (Mymx). Interestingly, exposure to 5 µM of Cr(VI) completely abolished myotube formation in differentiating C2C12 cells. Moreover, the expression of key myogenic regulatory factors (MRFs) including myoblast determination protein 1 (MyoD), myogenin (MyoG), myogenic factor 5 (Myf5), and myogenic factor 6 (Myf6) were significantly altered in Cr(VI)-treated cells. The inhibitory effect of Cr(VI) on myogenic differentiation was further confirmed in freshly isolated mouse satellite cells, a stem cell population essential for adult skeletal muscle regeneration. Furthermore, Cr(VI) exposure to fully differentiated C2C12 myotubes resulted in a decrease in myotube diameter, which was exacerbated upon co-treatment with dexamethasone. Together, our results demonstrate that Cr(VI) inhibits myogenic differentiation and induces myotube atrophy in vitro.


Assuntos
Cromo , Fibras Musculares Esqueléticas , Animais , Camundongos , Diferenciação Celular , Cromo/toxicidade , Cromo/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Atrofia , Desenvolvimento Muscular
17.
Chemosphere ; 342: 140181, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37716560

RESUMO

The work attempts to construct a highly effective γ-Bi2O3/CoFe2O4/Ag visible active photocatalyst for the enhanced degradation of ciprofloxacin (CIP) and Cr(VI) reduction. γ-Bi2O3/CoFe2O4/Ag photocatalyst was prepared by simple solid phase and co-precipitation methods. The nanosphere shaped CoFe2O4 photocatalyst are embedded on top of γ-Bi2O3 nanotriangle. The addition of Ag into γ-Bi2O3/CoFe2O4 heterojunction primitively facilitates the photocatalytic activity in higher rate. The quantitative analysis of photocatalyst possesses to have lower e-/h+ recombination rate compared to its counterparts. The prepared γ-Bi2O3/CoFe2O4/Ag photocatalyst showed 96.6% degradation of CIP in 220 min and 99.2% reduction of Cr(VI) in 120 min. Additionally, γ-Bi2O3/CoFe2O4/Ag showed outstanding recyclability and long-term stability with a degradation efficiency of 96.5% even after six cycles. The intermediate products formed were identified and the degradation pathway was elucidated by gas chromatography-mass spectrometry analysis. Total organic carbon measurement was carried over to assess the efficiency of complete degradation and the removal percentage was found to be 98%. The end product toxicity study towards bacteria was proven to have less toxicity level when compared to parent compound. Lastly, the genotoxicity of γ-Bi2O3/CoFe2O4/Ag photocatalyst was tested in Allium cepa and the results confirmed to have no cause of toxicity impacts. Overall, the work not only tends to provide a highly visible active γ-Bi2O3/CoFe2O4/Ag photocatalyst, but also attributes to have no further negative imprints in the environment.


Assuntos
Cromo , Ciprofloxacina , Ciprofloxacina/toxicidade , Cromo/toxicidade , Dano ao DNA , Luz
18.
Sci Total Environ ; 905: 167289, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37741381

RESUMO

Soil chromium (Cr) contamination has become an environmental problem of global concern. However, the joint effects of combined utilization of biochar and arbuscular mycorrhizal (AM) fungal inoculum, which are considered as two promising remediation strategies of soil heavy metal pollutions, on plant Cr resistance are still poorly understood. In this study, a two-factor pot experiment was conducted to investigate how biochar and AM fungus Rhizophagus irregularis regulate Medicago sativa growth, physiological trait, nutrient and Cr uptake, relevant gene expressions, soil properties, and Cr speciation, independently or synergistically. The results showed that biochar notably decreased AM colonization, while biochar and AM fungus could simultaneously increase plant dry biomass. The greatest growth promotion was observed in mycorrhizal shoots at the highest biochar level (50 g kg-1 soil) by 91 times. Both biochar application and AM fungal inoculation enhanced plant photosynthesis and P nutrition, but the promoting effects of AM fungus on them were significantly greater than that of biochar. In addition, the combined application of biochar and AM fungus dramatically reduced shoot and root Cr concentrations by up to 92 % and 78 %, respectively, compared to the non-amended treatment. Meanwhile, down-regulated expressions were observed for metal chelating-related genes. Furthermore, Cr translocation from roots to shoots was reduced by both two soil amendments. Transcriptional levels of genes involved in reactive oxygen species and proline metabolisms were also regulated by biochar application and AM fungal colonization, leading to alleviation of Cr phytotoxicity. Furthermore, AM fungal inoculation slightly elevated soil pH but decreased plant-available soil P, which was, by contrast, lifted by biochar addition. The combined application reduced soil acid-extractable Cr concentration by 40 %. This study provides new insights into comprehensively understanding of the mechanisms of biochar and AM fungi combination on improving plant Cr tolerance.


Assuntos
Micorrizas , Poluentes do Solo , Micorrizas/fisiologia , Raízes de Plantas/metabolismo , Cromo/toxicidade , Cromo/metabolismo , Medicago sativa , Poluentes do Solo/análise , Solo
19.
Ecotoxicol Environ Saf ; 263: 115354, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37595348

RESUMO

Chromium (Cr) is one of the toxic heavy metals that disturbs growth and physiological properties of plants. During the current study, Trigonella corniculata L. (Fenugreek) was exposed to different levels of Cr in potted soil. Chromium toxicity reduced fiber, ash, moisture, carbohydrate, protein, fats, and flavonoid content of T. corniculata. Considering the stress relieving effect of 28-homobrassinolide (28-HBR), seeds of T. corniculata were primed with different concentration of 28-HBR i.e., 0, 5, 10, and 20 µmol L-1. Application of 28-HBR reversed the toxic effect of Cr through improvement in activity of antioxidant enzymes like superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT). Conclusively, 10 µmol L-1 28-HBR increased Cr tolerance in T. corniculata seedlings due to reduction in oxidative stress markers. It is further proposed that 28-HBR is an effective stress ameliorant to relive plants from various abiotic stresses.


Assuntos
Alcaloides , Trigonella , Antioxidantes/farmacologia , Estresse Oxidativo , Biomarcadores , Cromo/toxicidade
20.
Ecotoxicol Environ Saf ; 263: 115380, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37597293

RESUMO

The roots of hyperaccumulators can significantly alter soil pH and thus change the chromium (Cr) availability in the rhizosphere. The pH dynamics in the rhizosphere of Cr hyperaccumulator Leersia hexandra Swartz remains unknown. In this study, the spatial dynamics of pH in the rhizosphere of L. hexandra at different Cr exposure were examined using planar optode (PO). The effects of different Cr concentrations on the biomass, physiological parameters, and soil enzyme activity were investigated. The results showed that pH in the rhizosphere of L. hexandra was highly heterogeneous and followed the root shape. There were obvious soil acidification in all groups and the average pH values in the control, Cr50, and Cr100 groups decreased by 0.26, 0.27, and 0.35 pH unit, respectively. At a certain concentration (50 mg kg-1), Cr significantly increased the plant height and biomass of L. hexandra compared to the control (p < 0.05). The concentrations of chlorophyll a, chlorophyll b, and total chlorophyll in the leaves increased with increasing Cr concentrations. The acid phosphatase, urease, and catalase activities in the rhizosphere were higher than those in the bulk soil. These results provide new insights into elucidating the hyperaccumulating mechanism of Cr and improving the phytoremediation efficiency.


Assuntos
Poaceae , Rizosfera , Clorofila A , Cromo/toxicidade , Solo , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...