Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 689
Filtrar
1.
Subcell Biochem ; 94: 35-62, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32189295

RESUMO

Lipoproteins mediate the transport of apolar lipids in the hydrophilic environment of physiological fluids such as the vertebrate blood and the arthropod hemolymph. In this overview, we will focus on the hemolymph lipoproteins in Crustacea that have received most attention during the last years: the high density lipoprotein/ß-glucan binding proteins (HDL-BGBPs), the vitellogenins (VGs), the clotting proteins (CPs) and the more recently discovered large discoidal lipoproteins (dLPs). VGs are female specific lipoproteins which supply both proteins and lipids as storage material for the oocyte for later use by the developing embryo. Unusual within the invertebrates, the crustacean yolk proteins-formerly designated VGs-are more related to the ApoB type lipoproteins of vertebrates and are now termed apolipocrustaceins. The CPs on the other hand, which are present in both sexes, are related to the (sex specific) VGs of insects and vertebrates. CPs serve in hemostasis and wound closure but also as storage proteins in the oocyte. The HDL-BGBPs are the main lipid transporters, but are also involved in immune defense. Most crustacean lipoproteins belong to the family of the large lipid transfer proteins (LLTPs) such as the intracellular microsomal triglyceride transfer protein, the VGs, CPs and the dLPs. In contrast, the HDL-BGBPs do not belong to the LLTPs and their relationship with other lipoproteins is unknown. However, they originate from a common precursor with the dLPs, whose functions are as yet unknown. The majority of lipoprotein studies have focused on decapod crustaceans, especially shrimps, due to their economic importance. However, we will present evidence that the HDL-BGBPs are restricted to the decapod crustaceans which raises the question as to the main lipid transporting proteins of the other crustacean groups. The diversity of crustaceans lipoproteins thus appears to be more complex than reflected by the present state of knowledge.


Assuntos
Crustáceos , Hemolinfa , Lipoproteínas , Animais , Crustáceos/química , Crustáceos/imunologia , Crustáceos/metabolismo , Hemolinfa/química , Hemolinfa/imunologia , Hemolinfa/metabolismo , Lipoproteínas/biossíntese , Lipoproteínas/química , Lipoproteínas/imunologia , Lipoproteínas/metabolismo
2.
Mar Pollut Bull ; 154: 111045, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32174496

RESUMO

Concentrations of trace elements (arsenic, cadmium, mercury, and lead) in tissues (muscle, gills, and digestive gland) of three commercially exploited crustaceans (Portunus sanguinolentus, Charybdis natator, and Penaeus semisulcatus) and three cephalopods (Doryteuthis sibogae, Sepia pharaonis, and Cistopus indicus) were examined. The animals were captured in the waters of Thoothukudi, and the tissues of six individuals of each species were analyzed using ICP-MS. The highest concentrations of arsenic (16.5 µg/g) and mercury (0.052 µg/g) were recorded in the digestive gland of C. natator, and cadmium (69.9 µg/g) and lead (0.351 µg/g) in the digestive gland of S. pharaonis. The edible portion of the crustaceans and cephalopods contained lower concentrations of trace elements, and these were below allowable limits set by the European Union. The edible parts of the investigated samples are safe for human consumption, but accidental contamination of the edible tissues with material from the digestive glands could lead to concerns relating to metal toxicity.


Assuntos
Cefalópodes/metabolismo , Crustáceos/metabolismo , Mercúrio , Oligoelementos/metabolismo , Poluição da Água/estatística & dados numéricos , Animais , Cádmio , Monitoramento Ambiental , Contaminação de Alimentos/estatística & dados numéricos , Humanos , Índia , Alimentos Marinhos/estatística & dados numéricos
3.
Arch Environ Contam Toxicol ; 78(4): 589-603, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32020255

RESUMO

This is the first comprehensive report on the accumulation of Cr, Ni, As, and Ag in the fish species Nile tilapia Oreochromis niloticus and Nile perch Lates niloticus from Lake Victoria, complemented with recent data on Cu, Zn, Cd, and Pb. This also is the first report on Cr, Ni, As, and Ag levels in invertebrates: the shrimp Caridina nilotica, gastropod Pila ovata, and bivalve Mutela bourguignati. The study was conducted at five sites in the Kenyan part of Lake Victoria: four sites in Winam Gulf influenced by various anthropogenic pressures, including a site near Kisumu City, and one in the main lake, with lesser direct anthropogenic influence. Apart from Cu and Ag, which were highest in O. niloticus liver, the invertebrates had higher levels of trace elements than fish. Contamination of the gulf with trace elements was best mirrored by the invertebrates, whose mobility is limited; they accumulated Cr, Cd, Ag, and Pb corresponding to the levels in the surface sediment. The accumulation of trace elements in fish species and their bioindicative potential corresponded to their habitats and feeding behaviour. The tissue contents of most trace elements were higher in the inshore-dwelling, omnivorous O. niloticus compared to the pelagic, piscivorous L. niloticus. Cu (465 ± 689 mg/kg dw) and Ag (3.45 ± 1.49 mg/kg dw) in the liver of O. niloticus were up to 10 and 119 times higher than in L. niloticus, respectively. Oreochromis niloticus therefore has bioindicative potential for Cu and Ag contamination. Both the invertebrates and fish showed positive correlations between Cu and Ag concentrations, indicating similar source and/or uptake route. The target hazard quotients (THQ) show that there is no human health risk associated with the consumption of these fish. However, the levels of Zn, Cd, and Pb in P. ovata surpassed maximum food safety limits and are hence potentially unsafe for human consumption.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Bioacumulação , Biomarcadores Ambientais/efeitos dos fármacos , Monitoramento Ambiental/métodos , Lagos/química , Metais Pesados/análise , Oligoelementos/análise , Poluentes Químicos da Água/análise , Animais , Organismos Aquáticos/metabolismo , Ciclídeos/metabolismo , Crustáceos/metabolismo , Humanos , Quênia , Metais Pesados/metabolismo , Moluscos/metabolismo , Percas/metabolismo , Medição de Risco , Alimentos Marinhos/análise , Oligoelementos/metabolismo , Poluentes Químicos da Água/metabolismo
4.
Carbohydr Polym ; 228: 115382, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31635752

RESUMO

Chitins of different purity grades (45%, 89.7% and 93.3%) were efficiently extracted from Bombyx eri larva and fully physico-chemically characterized. Compared to commercially available and extracted α-chitin from shrimp shell, the collected data showed that insect chitins had similar characteristics in terms of crystallographic structures (α-chitin), thermal stability and degree of acetylation (>87%). The major differences lay in the crystallinity indexes (66% vs 75% for shrimp chitin) and in the morphological structures. Furthermore, low ash contents were determined for the insect chitins (1.90% vs 21.73% for shrimp chitin), making this chitin extraction and purification easier, which is highly valuable for an industrial application. Indeed, after only one step (deproteinization), the obtained chitin from Bombyx eri showed higher purity grade than the one extracted from shrimp shells under the same conditions. Insect chitins were then subjected to room temperature ionic liquid (RTIL) pretreatment prior to enzymatic degradation and presented a higher enzymatic digestibility compared to commercial one whatever their purity grade and would be thus a more relevant source for the selective production of N-acetyl-D-glucosamine (899.2 mg/g of chitin-2 stepsvs 760 mg/g of chitin com). Moreover, for the first time, the fermentescibility of chitin hydrolysates was demonstrated with Scheffersomyces stipitis used as ethanologenic microorganism.


Assuntos
Bombyx/metabolismo , Quitina , Crustáceos/metabolismo , Animais , Quitina/química , Quitina/isolamento & purificação , Larva/metabolismo
5.
Food Chem ; 309: 125706, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-31677450

RESUMO

Electrochemistry of carotenoids has attracted a lot of interest because it provides an understanding of their oxidative properties. We report the application of electrochemistry in the analysis of carotenoids. Voltammetry of microdroplets immobilized on paraffin impregnated graphite electrode in 0.1 mol dm-3 HClO4 and KNO3 aqueous electrolytes using square-wave voltammetry was applied. Previous studies have shown that carotenoids undergo complex oxidation process when characterized in aqueous media. In this research, the electrooxidation of carotenoid astaxanthin was confirmed. The obtained response allowed the development of an electroanalytical method with a limit of detection of 15.77 µmol dm-3, the limit of quantification of 47.80 µmol dm-3 and acceptable relative standard deviations for current (3.69%) and potential (0.41%). Extraction using DMSO and acetone has shown to be appropriate for voltammetric analysis. Astaxanthin content was determined electrochemically in shrimp and soft-shell crab samples (20.63 and 6.59 µg g-1, respectively), yielding recoveries above 90%.


Assuntos
Carotenoides/análise , Crustáceos/química , Técnicas Eletroquímicas/métodos , Animais , Crustáceos/metabolismo , Dieta , Eletrodos , Grafite/química , Humanos , Limite de Detecção , Oxirredução , Alimentos Marinhos/análise , Água/química , Xantofilas/análise , Xantofilas/química
6.
Environ Sci Process Impacts ; 21(11): 1980-1990, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31553340

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are frequently detected in aquatic environments. Longer chained perfluoroalkyl acids (PFAAs), in particular, have been found to bioaccumulate in a broad range of aquatic biota. PFAAs have a physiochemical similarity to naturally occurring fatty acids and could potentially disrupt metabolic processes, however, there has been limited study in this area, especially in aquatic species. In this study, the associations between PFAAs and metabolite profiles were investigated in crustaceans. Eastern School Prawn (Metapenaeus macleayi) were obtained from three different locations (n = 15 per location) with similar environmental conditions but different levels of PFAA contamination. The concentrations of PFAAs, fatty acids and amino acids were analysed and differences in PFAA and metabolite profiles were evaluated. Different PFAA profiles were mirrored by significant differences in the composition of both fatty acid and amino acid profiles, indicating a potential association between PFAA concentration and the composition of metabolites in prawns. These results highlight a need for further research investigating the impacts of PFAA exposure, with the current study providing a foundation for further investigation of the relationship between PFAA bioaccumulation and organism metabolism.


Assuntos
Organismos Aquáticos/química , Crustáceos/química , Monitoramento Ambiental/métodos , Fluorcarbonetos/toxicidade , Metaboloma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Aminoácidos/metabolismo , Animais , Organismos Aquáticos/metabolismo , Crustáceos/metabolismo , Ácidos Graxos/metabolismo , Fluorcarbonetos/análise , Metabolômica , New South Wales , Poluentes Químicos da Água/análise
7.
Chemosphere ; 237: 124551, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31549662

RESUMO

To characterize the potential endocrine-disrupting chemicals (EDCs) in the environment that interact with the crustacean ecdysone receptor (EcR), we established a method involving in silico modeling/molecular docking and in vitro reporter gene assay. Cherry shrimp (Neocaridina davidi) EcR (NdEcR) and retinoid X receptor (NdRxR) were identified and cloned for use in this method. A theoretical 3D model of NdEcR ligand-binding domain (LBD) was built in silico based on sequence homology with the established X-ray structure of insect EcR. The interaction of the NdEcR LBD with ecdysteroids, diacylhydrazine (DAH) pesticides, and other potential EDCs was evaluated using molecular docking programs. The results revealed that the ligand-binding pocket in the NdEcR LBD was flexible and adaptive for accommodating ligands of different shapes. The agonistic and antagonistic activities of the candidate compounds were further assessed by in vitro reporter gene assay using human cell lines transiently transfected with NdEcR and NdRxR expression plasmids and a reporter plasmid containing synthesized ecdysone response element. The assay was validated by the dose-dependent responses of EcR-mediated gene transcription after treating the transfected cell lines with ecdysteroids, 20-hydroxyecdysone, and ponasterone A. Examination of the candidate compounds using the reporter gene assay revealed restricted functional specificity to ecdysteroids and DAHs. Three of the tested DAH pesticides originally targeting the insect EcR were found to be weak agonists and strong antagonists of NdEcR. These results suggest that DAHs are potential EDCs for crustaceans that disrupt their ecdysteroid signals by functioning as EcR agonists or antagonists.


Assuntos
Crustáceos/efeitos dos fármacos , Ecdisteroides/farmacologia , Praguicidas/toxicidade , Receptores de Esteroides/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Simulação por Computador , Crustáceos/metabolismo , Decápodes/genética , Ecdisona/metabolismo , Ecdisona/farmacologia , Ecdisteroides/toxicidade , Ecdisterona/análogos & derivados , Ecdisterona/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Humanos , Simulação de Acoplamento Molecular , Praguicidas/química , Praguicidas/metabolismo , Filogenia , Receptores de Esteroides/agonistas , Receptores de Esteroides/antagonistas & inibidores , Receptores de Esteroides/genética , Receptores X Retinoide/química , Receptores X Retinoide/genética , Receptores X Retinoide/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-31419604

RESUMO

Low temperature reduction is thought to cause widespread effects on the physical and behavioral traits of marine organisms, which include metabolic processes, immune responses, and reproductive behavior. Crustaceans are generally considered sensitive to temperature reduction due to the lack of efficient regulators. To better understand the molecular regulatory mechanisms of crustacean exposure to cold stress, Japanese mantis shrimp (Oratosquilla oratoria) was chosen as a representative crustacean. Transcriptomic responses in O. oratoria from five temperatures (25 °C, 22 °C, 19 °C, 16 °C, and 13 °C) were studied using RNA-seq. A total of 64.91 Gb of clean transcriptomic data were generated in 10 libraries and then spliced into 52,107 unigenes with an average length of 1089 bp and an N50 length of 1872 bp. A total of 14,841 unigenes was annotated in at least one database using Blastx alignment. Compared with the control temperature (25 °C), 7, 21, 58, and 236 unigenes were significantly differentially expressed at 22 °C, 19 °C, 16 °C, and 13 °C, respectively. GO analysis showed that 6, 20, 27, and 35 terms were significantly enriched at 22 °C, 19 °C, 16 °C, and 13 °C, respectively. In addition, 2, 5, 2, and 10 significant pathways were presented at 22 °C, 19 °C, 16 °C, and 13 °C, respectively. Combining NR, GO, and KEGG annotation information, many genes significantly differentially expressed at low temperatures may be associated with metabolic processes, immune response, and reproductive behavior. Additionally, we reconstructed the phylogenetic relationship based on 366 orthologous genes and the predicted differentiation time of O. oratoria and P. vannamei range from 212.82 to 365.30 Mya. Furthermore, 16 orthologous genes were identified as PSGs and 30 orthologous genes were identified as FEGs and these adaptive genes were associated with energy metabolism, stress response and immunity, and multiple cellular processing. These results provide fundamental information about molecular mechanisms regulating cold stress response of O. oratoria.


Assuntos
Temperatura Baixa , Crustáceos/fisiologia , Perfilação da Expressão Gênica , Músculos/metabolismo , Animais , Metabolismo dos Carboidratos , Crustáceos/genética , Crustáceos/imunologia , Crustáceos/metabolismo , Metabolismo dos Lipídeos , Filogenia , Reprodução
9.
J Morphol ; 280(8): 1170-1184, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31141207

RESUMO

The Japanese mantis shrimp Oratosquilla oratoria (Stomatopoda; Crustacea) is one of the most economically important aquatic species of Pacific shrimp and it is distributed from Japan to the coast of China, the Philippines, the Malay Peninsula, and the Hawaiian Islands. Early studies described certain characteristics of spermatogenesis and the sperm ultrastructure in Stomatopoda, but the composition of sperm basic nuclear proteins (SBNPs) remains completely unknown. We studied the sperm ultrastructure of O. oratoria using transmission electron microscopy and the histone composition using immunofluorescence and immunoelectron microscopy. We found that the spherical nucleus is adjacent to the electron translucent external coat, which occurs in early spermatids. The acrosomal structure begins to form at the junction of the nucleus and the external coat. At the mid-spermatid stage, part of the chromatin appears to be more electron-dense than the external coat side. The aflagellate sperm of O. oratoria, are rounded or slightly ovoid in shape and have a consistent granular nucleus, an acrosome structure of pushpin shape and a spherical vesicular body in which faintly granular material is scattered. The acrosome consists of an acrosomal vesicle, perforatorium, and subacrosomal material. The sperm contains histones H2A, H2B, H3, H4, H3.3, H2AX, and H2AZ as well as some histone modifications, that is, H3K9me3, H3K4me2, H3S10ph, H4Kac, and H2A + H4S1ph. Histones are localized not only in the nucleus of the sperm but also in other structures outside the nucleus. The results may provide new perspectives for systematic studies of crustaceans and their sperm chromatin components. These findings extend the study of the sperm structure of Stomatopoda and provide basic data to elucidate the epigenetic mechanism of fertilization.


Assuntos
Núcleo Celular/metabolismo , Crustáceos/metabolismo , Histonas/metabolismo , Espermatogênese , Espermatozoides/ultraestrutura , Animais , Núcleo Celular/ultraestrutura , Cromatina/metabolismo , Cromatina/ultraestrutura , Crustáceos/ultraestrutura , Masculino , Processamento de Proteína Pós-Traducional , Espermátides/ultraestrutura , Espermatozoides/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-30858099

RESUMO

Farnesoic acid O-methyltransferase (FAMeT) is a key enzyme involved in catalyzing the conversion of farnesoic acid (FA) to methylfarnesoate (MF) in the mandibular organ (MO) of crustaceans. In this study, a full-length cDNA encoding a 278-amino-acid FAMeT protein (MrFAMeT) was characterized from the giant freshwater prawn, Macrobrachium rosenbergii. Bioinformatics analysis revealed a high degree of conservation of FAMeT among crustaceans and a close phylogenetic relationship between MrFAMeT and that of Scylla paramamosain. The prokaryotic expressed MrFAMeT could catalyze the conversion of FA to MF in a radiochemical assay. Expression analysis by quantitative real time reverse transcription polymerase chain reaction (qRT-PCR) demonstrated that MrFAMeT mRNA was highly expressed in the muscle and the hepatopancreas of both females and males. During the molt cycle and the ovarian development, the mRNA expressions of MrFAMeT displayed stage-specific patterns in the muscle of both sexes and the female hepatopancreas, and the highest expressions were detected at intermolt and ovarian development stage V. Double stranded RNA (dsRNA)-mediated RNA interference (RNAi) of MrFAMeT increased expressions of myostatin in the muscle of both sexes and reduced expressions of vitellogenin (Vg) in the female hepatopancreas. Furthermore, both in the muscle and the hepatopancreas, silence of MrFAMeT downregulated the expression of ecydone receptor gene (MrEcR) and silence of MrEcR decreased the expression of MrFAMeT as well. Results in our study indicate that MrFAMeT is involved in prawn muscle growth and female vitellogenin biosynthesis and its function may be closely related with the ecdysteroid signaling.


Assuntos
Crustáceos/metabolismo , Ecdisteroides/metabolismo , Metiltransferases/metabolismo , Transdução de Sinais , Animais , Catálise , Hepatopâncreas/metabolismo , Músculos/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-30735703

RESUMO

Although widely known for their involvement in the control of carbohydrate and lipid metabolism of vertebrates, the participation of catecholamines (CAs) in the metabolism of invertebrates is less understood. This study was designed to identify the physiological role of Epinephrine (E) in the intermediary metabolism of the burrowing crab Neohelice granulata and how E regulates the metabolism in crabs fed with a high-carbohydrate (HC) or a high-protein (HP) diet. To answer these questions, we evaluated in vivo the effects of E injections on glucose and triglycerides in the hemolymph and tissue glycogen levels of crabs fed with HC or HP diet. An in vitro investigation was carried out to assess the direct effects of E on glycogenolysis, lipolysis and glycolysis pathways in the hepatopancreas, mandibular muscle and anterior and posterior gills of this crab. E injections increased glucose and did not affect triglycerides levels in the hemolymph of either group of crabs, and E decreased glycogen in the hepatopancreas and mandibular muscle only in HP crabs, suggesting that these effects may be mediated by the crustacean hyperglycemic hormone (CHH). When the tissues were incubated with different concentrations of E, the concentration of glucose released to the medium decreased in the hepatopancreas and posterior gills, while glucose oxidation increased in the posterior gills of HP crabs. Incubation with E did not alter any parameter in tissues of HC crabs. These effects suggest that E may be involved in the metabolic response to osmotic stress.


Assuntos
Crustáceos/efeitos dos fármacos , Epinefrina/farmacologia , Animais , Crustáceos/metabolismo , Carboidratos da Dieta/administração & dosagem , Proteínas na Dieta/administração & dosagem , Glucose/metabolismo , Glicogênio/metabolismo , Hemolinfa/efeitos dos fármacos , Hemolinfa/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Oxirredução
12.
Artigo em Inglês | MEDLINE | ID: mdl-30690149

RESUMO

Crustacean hyperglycemic hormone (CHH) plays a crucial role in regulating carbohydrate metabolism in crustaceans. In this study, a new cDNA encoding type I CHH peptide, termed Sp-CHH3, was isolated from the mud crab Scylla paramamosain and its potential functions were investigated. The full length cDNA of Sp-CHH3 was identified as encoding a 127-aa precursor composed of a 27-aa signal peptide, a 23-aa CHH precursor-related peptide and a 75-aa mature peptide with a typical motif of CHH. Phylogenic analysis suggested that, Sp-CHH3 is a previously unreported CHH from S. paramamosain. Tissue distribution analysis showed that Sp-CHH3 was mainly expressed in the eyestalk ganglia, thoracic ganglia, stomach and the ovary. A RNA interference experiments showed that after injection of Sp-CHH3-targeted dsRNA, both the level of Sp-CHH3 expression in the eyestalk ganglia and hemolymph glucose level decreased significantly. A further short-term starvation experiments demonstrated that, the level of Sp-CHH3 detected in the eyestalk ganglia was significantly up-regulated at the 12th h of starvation, it then fell back at the 24th h of starvation and subsequently remained relative stability between the 24th to 96th h of starvation. The hemolymph glucose level decreased significantly (P < .05) at each sampling time during the 96 h starvation duration when compared to that of 0 h (prior to starvation) and the overall trend was largely correlated with the level of Sp-CHH3 expression in the eyestalk ganglia. In summary, the results suggest that Sp-CHH3 plays a functional role in regulating carbohydrate metabolism in S. paramamosain.


Assuntos
Proteínas de Artrópodes/fisiologia , Metabolismo dos Carboidratos/fisiologia , Crustáceos/metabolismo , Hormônios de Invertebrado/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/genética , Sequência de Bases , Clonagem Molecular , Crustáceos/genética , DNA Complementar/genética , Hemolinfa/metabolismo , Hormônios de Invertebrado/genética , Proteínas do Tecido Nervoso/genética , Filogenia , Interferência de RNA , Inanição
13.
Sci Total Environ ; 654: 250-263, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30447573

RESUMO

Scientists are currently faced with the challenge of assessing the effects of anthropogenic stressors on aquatic ecosystems. Cellular stress response (CSR) biomarkers are ubiquitous and phylogenetically conserved among metazoans and have been successfully applied in environmental monitoring but they can also vary according to natural biotic and abiotic factors. The reported variability may thus limit the wide application of biomarkers in monitoring, imposing the need to identify variability levels in the field. Our aim was to carry out a comprehensive in situ assessment of the CSR (heat shock protein 70 kDa, ubiquitin, antioxidant enzymes) and oxidative damage (lipid peroxidation) in wild populations across marine taxa by collecting fish, crustaceans, mollusks and cnidarians during two different seasons (spring and summer) and two habitat types (coast and estuary). CSR end-point patterns were different between taxa with mollusks having higher biomarker levels, followed by the cnidarians, while fish and crustaceans showed lower biomarker levels. The PCA showed clear clusters related to mobility/sessile traits with sessile organisms showing greater levels (>2-fold) of CSR proteins and oxidative damage. Mean intraspecific variability in the CSR measured by the coefficient of variation (% CV) (including data from all seasons and sites) was elevated (35-94%). Overall, there was a seasonal differentiation in biomarker patterns across taxonomic groups, especially evident in fish and cnidarians. A differentiation in biomarker patterns between habitat types was also observed and associated with phenotypic plasticity or local adaptation. Overall, specimens collected in the estuary had lower biomarker levels when compared to specimens collected in the coast. This work highlights the importance of assessing baseline biomarker levels across taxa, seasons and habitats prior to applying biomarker analyses in environmental monitoring. Selecting bioindicator species, defining sampling strategies, and identifying confounding factors are crucial preliminary steps that ensure the success of biomarkers as powerful tools in biomonitoring.


Assuntos
Organismos Aquáticos/classificação , Monitoramento Ambiental/métodos , Estresse Oxidativo/efeitos dos fármacos , Estações do Ano , Espécies Sentinelas/classificação , Poluentes Químicos da Água/análise , Animais , Organismos Aquáticos/efeitos dos fármacos , Argentina , Biomarcadores/análise , Cnidários/efeitos dos fármacos , Cnidários/metabolismo , Crustáceos/efeitos dos fármacos , Crustáceos/metabolismo , Ecossistema , Peixes/metabolismo , Moluscos/efeitos dos fármacos , Moluscos/metabolismo , Espécies Sentinelas/metabolismo , Poluentes Químicos da Água/toxicidade
14.
Neurosci Lett ; 695: 19-24, 2019 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28711343

RESUMO

The many roles of innexins, the molecules that form gap junctions in invertebrates, have been explored in numerous species. Here, we present a summary of innexin expression and function in two small, central pattern generating circuits found in crustaceans: the stomatogastric ganglion and the cardiac ganglion. The two ganglia express multiple innexin genes, exhibit varying combinations of symmetrical and rectifying gap junctions, as well as gap junctions within and across different cell types. Past studies have revealed correlations in ion channel and innexin expression in coupled neurons, as well as intriguing functional relationships between ion channel conductances and electrical coupling. Together, these studies suggest a putative role for innexins in correlating activity between coupled neurons at the levels of gene expression and physiological activity during development and in the adult animal.


Assuntos
Conexinas/biossíntese , Sinapses Elétricas/metabolismo , Gânglios dos Invertebrados/metabolismo , Animais , Crustáceos/metabolismo , Junções Comunicantes/metabolismo , Atividade Motora/fisiologia , Neurônios/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-30580103

RESUMO

Molting in crustaceans is a highly complex physiological process involving regulation by two paired endocrine glands, the X-organ/sinus gland complex (XO/SG) and the Y-organ (YO). The XO/SG complex is responsible for making molt-inhibiting hormone, which negatively regulates synthesis of molting hormones, ecdysteroids, by the YO. In this study, changes in protein abundance in the YO were characterized over the course of a molt cycle induced by multiple leg autotomy in the blackback land crab, Gecarcinus lateralis. In all, 457 distinct protein spots were detected using two-dimensional gel electrophoresis, of which 230 (50%) changed significantly in abundance over the course of the molt cycle. Protein abundance differed most notably between intermolt and the three premolt stages, indicative of a biological 'on-off' switch. Changes in hemolymph proteins were correlated with stage-specific processes of sclerotization and melanization that facilitate cuticle hardening and support immune reactions. An abundance of cytoskeletal proteins were identified, which corresponded with glandular hypertrophy associated with synthesis and secretion of ecdysteroids. Many proteins involved in energetic pathways including glycolysis, the citric acid cycle, amino acid metabolism, and one­carbon metabolism changed in abundance in response to increasing energy demands and the requirement for precursors of macromolecular synthesis. Several proteins involved in immune, proteostasis, and oxidative stress responses were correlated with the dynamic and demanding cellular changes associated with ecdysteroidogenesis. These changes in diverse physiological pathways represent the complexity involved with molecular regulation of the YO in decapod crustaceans.


Assuntos
Proteínas de Artrópodes/metabolismo , Crustáceos/metabolismo , Ecdisona/metabolismo , Proteômica , Animais , Proteínas Sanguíneas/metabolismo , Crustáceos/imunologia , Crustáceos/fisiologia , Proteínas do Citoesqueleto/metabolismo , Eletroforese em Gel Bidimensional , Metabolismo Energético , Ensaio de Imunoadsorção Enzimática , Hemolinfa/metabolismo , Masculino , Proteostase , Espectrometria de Massas em Tandem
16.
Molecules ; 23(12)2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30563041

RESUMO

Antimicrobial peptides play important roles in the immune response to pathogens and tumor cells; for this reason, they are being exploited for therapeutic use. In this study, we describe a Litopenaeus vannamei hemocyanin-derived peptide, denoted B11, which shares similar features with other anticancer peptides and attenuates the proliferation of cancer cells. Cell viability assay revealed that B11 significantly inhibited the proliferation of human cervical (HeLa), human hepatocellular carcinoma (HepG2), and human esophageal cancer (EC109) cancer cell lines, but not normal liver cell lines (T-antigen-immortalized human liver epithelial (THLE) cells or THLE-3), by inducing morphological changes, nuclear condensation, and margination, features which are indicative of apoptosis. Besides, peptide B11-induced apoptosis was confirmed by isothiocyanate-labeled Annexin V/propidium iodide (Annexin V-FITC/PI) double staining of HeLa cells. Moreover, cell uptake studies, confocal microscopy, and Western blot analysis revealed that rhodamine-labeled B11 permeated HeLa cells and localized to the mitochondria, causing mitochondria dysfunction through lost mitochondrial membrane potential, which consequently triggered the induction of apoptosis. Increased expression levels of caspase-9, caspase-3, and Bax (Bcl-2-associated X) proteins, coupled with a decrease in Bcl-2 (B-cell lymphoma 2) protein, confirmed that peptide B11 induced apoptosis via the mitochondrial pathway. Thus, the hemocyanin-derived peptide, B11, inhibits the proliferation of cancer cells by causing mitochondrial dysfunction and inducing apoptotic cell death, for which reason it could be explored as an anticancer peptide.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Antineoplásicos/farmacologia , Crustáceos/metabolismo , Hemocianinas/química , Animais , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Células HeLa , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
Glycoconj J ; 35(6): 537-545, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30324318

RESUMO

Acidic polysaccharides are attractive functional ingredients in shellfish which are consumed as delicious and nutritious foods world widely. In the present study, acidic polysaccharides from 21 species of edible shellfish were characterized and quantified by analyzing their repeated disaccharides using the multiple reaction monitoring (MRM) mode of triple quadrupole mass spectrometer upon acid degradation and 1-phenyl-3-methyl-5-pyrazolone (PMP) derivatization. A total of 6 glycosaminoglycans (GAGs) and 8 non-GAGs with repeated disaccharide units of a hexuronic acid linked to a hexosamine or a hexose were detected. Among them, chondroitin sulfate, heparin, →4)-ß-GlcA-(1 → 2)-α-Man-(1 → and →3)- ß-GlcA-(1 → 3)-α-Gal-(1 → were identified unambiguously by comparing with the references. The quantification results revealed that the contents of these polysaccharide varied greatly among shellfish species with a maximum over 100 mg/100 g. Furthermore, the dendrogram of hierarchical clustering analysis indicated that the composition of acidic polysaccharides in some shellfish species was related with the genetic relationship. Thus, the present study provides a more comprehensive knowledge about the distribution of acidic polysaccharides in various shellfish species.


Assuntos
Crustáceos/metabolismo , Hexosaminas/metabolismo , Hexoses/metabolismo , Polissacarídeos/metabolismo , Ácidos Urônicos/metabolismo , Animais , Análise por Conglomerados , Crustáceos/genética , Espectrometria de Massas , Filogenia
18.
Physiol Behav ; 195: 69-75, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30076917

RESUMO

Ocean acidification (OA) has been shown to disrupt behavioural responses either by affecting metabolic processes, or by effectively impairing an organisms' ability to gather and assess information and make decisions. Given the lack of information regarding the effects of high CO2 on olfactory-mediated mating behaviours in crustaceans, the possible chemosensory disruption in male mate-tracking in the keystone amphipod (Gammarus locusta) was assessed (after a two-generation acclimation to high CO2 conditions). In a series of behavioural trials, the response time, first direction of movement and the proportion of time spent in the presence of female scent cues were quantified. The possibility of high CO2-induced metabolic changes was assessed through routine metabolic rate (RMR) quantification. We found that hypercapnia was responsible for inducing a delay in response time latency and effectively disrupted accurate female cue-tracking. Moreover, RMR were significantly reduced under high CO2 in both genders. Such finding supports the hypothesis of hypercapnia-induced metabolic depression, which potentially underpins the increased latency in response time verified. Overall, the present study hints the potential disruption of chemosensory-dependent sexual behaviours, through some degree of chemosensory and metabolic disruption. These results emphasize the need for further behavioural tests regarding chemosensory communication in amphipods and energy metabolism, and suggest cascading consequences for the species' reproductive success and overall fitness in a future less alkaline ocean.


Assuntos
Comportamento Apetitivo/fisiologia , Crustáceos/metabolismo , Hipercapnia/metabolismo , Atividade Motora/fisiologia , Comportamento Sexual Animal/fisiologia , Olfato/fisiologia , Animais , Dióxido de Carbono/metabolismo , Mudança Climática , Sinais (Psicologia) , Feminino , Concentração de Íons de Hidrogênio , Masculino , Oceanos e Mares , Odorantes , Distribuição Aleatória
19.
Ecotoxicol Environ Saf ; 162: 554-562, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30029101

RESUMO

The concentration of As, Cd, Cr, Cu, Hg, Ni, Pb and Zn were analyzed in the edible part of several species of fish, crustaceans, molluscs and echinoderms collected in sensitive areas of the Tuscany coast (northern Italy). The concentration of As (0.39-78.1 µg g-1) and Hg (0.01-1.56 µg g-1) resulted in most cases higher than reference thresholds. Target hazard quotient (THQ) and lifetime cancer risk (TR) indexes were calculated to assess cancer and non-cancer risk due to oral exposure; the highest THQ values referred to As and Hg, with values ≥ 1 in 39% and 48% of cases, respectively. Total target hazard quotients (TTHQ) values suggested that the local population could experience adverse health effects due to consumption of local seafood, mainly of demersal and benthic species. Cancer risk was mainly associated with As exposure, and with Cd intake, especially through molluscs consumption. The NMDS model highlighted species specific bioaccumulation processes and specific sensitivity of species to different bioavailable heavy metals. Specifically, Mullus spp. and Scorpaena porcus preferentially accumulate Hg and Cr, Octopus vulgaris specimens were discriminated by the presence of Pb and Zn, while an evident preference for Cd and Cu was recorded in Squilla mantis. In addition, the distribution of heavy metals in organisms revealed sound differences between Follonica and Livorno sampling sites, demonstrating a highly heterogeneous anthropogenic impact in terms of heavy metals input from the industrial activity resting on land.


Assuntos
Crustáceos/metabolismo , Equinodermos/metabolismo , Peixes/metabolismo , Metais Pesados/farmacocinética , Moluscos/metabolismo , Poluentes Químicos da Água/farmacocinética , Animais , Monitoramento Ambiental , Contaminação de Alimentos/análise , Sedimentos Geológicos/química , Itália , Medição de Risco , Alimentos Marinhos/análise
20.
PLoS One ; 13(7): e0201383, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30048543

RESUMO

Vibrio cholerae O1, the etiological agent of cholera, is a natural inhabitant of aquatic ecosystems. Motility is a critical element for the colonization of both the human host and its environmental reservoirs. In this study, we investigated the molecular mechanisms underlying the chemotactic response of V. cholerae in the presence of some of its environmental reservoirs. We found that, from the several oligosaccharides found in mucin, two specifically triggered motility of V. cholerae O1: N-acetylneuraminic acid (Neu5Ac) and N-acetylglucosamine (GlcNAc). We determined that the compounds need to be internally catabolized in order to trigger motility of V. cholerae. Interestingly, the catabolism of Neu5Ac and GlcNAc converges and the production of one molecule common to both pathways, glucosamine-6-phosphate (GlcN-6P), is essential to induce motility in the presence of both compounds. Mutants unable to produce GlcN-6P show greatly reduced motility towards mucin. Furthermore, we determined that the production of GlcN-6P is necessary to induce motility of V. cholerae in the presence of some of its environmental reservoirs such as crustaceans or cyanobacteria, revealing a molecular link between the two distinct modes of the complex life cycle of V. cholerae. Finally, cross-species comparisons revealed varied chemotactic responses towards mucin, GlcNAc, and Neu5Ac for environmental (non-pathogenic) strains of V. cholerae, clinical and environmental isolates of the human pathogens Vibrio vulnificus and Vibrio parahaemolyticus, and fish and squid isolates of the symbiotic bacterium Vibrio fischeri. The data presented here suggest nuance in convergent strategies across species of the same bacterial family for motility towards suitable substrates for colonization.


Assuntos
Acetilglucosamina/metabolismo , Cólera/microbiologia , Muco/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Vibrio cholerae/fisiologia , Animais , Quimiotaxia , Cólera/metabolismo , Crustáceos/metabolismo , Cianobactérias/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Redes e Vias Metabólicas , Vibrio cholerae/citologia , Vibrio cholerae/isolamento & purificação , Vibrio cholerae O1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA