Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.464
Filtrar
1.
Sci Rep ; 13(1): 4627, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944656

RESUMO

Hull-less seed trait is preferred by nut and oil industries worldwide for snacking and oil extraction as it evades the expensive decorticating (dehulling) process. This seed trait is available in C. pepo only, which has small seed cavity, sensitive to various biotic and abiotic stresses, and restricted to temperate regions for cultivation. Contrarily, the related species C. moschata has wider adaptability, disease tolerance and high seed yield. Therefore, attempt was made to transfer this trait into C. moschata through conventional pollination and ovule culture using four parents of hull-less C. pepo and six of hulled C. moschata. Through conventional approach, few viable F1 seeds (12-23) were obtained by using C. pepo as female parent, but in three crosses (HLP36 × HM1343, HLP36 × HM1022 and HLP44 × HM1022) only, whereas, its use as male parent was not successful. This incompatibility issue of reciprocals was resolved through ovule culture of C. moschata genotypes HM1343 and HM6711 after 17 to 19 days of pollination with C. pepo genotypes HLP53 and HLP72, respectively. The hybridity of interspecific crosses was confirmed through SSR markers (alleles inherited from both the parents), morphological characters and micromorphological leaf traits (differed from both the parents). The successful transfer through interspecific hybridization was further established with the presence of hull-less seed in fruits of F2 populations. Outcome of this study would pave the way for enhancing the productivity and multi-season cultivation of snack-seeded pumpkin even in subtropical and tropical regions.


Assuntos
Cucurbita , Cucurbita/genética , Sementes/genética , Frutas/genética , Genótipo , Fenótipo
2.
Sci Rep ; 13(1): 3689, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36878922

RESUMO

With its predisposition to adapt to different environments, Cucurbita moschata grows well in various ecosystems. It is not a very exigent plant and has an inherent capacity for plasticity that underlies its large variability. An assessment of the accessions of C. moschata in Cote d'Ivoire shows that the plant exhibits large morphological and phenological variability for all the 28 measured traits. There are outliers among most measured traits. Further analysis indicates the emergence of three ecotypes in congruence with the three distinct ecosystems and their respective bioclimatic characteristics. In the savannah region, characterized by a short rainy season followed by a long dry season, a total yearly rainfall of 900 mm, an elevated daily temperature of 29 °C, and a high relative humidity of 80%, the cline of C. moschata is long and thin, with small leaves, small peduncles and small fruits. It has a high growth rate and accelerated phenology. The mountain region has a very long rainy season followed by a short dry season, a total pluviometry of 1400 mm, an average daily temperature of 27 °C and a relative humidity of 69%. The cline of C. moschata in the mountain region is characterized by a delayed flowering and a delayed fruit maturity, large number of small seeds and large fruits. The forest region has a favorable climate for the growth of C. moschata in Cote d'Ivoire. It has two rainy seasons that alternate with two dry seasons of unequal durations, an annual rainfall of 1200 mm, an average daily temperature of 27 °C and a relative humidity of 70%. The cline of C. moschata in that region has a large girth size, large dimensions of the leaves, long peduncles and larger and heavier fruits. The seeds are also large but in small number. It appears that the anatomy and physiology of the clines are differentiated primarily in response to soil water content and availability for the ontogeny of the plant.


Assuntos
Cucurbita , Côte d'Ivoire , Ecossistema , Fenótipo , Ecótipo , Febre
3.
Food Chem ; 414: 135646, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36841106

RESUMO

An environmentally friendly physical processing method, hydrothermal treatment (HT), was used to increase the content of specific compounds and antioxidant activities of seed-used pumpkin byproducts. The influence of hydrothermal temperature (80 °C-160 °C) and time (30-150 min) on changes in polyphenols and antioxidation was evaluated. The results revealed that the maximum free polyphenol content (140 °C for 120 min) was 3.96-fold higher than the untreated samples. Elevated temperature and long duration changed phenolic acid contents. For example, p-coumaric acid, rutin and chlorogenic acid exhibited a decreasing trend, and p-hydroxybenzoic acid, quercetin and cinnamic acid showed an increasing trend. Compared to controls, HT was significantly associated with increased antioxidant activities. To comprehensively reveal the influence of hydrothermal temperature and time on changes in polyphenolic content, back propagation artificial neural network (BP-ANN) models with accurate prediction ability were developed, and the results exhibited well-fitted and strong approximation ability (R2 > 0.95 and RMSE < 2 %) and stability.


Assuntos
Antioxidantes , Cucurbita , Fenóis/análise , Extratos Vegetais , Polifenóis/análise , Sementes/química
4.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36768611

RESUMO

The BES1 (BRI1-EMSSUPPRESSOR1) gene family play a vital role in the BR (brassinosteroid) signaling pathway, which is involved in the growth and development, biotic, abiotic, and hormone stress response in many plants. However, there are few reports of BES1 in Cucurbita moschata. In this study, 50 BES1 genes were identified in six Cucurbitaceae species by genome-wide analysis, which could be classified into 3 groups according to their gene structural features and motif compositions, and 13 CmoBES1 genes in Cucurbita moschata were mapped on 10 chromosomes. Quantitative real-time PCR analysis showed that the CmoBES1 genes displayed differential expression under different abiotic stress and hormone treatments. Subcellular localization showed that the most of CmoBES1 proteins localized in nucleus and cytoplasm, and transactivation assay indicated 9 CmoBES1 proteins played roles as transcription factors. Our analysis of BES1s diversity, localization, and expression in Curcubitaceae contributes to the better understanding of the essential roles of these transcription factors in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cucurbita , Cucurbitaceae , Proteínas de Ligação a DNA/metabolismo , Cucurbita/genética , Cucurbita/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Proteínas Nucleares/genética , Fatores de Transcrição/metabolismo , Brassinosteroides/metabolismo , Plantas/metabolismo , Hormônios/metabolismo , Regulação da Expressão Gênica de Plantas
5.
J Dairy Sci ; 106(3): 1803-1814, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36710188

RESUMO

This research aimed to investigate the effects of replacing soybean meal with high-oil pumpkin seed cake (HOPSC) on ruminal fermentation, lactation performance, milk fatty acid, and ruminal bacterial community in Chinese dairy cows. Six multiparous Chinese Holstein cows at 105.50 ± 5.24 d in milk (mean ± standard deviation) and 36.63 ± 0.74 kg/d of milk yield were randomly allocated, in a 3 × 3 Latin square design, to 3 dietary treatments in which HOPSC replaced soybean meal. Group 1 was the basal diet with no HOPSC (0HOPSC); group 2 was a 50% replacement of soybean meal with HOPSC and dried distillers grains with solubles (DDGS; 50HOPSC), and group 3 was a 100% replacement of soybean meal with HOPSC and DDGS (100HOPSC). We found no difference in the quantity of milk produced or milk composition among the 3 treatment groups. Feed efficiency tended to increase linearly as more HOPSC was consumed. In addition, rumen fermentation was not influenced when soybean meal was replaced with HOPSC and DDGS; the relative abundance of ruminal bacteria at the phylum and genus levels was altered. We also observed that as the level of HOPSC supplementation increased, the relative abundance of Firmicutes and Tenericutes linearly increased, whereas that of Bacteroidetes decreased. However, with increasing HOPSC supplementation, the relative abundance of Ruminococcus decreased linearly at the genus level in the rumen, and the relative abundance of Prevotella showed a linear downward tendency. Changes in dietary composition and rumen bacteria had no significant effect on the fatty acid composition of milk. In conclusion, our results indicated that replacing soybean meal with a combination of HOPSC and DDGS can meet the nutritional needs of high-yielding dairy cows without adversely affecting milk yield and quality; however, the composition of rumen bacteria could be modified. Further study is required to investigate the effects of long-term feeding of HOPSC on rumen fermentation and performance of dairy cows.


Assuntos
Cucurbita , Leite , Feminino , Bovinos , Animais , Lactação , Ácidos Graxos , Rúmen , Farinha , Ração Animal/análise , Dieta/veterinária , Bactérias , Sementes , Zea mays
6.
Physiol Plant ; 175(1): e13864, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36718078

RESUMO

The enhanced salt tolerance of squash ethylene-insensitive mutants during germination and early stages of seedling development suggested that abscisic acid (ABA) could mediate this tolerance. To gain insight into the crosstalk between ethylene and ABA in seed germination, the germination rate and early seedling growth of wild type (WT) and ethylene-insensitive etr2b mutant were compared in seeds germinated under water and exogenous ABA treatment. The etr2b seeds germinated earlier than WT under both water and ABA, and the effect of ABA on radicle length and seedling growth of etr2b was lower than in WT, indicating that etr2b is also insensitive to ABA. The comparison of ABA and ethylene contents and ABA and ethylene gene expression profiles in WT and etr2b dry and imbibed seeds in either water, NaCl or ABA demonstrated a clear crosstalk between ethylene and ABA in germination. The expression profiles of ethylene genes in WT and etr2b indicated that the role of ethylene in seed germination does not appear to follow the canonical ethylene signaling pathway. Instead, etr2b reduces ABA content during formation of the seeds (dry seeds) and in response to seed imbibition and germination, which means diminished dormancy in the ethylene mutant. The etr2b mutation downregulated the expression of ABA biosynthesis and signaling genes during germination, demonstrating the positive role of ethylene receptor gene CpETR2B on seed germination and early seedling growth in squash is mediated by ABA. The reduced effect of exogenous ABA on ethylene production and ethylene gene expression in etr2b seeds suggests that this regulation is also dependent on ethylene.


Assuntos
Ácido Abscísico , Cucurbita , Ácido Abscísico/metabolismo , Germinação , Reguladores de Crescimento de Plantas/metabolismo , Etilenos/metabolismo , Plântula/metabolismo , Mutação , Sementes , Água/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Am J Bot ; 110(2): e16126, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36633920

RESUMO

PREMISE: Quantifying how closely related plant species differ in susceptibility to insect herbivory is important for understanding the variation in evolutionary pressures on plant functional traits. However, empirically measuring in situ variation in herbivory spanning the geographic range of a plant-insect complex is logistically difficult. Recently, new methods have been developed using herbarium specimens to investigate patterns in plant-insect symbioses across large geographic scales. Such investigations provide insights into how accelerated anthropogenic changes may impact plant-insect interactions that are of ecological or agricultural importance. METHODS: Here, we analyze 274 pressed herbarium samples to investigate variation in herbivory damage in 13 different species of the economically important plant genus Cucurbita (Cucurbitaceae). This collection is composed of specimens of wild, undomesticated Cucurbita that were collected from across their native range, and Cucurbita cultivars collected from both within their native range and from locations where they have been introduced for agriculture in temperate North America. RESULTS: Herbivory is common on individuals of all Cucurbita species collected throughout their geographic ranges. However, estimates of herbivory varied considerably among individuals, with mesophytic species accruing more insect damage than xerophytic species, and wild specimens having more herbivory than specimens collected from human-managed habitats. CONCLUSIONS: Our study suggests that long-term evolutionary changes in habitat from xeric to mesic climates and wild to human-managed habitats may mediate the levels of herbivory pressure from coevolved herbivores. Future investigations into the potential factors that contribute to herbivory may inform the management of domesticated crop plants and their insect herbivores.


Assuntos
Cucurbita , Humanos , Animais , Herbivoria , Insetos , Ecossistema , Evolução Biológica , Plantas
8.
Molecules ; 28(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36677916

RESUMO

The goal of this review is to provide an overview of the current findings on the major carotenoids and their content in pumpkin products and by-products. The content of total carotenoids and the composition of carotenoids in pumpkins depend mainly on the species and cultivar, pedoclimatic conditions, the part of the plant (pulp, peel or seed), extraction procedures and the type of solvent used for extraction. The major carotenoids identified in pumpkins were ß-carotene, α-carotene, lutein and zeaxanthin. ß-Carotene is the major carotenoid in most pumpkin species. The number and content of total carotenoids are higher when minor carotenoids and ester forms are considered. The use of carotenoids in the development of functional foods has been the topic of many versatile studies in recent years, as they add significant value to foods associated with numerous health benefits. In view of this, pumpkin and pumpkin by-products can serve as a valuable source of carotenoids.


Assuntos
Cucurbita , beta Caroteno , Carotenoides , Luteína , Alimento Funcional
9.
Trop Anim Health Prod ; 55(1): 55, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36715777

RESUMO

Heat stress is the most major environmental element contributing to rabbit health problems and reduced production. It is proposed that essential oils be applied to alleviate heat stress-induced oxidative damage in rabbits. The purpose of this feeding trial was to determine the protective impact of pumpkin seed essential oil (PSO)-supplemented diets in reducing the threat of unambient temperature on growing rabbits. Five groups of 5-week-old rabbits were allocated randomly into separated galvanized wire battery. The first group was raised under normal conditions (18 ± 2 °C) and fed a control diet (control group; CNT), whereas the other four groups were exposed to high ambient temperature (38 ± 2 °C) and fed a control diet supplemented with 0 (PSO0.0), 0.5 (PSO0.05), 1.0 (PSO1.0), and 2.0 (PSO2.0) mL PSO/kg diet. Results indicated that all supplemented groups and the positive control have higher live body weight compared with the heat stress group (PSO0.0) at 9 weeks of age. Supplementing of PSO resulted in significant improvement in weight gain at 5-9 weeks and 9-13 weeks compared with PSO0.0 group. The highest feed intake was detected in PSO0.05 group compared with that in other groups. Both PSO2.0 and PSO2.0 groups showed the lowest feed conversion ration compared with other groups. Heat-stressed rabbits given a high dose of PSO (1 to 2 mL) had higher hemoglobin concentrations and lower white blood cell counts throughout the experiment than those given a control diet and subjected to heat stress. All hepatic and renal function parameters improved significantly in the rabbits fed a high dose of PSO as compared to the heat-stressed control group, while protein constituents were significantly higher in experimental groups fed 2 mL PSO compared with other groups. Heat-stressed rabbits administered graded amounts of PSO had the lowest plasma glucose, cortisol, thyroid, and corticosterone concentrations and were noticed to be equivalent to the control group fed unsupplemented diet and reared under normal conditions. The immunohistochemistry analysis demonstrated that rabbit groups reared under heat stress and given 2 mL PSO supplemented diets had negative caspase-3 immunoreactivity surrounding portal tract and normal structure. In conclusion, adding pumpkin seed oil up to 2 mL/kg diet for growing rabbits is indorsed to promote growth as well as antioxidant and immunological status under heat stress conditions.


Assuntos
Antioxidantes , Cucurbita , Coelhos , Animais , Antioxidantes/metabolismo , Cucurbita/metabolismo , Suplementos Nutricionais , Dieta/veterinária , Resposta ao Choque Térmico , Óleos de Plantas/farmacologia , Imunidade , Ração Animal/análise
10.
Food Res Int ; 163: 112157, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36596108

RESUMO

Natural polysaccharides were isolated and purified from Cucurbita moschata by hot water extraction and mild acid-base sequential extraction. Chemical and instrumental studies revealed that hot water-extracted and mild acid-extracted polysaccharides with molecular masses of 48 kDa and 85 kDa were both pectic polysaccharides with homogalacturonan (HG) and rhamnogalacturonan-I (RG-I) domains, while mild acid-extracted polysaccharide was more dominated by branched RG-I with higher contents of galactose (10.59 %) and arabinose (8.08 %). Furthermore, mild acid-extracted polysaccharide exhibited better thickening and emulsifying properties, likely due to its larger molecular mass and higher branching degree. Mild base-extracted polysaccharide with a molecular mass of 18 kDa was a glucan-like polysaccharide. It showed the strongest thermostability and gel behavior among these pumpkin polysaccharides, likely attributed to its unique network structure stabilized by substantial intra/intermolecular hydrogen bonds. This study aimed to establish the structure-property relationships between these structurally diverse pumpkin polysaccharides from different extraction methods and provided theoretical foundations for their targeted application in foods.


Assuntos
Cucurbita , Cucurbita/química , Polissacarídeos/química , Antioxidantes/química , Galactose , Ácidos , Água
11.
Genes (Basel) ; 14(1)2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36672961

RESUMO

WD40 proteins, a super gene family in eukaryotes, are involved in multiple biological processes. Members of this family have been identified in several plants and shown to play key roles in various development processes, including acting as scaffolding molecules with other proteins. However, WD40 proteins have not yet been systematically analyzed and identified in Cucurbita maxima. In this study, 231 WD40 proteins (CmWD40s) were identified in C. maxima and classified into five clusters. Eleven subfamilies were identified based on different conserved motifs and gene structures. The CmWD40 genes were distributed in 20 chromosomes; 5 and 33 pairs of CmWD40s were distinguished as tandem and segmental duplications, respectively. Overall, 58 pairs of orthologous WD40 genes in C. maxima and Arabidopsis thaliana, and 56 pairs of orthologous WD40 genes in C. maxima and Cucumis sativus were matched. Numerous CmWD40s had diverse expression patterns in fruits, leaf, stem, and root. Several genes were involved in responses to NaCl. The expression pattern of CmWD40s suggested their key role in fruit development and abiotic stress response. Finally, we identified 14 genes which might be involved in fruit development. Our results provide valuable basis for further functional verification of CmWD40s in C. maxima.


Assuntos
Cucurbita , Frutas , Cucurbita/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Família Multigênica
12.
Int J Biol Macromol ; 232: 123372, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36706886

RESUMO

Biologically active phytochemicals from pumpkin reveal versatile medical applications, though little is known about their antiviral activity. The fucose-rich polysaccharide extraction conditions were optimized through Box-Behnken design and purified by column chromatography. The purified fucose-rich polysaccharide was characterized through SEM, FT-IR, 1H NMR, XRD, TGA, and GS-MS. The analysis results revealed an irregular and porous surface of the purified polysaccharide with high fucose, rhamnose, galactose, and glucose contents. The tested fucose-rich polysaccharides revealed significant antioxidant and anti-inflammatory activity at very low concentrations. The purified fucose-rich polysaccharides exerted a broad-spectrum antiviral activity against both DNA and RNA viruses, accompanied by high safety toward normal cells, where the maximum safe doses (EC100) were estimated to be about 3-3.9 mg/mL for both Vero and PBMC cell lines. Treatment of HCV, ADV7, HSV1, and HIV viruses with the purified polysaccharides showed a potent dose-dependent inhibitory activity with IC50 values of 95.475, 20.96, 5.213, and 461.75 µg/mL, respectively. This activity was hypothesized to be through inhibiting the viral entry in HCV infection and inhibiting the reverse transcriptase activity in HIV. The current study firstly reported the antioxidant, anti-inflammatory, and antiviral activities of Cucurbita maxima fucose-rich polysaccharide against several viral infections.


Assuntos
Cucurbita , Infecções por HIV , Antioxidantes/farmacologia , Antioxidantes/química , Cucurbita/química , Fucose/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antivirais/farmacologia , Leucócitos Mononucleares , Polissacarídeos/farmacologia , Polissacarídeos/química
13.
J Hazard Mater ; 443(Pt A): 130141, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36241498

RESUMO

Phosphine (PH3) is an ideal fumigant alternative on methyl bromide (MB) as MB has been classified as an ozone-depleting substance. However, several challenges limit its efficient use in crop production, including the emergence of PH3-resistant insect pests and the incidence of phytotoxic effects on nursery plants. Therefore, this study aims to elucidate the mechanism underlying PH3 phytotoxicity in plants using transcriptomic techniques. Fumigation with 2 g/m3 PH3 induced phytotoxic effects in A. thaliana, as evidenced by a decrease in growth and vegetation indices compared to the control group. Transcriptomic analysis revealed that PH3 fumigation phytotoxicity responses in A. thaliana involve genes related to hypoxia stress and energy metabolism. Additionally, pretreatment with ethylene induced pre-adaptation to hypoxia under light conditions during fumigation effectively suppressed the phytotoxic effects of PH3 in A. thaliana by increasing the expression of hypoxia-adaptive genes. Moreover, the phytotoxicity of PH3 was also confirmed in pumpkin (Cucurbita moschata Duch.), and was dependent on light. Overall, our findings showed that fumigation under light conditions and ethylene pretreatment could be used to minimize PH3-induced phytotoxic effects in plants.


Assuntos
Arabidopsis , Cucurbita , Fosfinas , Arabidopsis/genética , Transcriptoma , Fosfinas/toxicidade , Hipóxia , Metabolismo Energético , Etilenos
14.
Sci Total Environ ; 864: 161156, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36572319

RESUMO

As a widely applied semiconductor nanomaterial, quantum dots (QDs) have drawn considerable interest. In this study, pumpkin and rice seedlings were hydroponically exposed to two core/shell CdSe/ZnS QDs coated with cysteamine (CdSe/ZnS-CA) and polyethylene glycol-carboxy (CdSe/ZnS-PEG-COOH) for 10 days to analyze their time-varying uptake, translocation, and transformation behaviors in plants. Both QDs were mainly adsorbed/absorbed by the roots in the particulate state, and more CdSe/ZnS-CA accumulated than CdSe/ZnS-PEG-COOH. For CdSe/ZnS-CA-treated plants, the Se and Cd concentrations (CSe and CCd) associated with the roots were 561 ± 75 and 580 ± 73 µg/g (dw) for rice and 474 ± 49 and 546 ± 53 µg/g (dw) for pumpkin, respectively, on day 10. For CdSe/ZnS-PEG-COOH-treated plants, the concentrations of Se and Cd associated with roots were 392 ± 56 and 453 ± 56 µg/g (dw) for rice and 363 ± 52 and 417 ± 52 µg/g (dw) for pumpkin, respectively. The surface charges and coatings significantly affected the accumulation of QDs at the beginning of exposure; however, the impaction decreased with time. The ratios between the Cd and Se concentrations (CCd/CSe) in the stems and leaves varied from those of the QD standards, indicating the transformation of the QDs in the exposure system. Se and Cd were more likely to translocate in CdSe/ZnS-PEG-COOH-treated plants than in CdSe/ZnS-CA-treated plants. The vertical translocation of Se was greater than that of Cd. Rice showed greater abilities of accumulation and translocation of Se and Cd from both QDs than pumpkin. These findings improve our understanding of the interference of QDs with plants and their environmental fate.


Assuntos
Compostos de Cádmio , Cucurbita , Oryza , Pontos Quânticos , Compostos de Selênio , Cádmio , Compostos de Zinco , Sulfetos
15.
Molecules ; 27(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36500333

RESUMO

Pumpkin is considered a functional food with beneficial effects on human health due to the presence of interesting bioactives. In this research, the impact of unconventional ultrasound-assisted extraction (UAE) and microwave-assisted extraction techniques on the recovery of total non-polar carotenoids from Cucurbita moschata pulp was investigated. A binary (hexane:isopropanol, 60:40 v/v) and a ternary (hexane:acetone:ethanol, 50:25:25 v/v/v) mixture were tested. The extracts were characterized for their antioxidant properties by in vitro assays, while the carotenoid profiling was determined by high-performance liquid chromatography coupled with a diode array detector. UAE with the binary mixture (30 min, 45 °C) was the most successful extracting technique, taking into consideration all analytical data and their correlations. In parallel, solid lipid nanoparticles (SLN) were optimized for the encapsulation of the extract, using ß-carotene as a reference compound. SLN, loaded with up to 1% ß-carotene, had dimensions (~350 nm) compatible with increased intestinal absorption. Additionally, the ABTS ((2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assay showed that the technological process did not change the antioxidant capacity of ß-carotene. These SLN will be used to load an even higher percentage of the extract without affecting their dimensions due to its liquid nature and higher miscibility with the lipid with respect to the solid ß-carotene.


Assuntos
Carotenoides , Cucurbita , Humanos , Carotenoides/química , Cucurbita/química , Hexanos , beta Caroteno , Antioxidantes/química , Extratos Vegetais/química
16.
Molecules ; 27(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36500462

RESUMO

Pumpkin fruits are widely appreciated and consumed worldwide. In addition to their balanced nutritional profile, pumpkin species also present valuable bioactive compounds that confer biological and pharmacological properties to them. However, the seeds, peels, and fibrous strands resulting from pumpkin processing are still poorly explored by the food industry. The current study used those fruit components from the genotypes of pumpkin that are economically significant in Portugal and Algeria to produce bioactive extracts. In order to support their usage as preservatives, their phenolic content (HPLC-DAD-ESI/MS) and antioxidant (OxHLIA and TBARS) and antimicrobial properties (against eight bacterial and two fungal strains) were assessed. In terms of phenolic profile, the peel of the Portuguese 'Common Pumpkin' showed the most diversified profile and also the highest concentration of total phenolic compounds, with considerable concentrations of (-)-epicatechin. Regarding the antioxidant capacity, the seeds of 'Butternut Squash' from both countries stood out, while the fibrous strands of Portuguese 'Butternut Squash' and the seeds of Algerian 'Gold Nugget Pumpkin' revealed the strongest antimicrobial activity. The bioactive compounds identified in the pumpkin byproducts may validate their enormous potential as a source of bio-based preservatives that may enhance consumers' health and promote a circular economy.


Assuntos
Anti-Infecciosos , Cucurbita , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Fenóis/farmacologia , Anti-Infecciosos/farmacologia
17.
J Invertebr Pathol ; 195: 107848, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36343669

RESUMO

The squash bee Eucera (Peponapis) pruinosa is emerging as a model species to study how stressors impact solitary wild bees in North America. Here, we describe the prevalence of trypanosomes, microsporidians and mollicute bacteria in E. pruinosa and two other species, Bombus impatiens and Apis mellifera, that together comprise over 97% of the pollinator visitors of Cucurbita agroecosystems in Pennsylvania (United States). Our results indicate that all three parasite groups are commonly detected in these bee species, but E. pruinosa often exhibit higher prevalences. We further describe novel trypanosome parasites detected in E. pruinosa, however it is unknown how these parasites impact these bees. We suggest future work investigates parasite replication and infection outcomes.


Assuntos
Cucurbita , Parasitos , Abelhas , Estados Unidos/epidemiologia , Animais , Polinização , Prevalência , New England
18.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36361943

RESUMO

Size is the most important quality attribute of giant pumpkin fruit. Different concentrations and application frequencies of α-naphthaleneacetic acid (NAA) and 24-epibrassinolide (EBR) were sprayed on the leaves and fruits of giant pumpkin at different growth stages to determine their effects and the mechanism responsible for fruit size increase. NAA+EBR application improved source strength, and further analysis indicated that NAA+EBR markedly boosted net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr) and the expression level and activity of galactitol synthetase (GolS), raffinose synthetase (RS), and stachyose synthetase (STS), resulting in an increase in the synthesis of photoassimilate, especially stachyose. Concomitantly, NAA+EBR spray increased stachyose and sucrose contents throughout pumpkin fruit growth and the concentrations of glucose and fructose at 0 and 20 days post-anthesis (DPA) in peduncle phloem sap, implying that such treatment improved the efficiency of assimilate transport from the peduncle to the fruit. Furthermore, it improved the expression and activity of alkaline α-galactosidase (AGA), facilitating assimilate unloading, providing carbon skeletons and energy for fruit growth, and increasing fruit weight by more than 44.1%. Therefore, exogenous NAA and EBR increased source capacity, transportation efficiency, and sink strength, overall promoting the synthesis and distribution of photoassimilate, ultimately increasing fruit size.


Assuntos
Cucurbita , Frutas , Frutas/metabolismo , Açúcares/metabolismo , Ligases/metabolismo
19.
Molecules ; 27(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36364352

RESUMO

Reducing waste, using byproducts, and natural food additives are important sustainability trends. In this context, the aim of this study was to produce and evaluate a natural food dye, extracted from pumpkin byproducts, powdered and protected by spray-chilling (SC) and a combination of spray-drying and spray-chilling techniques (SDC). The extract was obtained using ethanol as solvent; vegetable fat and gum Arabic were used as carriers. Formulations were prepared with the following core:carrier ratios: SC 20 (20:80), SC 30 (30:70), SC 40 (40:60), SDC 5 (5:95), SDC 10 (10:90), and SDC 15 (15:85). The physicochemical properties of the formed microparticles were characterised, and their storage stability was evaluated over 90 days. The microparticles exhibited colour variation and size increase over time. SDC particles exhibited the highest encapsulation efficiency (95.2-100.8%) and retention of carotenoids in the storage period (60.8-89.7%). Considering the carotenoid content and its stability, the optimal formulation for each process was selected for further analysis. All of the processes and formulations produced spherical particles that were heterogeneous in size. SDC particles exhibited the highest oxidative stability index and the highest carotenoid release in the intestinal phase (32.6%). The use of combined microencapsulation technologies should be considered promising to protect carotenoid compounds.


Assuntos
Cucurbita , Cucurbita/química , Pós , Carotenoides/química , Composição de Medicamentos/métodos , Extratos Vegetais/química
20.
Molecules ; 27(21)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36364444

RESUMO

By-products of cultivated plants are one of the major environmental concerns worldwide. Due to the high concentration of bioactive chemicals, such waste may be considered hazardous due to the interference with the plant growth, deterioration of the drinking water quality or toxic effects on sensitive marine organisms. Moreover, plant-derived by-products, with proper handling, may represent a low-cost source of bioactive compounds potentially important for pharmaceutical and cosmetics industries. The aim of the study was to evaluate the phytochemical composition, antioxidant activity, the influence of tyrosinase activity, in vitro sun protecting factor and cytotoxicity of 15 extracts from peels of five cultivars of Cucurbita maxima and C. moschata. The extracts were prepared using "green solvents" (water, 50% propylene glycol, and 20% ethanol) and ultrasound-assisted extraction. The performed analysis showed that the peel extracts from various cultivars differ significantly in respect to the phytochemical content and activity. The type of solvent also had a significant impact on the extract's composition and bioactivity. Aqueous peel extracts contained the highest amounts of flavonoids, showed the greatest antioxidant potential and the most significant in vitro SPF values. In vitro studies showed that the analyzed peel extracts are not cytotoxic for human keratinocytes up to the concentration of 1000 µg/mL and thus might be considered as non-irritant for the skin. The study confirms the potential application of peel extracts from Cucurbita spp. cultivars in cosmetic products.


Assuntos
Cucurbita , Dermatologia , Humanos , Cucurbita/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antioxidantes/química , Compostos Fitoquímicos/química , Solventes/química , Higiene da Pele
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...