Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36234889

RESUMO

Siraitia grosvenorii is a type of fruit used in traditional Chinese medicine. Previous studies have shown that the conversion of saponins was often carried out by chemical hydrolysis, which can be problematic because of the environmental hazards it may cause and the low yield it produces. Therefore, the purpose of this study is to establish a continuous bioreactor with immobilized enzymes to produce siamenoside I and mogroside IV. The results show that the immobilization process of ß-glucosidase exhibited the best relative activity with a glutaraldehyde (GA) concentration of 1.5%, carrier activation time of 1 h and binding enzyme time of 12 h. After the immobilization through GA linkage, the highest relative activity of ß-glucosidase was recorded through the reaction with the substrate at 60 °C and pH 5. Subsequently, the glass microspheres with immobilized ß-glucosidase were filled into the reactor to maintain the optimal active environment, and the aqueous solution of Siraitia grosvenorii extract was introduced by controlling the flow rate. The highest concentration of siamenoside I and mogroside IV were obtained at a flow rate of 0.3 and 0.2 mL/min, respectively. By developing this immobilized enzyme system, siamenoside I and mogroside IV can be prepared in large quantities for industrial applications.


Assuntos
Cucurbitaceae , Saponinas , Triterpenos , Cucurbitaceae/metabolismo , Enzimas Imobilizadas , Glutaral , Extratos Vegetais , Triterpenos/metabolismo , beta-Glucosidase
2.
J Integr Plant Biol ; 64(7): 1448-1461, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35568969

RESUMO

The NAC transcription factor NONRIPENING (NOR) is a master regulator of climacteric fruit ripening. Melon (Cucumis melo L.) has climacteric and non-climacteric fruit ripening varieties and is an ideal model to study fruit ripening. Two natural CmNAC-NOR variants, the climacteric haplotype CmNAC-NORS,N and the non-climacteric haplotype CmNAC-NORA,S , have effects on fruit ripening; however, their regulatory mechanisms have not been elucidated. Here, we report that a natural mutation in the transcriptional activation domain of CmNAC-NORS,N contributes to climacteric melon fruit ripening. CmNAC-NOR knockout in the climacteric-type melon cultivar "BYJH" completely inhibited fruit ripening, while ripening was delayed by 5-8 d in heterozygous cmnac-nor mutant fruits. CmNAC-NOR directly activated carotenoid, ethylene, and abscisic acid biosynthetic genes to promote fruit coloration and ripening. Furthermore, CmNAC-NOR mediated the transcription of the "CmNAC-NOR-CmNAC73-CmCWINV2" module to enhance flesh sweetness. The transcriptional activation activity of the climacteric haplotype CmNAC-NORS,N on these target genes was significantly higher than that of the non-climacteric haplotype CmNAC-NORA,S . Moreover, CmNAC-NORS,N complementation fully rescued the non-ripening phenotype of the tomato (Solanum lycopersicum) cr-nor mutant, while CmNAC-NORA,S did not. Our results provide insight into the molecular mechanism of climacteric and non-climacteric fruit ripening in melon.


Assuntos
Cucumis melo , Cucurbitaceae , Cucumis melo/genética , Cucumis melo/metabolismo , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Etilenos , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Planta ; 255(6): 123, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35552537

RESUMO

MAIN CONCLUSION: We identified 66 melon SAUR genes by bioinformatic analyses. CmSAUR19, 38, 58, 62 genes are specifically expressed in different stages of fruit growth, suggesting their participation in regulating fruit development. Auxin plays a crucial role in plant growth by regulating the multiple auxin response genes. However, in melon (Cucumis melo L.), the functions of the auxin early response gene family SAUR (Small auxin up RNA) genes in fruit development are still poorly understood. Through genome-wide characterization of CmSAUR family in melon, we identified a total of 66 CmSAUR genes. The open reading frames of the CmSAUR genes ranged from 234 to 525 bp, containing only one exon and lacking introns. Chromosomal position and phylogenetic tree analyses found that the two gene clusters in the melon chromosome are highly homologous in the Cucurbitaceae plants. Among the four conserved motifs in CmSAUR proteins, motif 1, motif 2, and motif 3 located in most of the family protein sequences, and motif 4 showed a close correlation with the two gene clusters. The CmSAUR28 and CmSAUR58 genes have auxin response elements located in the promoters, suggesting they may be involved in the auxin signaling pathway to regulate fruit development. Through transcriptomic profiling in the four developmental stages of fruit and different lateral organs, we selected 16 differentially-expressed SAUR genes for performing further expression analyses. qRT-PCR results showed that five SAUR genes are specifically expressed in flower organs and ovaries. CmSAUR19 and CmSAUR58 were significantly accumulated in the early developmental stage of the fruit. CmSAUR38 and CmAUR62 showed high expression in the climacteric and post-climacteric stages, suggesting their specific role in controlling fruit ripening. This work provides a foundation for further exploring the function of the SAUR gene in fruit development.


Assuntos
Cucumis melo , Cucurbitaceae , Cucumis melo/genética , Cucumis melo/metabolismo , Cucurbitaceae/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Ácidos Indolacéticos/metabolismo , Filogenia
4.
Curr Biol ; 32(11): 2390-2401.e4, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35525245

RESUMO

Shapes of vegetables and fruits are the result of adaptive evolution and human selection. Modules controlling organ shape have been identified. However, little is known about signals coordinating organ development and shape. Here, we describe the characterization of a melon mutation rf1, leading to round fruit. Histological analysis of rf1 flower and fruits revealed fruit shape is determined at flower stage 8, after sex determination and before flower fertilization. Using positional cloning, we identified the causal gene as the monoecy sex determination gene CmACS7, and survey of melon germplasms showed strong association between fruit shape and sexual types. We show that CmACS7-mediated ethylene production in carpel primordia enhances cell expansion and represses cell division, leading to elongated fruit. Cell size is known to rise as a result of endoreduplication. At stage 8 and anthesis, we found no variation in ploidy levels between female and hermaphrodite flowers, ruling out endoreduplication as a factor in fruit shape determination. To pinpoint the gene networks controlling elongated versus round fruit phenotype, we analyzed the transcriptomes of laser capture microdissected carpels of wild-type and rf1 mutant. These high-resolution spatiotemporal gene expression dynamics revealed the implication of two regulatory modules. The first module implicates E2F-DP transcription factors, controlling cell elongation versus cell division. The second module implicates OVATE- and TRM5-related proteins, controlling cell division patterns. Our finding highlights the dual role of ethylene in the inhibition of the stamina development and the elongation of ovary and fruit in cucurbits.


Assuntos
Cucurbitaceae , Frutas , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Etilenos/metabolismo , Flores , Regulação da Expressão Gênica de Plantas , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Food Chem ; 390: 133205, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35598415

RESUMO

Extracts of Siraitia grosvenorii (Swingle), in Chinese known as Luo Han Guo (LHG), is authorized for use as a natural sweetener. LHG is rich in mogroside V that contains five glucoses, but also contains mogroside IIIE and analogues with fewer than three glucose units that cause an unpleasant aftertaste, limiting the use of the extract. Snailase was applied here to convert mogroside V in LHG extract in favor of siamenoside I formation, the sweetest mogroside with a taste similar to sucrose. For application, snailase was immobilized by adsorption to NKA (a macroporous resin), resulting in 10.9 U per g of adsorbed protein. Reuse of the NKA-adsorbed snailase was demonstrated for four cycles, and a continuous production of improved LHG extract at a 0.5 L scale had a productivity of 68.4 g/(L⋅day). The resulting product containing over 50% siamenoside I displayed an improved taste profile with satisfying safety toward HEK293T cells.


Assuntos
Cucurbitaceae , Triterpenos , Cucurbitaceae/metabolismo , Células HEK293 , Humanos , Extratos Vegetais , Edulcorantes , Paladar , Triterpenos/metabolismo
6.
Genes (Basel) ; 13(3)2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35328021

RESUMO

YABBY transcription factors play important roles in plant growth and development. However, little is known about YABBY genes in Cucurbitaceae. Here, we identified 59 YABBY genes from eight cucurbit species, including cucumber (C. sativus L.), melon (C. melon L.), watermelon (C. lanatus), wax gourd (B. hispida), pumpkin (C. maxima), zucchini (C. pepo L.), silver-seed gourd (C. argyrosperma), and bottle gourd (L. siceraria). The 59 YABBY genes were clustered into five subfamilies wherein the gene structures and motifs are conserved, suggesting similar functions within each subfamily. Different YABBY gene numbers in eight cucurbit species indicated that gene loss or duplication events exist in an evolutionary process across Cucurbitaceae. The cis-acting elements analysis implied that the YABBYs may be involved in plant development, and phytohormone, stress, and light responses. Importantly, YABBY genes exhibited organ-specific patterns in expression in cucumber. Furthermore, a gene CsaV3_6G038650 was constitutively expressed at higher levels at different fruit development stages and might play a crucial role in cucumber fruit development. Collectively, our work will provide a better understanding for further function identifications of YABBY genes in Cucurbitaceae.


Assuntos
Citrullus , Cucumis sativus , Cucurbitaceae , Citrullus/genética , Cucumis sativus/genética , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Genoma de Planta , Reguladores de Crescimento de Plantas/metabolismo
7.
Genes (Basel) ; 13(2)2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35205307

RESUMO

The carotenoid cleavage dioxygenase (CCD) gene family in plants comprises two subfamilies: CCD and 9-cis-epoxycarotenoid dioxygenase (NCED). Genes in the NCED subfamily are mainly involved in plant responses to abiotic stresses such as salt, low temperature, and drought. Members of the NCED subfamily are the most important rate-limiting enzymes in the biosynthesis of abscisic acid (ABA). In the present study, genome-wide analysis was performed to identify CCD gene members in six Cucurbitaceae species, including watermelon (Citrullus lanatus), melon (Cucumis melo), cucumber (C.sativus), pumpkin (Cucurbita moschata), bottle gourd (Lagenaria siceraria), and wax gourd (Benincasa hispida). A total of 10, 9, 9, 13, 8, 8 CCD genes were identified in the six species, respectively, and these genes were unevenly distributed in different chromosomes. Phylogenetic analysis showed that CCD genes of the six species clustered into two subfamilies: CCD and NCED, with five and three independent clades, respectively. The number of exons ranged from 1 to 15, and the number of motifs were set to 15 at most. The cis-acting elements analysis showed that a lot of the cis-acting elements were implicated in stress and hormone response. Melon seedlings were treated with salt, low temperature, drought, and ABA, and then tissue-specific analysis of CCDs expression were performed on the root, stem, upper leaf, middle leaf, female flower, male flower, and tendril of melon. The results showed that genes in CCD family exhibited various expression patterns. Different CCD genes of melon showed different degrees of response to abiotic stress. This study presents a comprehensive analysis of CCD gene family in six species of Cucurbitaceae, providing a strong foundation for future studies on specific genes in this family.


Assuntos
Citrullus , Cucurbitaceae , Dioxigenases , Ácido Abscísico , Carotenoides/metabolismo , Citrullus/genética , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Dioxigenases/genética , Filogenia , Plantas/metabolismo
8.
J Sci Food Agric ; 102(9): 3535-3542, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34854489

RESUMO

BACKGROUND: Hami melons are tasty and nutritive, but susceptibility to the fungus Alternaria alternata is one of the main problems leading to the postharvest loss of this fruit. The purpose of this research was to evaluate the effectiveness of nitric oxide (NO) on regulation of ethylene biosynthesis as well as signal transduction against black spot disease caused by A. alternata in the Hami melon. RESULTS: Nitric oxide reduced the growth of lesion diameter and lesion depth in melons inoculated with A. alternata. Ethylene production was significantly inhibited by NO, which was supported by the reduction of 1-aminocyclopropene-1-carboxylate (ACC) synthase (ACS) activity and the deferment of ACC content and ACC oxidase (ACO) activity. Nitric oxide treatment also significantly regulated the expression of four ethylene biosynthesis genes CmACS1, CmACS2, CmACO1, and CmACO2, and eight signal ethylene transduction genes CmETR1, CmETR2, CmCTR1, CmEIN2, CmEIL1, CmEBF1, CmERF1B and CmERF2. The modes of NO regulating these genes can be divided into five categories: promotion (CmEIN2, and CmEIL1), delay (CmACS1, CmETR2, CmCTR1 and CmERF2), up-regulation (CmETR1, CmEBF1 and CmERF1B), down-regulation (CmACS2), and first inhibition and then induction (CmACO1 and CmACO2). CONCLUSION: The NO treatment enhanced the postharvest disease resistance of Hami melon attacked by A. alternata, possibly by postponing ethylene biosynthesis and signal transduction. © 2021 Society of Chemical Industry.


Assuntos
Cucurbitaceae , Alternaria/metabolismo , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Etilenos/farmacologia , Óxido Nítrico/farmacologia , Transdução de Sinais
9.
Int J Biol Macromol ; 194: 632-643, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34822819

RESUMO

Recently, the high-value utilization of food wastes has attracted great interest in sustainable development. Focusing on the major application of electrochemical energy storage (ECES), light-weight lignin-based carbon nanofibers (LCNFs) were controllably fabricated as supercapacitors from melon seed shells (MSS) and peanut shells (PS) through electrospinning and carbonizing processes. As a result, the optimal specific capacitance of 533.7 F/g in three-electrode system, energy density of 69.7 Wh/kg and power density of 780 W/Kg in two-electrode system were achieved. Surprisingly, the LCNFs also presented a satisfied electromagnetic absorption property: The minimum reflection loss (RL) value reached -37.2 dB at an absorbing frequency of 7.98 GHz with an effective frequency (RL < 10 dB) of 2.24 GHz (6.88 to 9.12 GHz) at a thickness of 3.0 mm. These features make the multifunctional LCNFs highly attractive for light-weight supercapacitor electrodes and electromagnetic wave absorbers applications.


Assuntos
Cucurbitaceae/metabolismo , Capacitância Elétrica , Lignina/química , Nanofibras/química , Eliminação de Resíduos/métodos , Absorção Fisico-Química , Carbono/química , Sementes/química
10.
Plant Genome ; 15(1): e20167, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34741493

RESUMO

Metal-tolerance proteins (MTPs) are divalent cation transporters and play fundamental roles in plant metal tolerance and ion homeostasis. Despite that, a systematic investigation of MTPs in Cucurbitacea is still lacking. In this study, 142 MTPs were identified from 11 released genomes of 8 Cucurbitaceae species. They were phylogenetically separated into three clusters (Zn-cation diffusion facilitator proteins [CDFs], Fe/Zn-CDFs, and Mn-CDFs) and further subdivided into seven groups (G1, G5, G6, G7, G8, G9, and G12). Characterization analysis revealed that most MTPs were plasma membrane-located hydrophobic proteins. Motif and exon/intron analysis showed that members in the same group contained similar conserved motifs and gene structures. Moreover, 98 pairs of segmental-like duplication events were found. The nonsynonymous/synonymous substitution ratios between each pair were less than 1, implying that Cucurbitaceae MTPs were under purification selection. Expression profiling suggested that several MTP genes, such as CsCLMTP1, CmeMTP3, LsMTP3, and Cl97103MTP3, were constitutively expressed in corresponding Cucurbitaceae species, and their expression levels were not significantly altered by NaCl, drought, or pathogen infection. The expression patterns of cucumber MTP genes under Zn2+ , Cu2+ , Mn2+ , and Cd2+ stress were studied by quantitative real-time polymerase chain reaction and the results showed that these MTPs were induced by at least one metal ion, suggesting their involvement in metal tolerance or transportation. The identification and comprehensive investigation of MTP family members will provide a basis for the analysis of ion transport functions and ion tolerance mechanisms of Cucurbitaceae MTPs.


Assuntos
Proteínas de Transporte de Cátions , Cucurbitaceae , Sequência de Aminoácidos , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
11.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36613606

RESUMO

It is generally recognized that the root uptake capacity of grafted plants strongly depends on the rootstocks' well-developed root system. However, we found that grafted plants showed different nitrate uptake capacities when different varieties of oriental melon scion were grafted onto the same squash rootstock, suggesting that the scion regulated the nitrate uptake capacity of the rootstock root. In this study, we estimated the nitrate uptake capacity of grafted plants with the different oriental melon varieties' seedlings grafted onto the same squash rootstocks. The results indicated a significant difference in the nitrate uptake rate and activity of two heterologous grafting plants. We also showed a significant difference in CmoNRT2.1 expression in the roots of two grafting combinations and verified the positive regulation of nitrate uptake by CmoNRT2.1 expression. In addition, the two varieties of oriental melon scion had highly significant differences in CmHY5 expression, which was transported to the rootstock and positively induced CmoHY5-1 and CmoHY5-2 expression in the rootstock roots. Meanwhile, CmHY5 could positively regulate CmoNRT2.1 expression in the rootstock roots. Furthermore, CmoHY5-1 and CmoHY5-2 also positively regulated CmoNRT2.1 expression, respectively, and CmoHY5-1 dominated the positive regulation of CmoNRT2.1, while CmHY5 could interact with CmoHY5-1 and CmoHY5-2, respectively, to jointly regulate CmoNRT2.1 expression. The oriental melon scion regulated the nitrate uptake capacity of the melon/squash grafting plant roots, and the higher expression of CmHY5 in the oriental melon scion leaves, the more substantial the nitrate uptake capacity of squash rootstock roots.


Assuntos
Cucumis melo , Cucurbita , Cucurbitaceae , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Nitratos/metabolismo , Fatores de Transcrição/metabolismo , Cucurbita/genética , Cucurbita/metabolismo , Transporte de Íons , Cucumis melo/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
12.
Gene ; 805: 145910, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-34419567

RESUMO

Ethylene is an important regulatory phytohormone for sex differentiation and flower development. As the rate-limiting enzyme encoding genes in ethylene biosynthesis, ACS gene family has been well studied in cucumber; however, little is known in other cucurbit crops, such as melon and watermelon, which show diverse sex types in the field. Here, we identified and characterized eight ACS genes each in the genomes of melon and watermelon. According to the conserved serine residues at C-terminal, all the ACS genes could be characterized into three groups, which were supported by the exon-intron organizations and conserved motif distributions. ACS genes displayed diverse tissue-specific expression patterns among four melon and three watermelon sex types. Furthermore, a comparative expression analysis in the shoot apex identified orthologous pairs with potential functions in sex determination, e.g., ACS1s and ACS6s. All ACS orthologs in melon and watermelon exhibited similar expression patterns in monoecious and gynoecious genotypes, except for ACS11s and ACS12s. As expected, the majority of ACS genes were responsive to exogenous ethephon; however, some orthologs exhibited opposite expression patterns, such as ACS1s, ACS9s, and ACS10s. Collectively, our findings provide valuable ACS candidates related to flower development in various sex types of melon and watermelon.


Assuntos
Cucurbitaceae/genética , Etilenos/metabolismo , Liases/metabolismo , Diferenciação Sexual/genética , Citrullus/genética , Citrullus/metabolismo , Cucumis sativus/genética , Cucumis sativus/metabolismo , Cucurbitaceae/metabolismo , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Genótipo , Liases/genética , Filogenia , Proteínas de Plantas/genética , Diferenciação Sexual/fisiologia
13.
J Chem Ecol ; 47(7): 664-679, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34196857

RESUMO

Larval Diaphania indica (Saunders) (Lepidoptera: Crambidae) cause complete defoliation of Trichosanthes anguina L. and reduce crop yield in India. Females lay eggs on the leaf surface, and therefore leaf surface waxes are potentially involved in host selection. Alkanes and free fatty acids are the major constituents of leaf surface waxes, so a study was conducted to determine whether these wax constituents from three T. anguina cultivars (MNSR-1, Baruipur Long, and Polo No.1) could act as short-range attractants and oviposition stimulants in D. indica females. Twenty n-alkanes from n-C14 to n-C36 and 13 free fatty acids from C12:0 to C21:0 were detected in the leaf surface waxes of these cultivars. Heptadecane and stearic acid were predominant among n-alkanes and free fatty acids, respectively, in these cultivars. Females showed attraction towards one leaf equivalent surface wax of each of these cultivars against solvent controls (petroleum ether) in Y-tube olfactometer bioassays. A synthetic blend of heptadecane, eicosane, hexacosane, and stearic acid, a synthetic blend of hexacosane and stearic acid, and a synthetic blend of pentadecane and stearic acid comparable to amounts present in one leaf equivalent surface wax of MNSR-1, Baruipur Long, and Polo No.1, respectively, were short-range attractants and oviposition stimulants in D. indica. Female egg laying responses were similar to each of these blends, providing information that could be used to developing baited traps in integrated pest management (IPM) programs.


Assuntos
Cucurbitaceae/metabolismo , Mariposas/fisiologia , Oviposição/efeitos dos fármacos , Ceras/farmacologia , Alcanos/análise , Alcanos/isolamento & purificação , Alcanos/farmacologia , Animais , Análise Discriminante , Ácidos Graxos não Esterificados/análise , Ácidos Graxos não Esterificados/isolamento & purificação , Ácidos Graxos não Esterificados/farmacologia , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Larva/efeitos dos fármacos , Larva/fisiologia , Mariposas/crescimento & desenvolvimento , Olfatometria , Folhas de Planta/metabolismo , Ceras/química , Ceras/isolamento & purificação
14.
Biotechnol Bioeng ; 118(10): 4092-4104, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34255354

RESUMO

The rapid, accurate and noninvasive detection of biomass and plant cell browning can provide timely feedback on cell growth in plant cell culture. In this study, Siraitia grosvenorii suspension cells were taken as an example, a phenotype analysis platform was successfully developed to predict the biomass and the degree of cell browning based on the color changes of cells in computer-aided vision technology. First, a self-made laboratory system was established to obtain images. Then, matrices were prepared from digital images by a self-developed high-throughput image processing tool. Finally, classification models were used to judge different cell types, and then a semi-supervised classification to predict different degrees of cell browning. Meanwhile, regression models were developed to predict the plant cell mass. All models were verified with a good agreement by biological experiments. Therefore, this method can be applied for low-cost biomass estimation and browning degree quantification in plant cell culture.


Assuntos
Técnicas de Cultura de Células , Cucurbitaceae/citologia , Cucurbitaceae/metabolismo , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Células Vegetais/metabolismo
15.
Molecules ; 26(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068821

RESUMO

The peel color is an important external quality of melon fruit. To explore the mechanisms of melon peel color formation, we performed an integrated analysis of transcriptome and metabolome with three different fruit peel samples (grey-green 'W', dark-green 'B', and yellow 'H'). A total of 40 differentially expressed flavonoids were identified. Integrated transcriptomic and metabolomic analyses revealed that flavonoid biosynthesis was associated with the fruit peel coloration of melon. Twelve differentially expressed genes regulated flavonoids synthesis. Among them, nine (two 4CL, F3H, three F3'H, IFS, FNS, and FLS) up-regulated genes were involved in the accumulation of flavones, flavanones, flavonols, and isoflavones, and three (2 ANS and UFGT) down-regulated genes were involved in the accumulation of anthocyanins. This study laid a foundation to understand the molecular mechanisms of melon peel coloration by exploring valuable genes and metabolites.


Assuntos
Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Flavonoides/metabolismo , Frutas/metabolismo , Redes e Vias Metabólicas/genética , Metaboloma/genética , Pigmentação/genética , Transcriptoma/genética , Vias Biossintéticas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Fenótipo , Análise de Componente Principal
16.
BMC Microbiol ; 21(1): 170, 2021 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-34090353

RESUMO

BACKGROUND: The unique climatic conditions of the Xinjiang region nurture rich melon and fruit resources, the melon and fruit sugar sources provide sufficient nutrients for the survival of yeast, and the diverse habitats accompanied by extreme climatic conditions promote the production of yeast diversity and strain resources. However, the relationship between yeast species and their relationship with environmental factors in the soil of Xinjiang specialty cash crop Hami melon is not clear. Here, we aimed to characterize the diversity, community structure, and relationship between yeast species and environmental factors in Hami melon orchards soils in different regions of Xinjiang, China. RESULTS: Based on Illumina MiSeq high-throughput sequencing analysis of the D1 domain of the LSU rRNA genes, the community richness of yeast in the soil of Northern Xinjiang was higher than in the Southern and Eastern Xinjiang, but the community diversity was significantly lower in the Northern Xinjiang than in the Southern and Eastern Xinjiang. A total of 86 OTUs were classified into 59 genera and 86 species. Most OTUs (90.4%) belonged to the Basidiomycota; only a few (9.6%) belonged to Ascomycota. The most dominant species in the Southern, Eastern and Northern Xinjiang were Filobasidium magnum (17.90%), Solicoccozyma aeria (35.83%) and Filobasidium magnum (75.36%), respectively. Principal coordinates analysis (PCoA) showed that the yeast community composition in the soils of the three regions were obviously different, with the Southern and Eastern Xinjiang having more similar yeast community. Redundancy analysis (RDA) showed that soil factors such as conductivity (CO), total phosphorus (TP) and Total potassium (TK) and climate factors such as average annual precipitation (PRCP), relative humidity (RH) and net solar radiation intensity (SWGNT) were significantly correlated with yeast communities (P < 0.05). CONCLUSION: There are abundant yeast resources in the rhizosphere soil of Hami melon orchard in Xinjiang, and there are obvious differences in the diversity and community structure of yeast in the three regions of Xinjiang. Differences in climatic factors related to precipitation, humidity and solar radiation intensity and soil factors related to conductivity, total phosphorus and total potassium are key factors driving yeast diversity and community structure.


Assuntos
Cucurbitaceae/crescimento & desenvolvimento , Microbiologia do Solo , Leveduras/isolamento & purificação , China , Cucurbitaceae/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Microbiota , Fósforo/análise , Fósforo/metabolismo , Rizosfera , Solo/química , Leveduras/classificação , Leveduras/genética
17.
Food Chem ; 359: 129938, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33984594

RESUMO

A new compound, α-siamenoside I (α-SI), with a glucose unit selectively bound to the 6-hydroxyl group of the 24-O-ß-glucosyl moiety of mogroside IIIE by α-1,6-glucosidic bond, was bio-created by two screened cyclodextrin glycosyltransferases with a maximum yield of 59.3%. Compared to mogroside IIIE, α-SI showed a significantly increased sweetness intensity (508 times sweeter than 5% sucrose), which is superior to siamenoside I (SI), the sweetest triterpenoid saponin isolated from Siraitia grosvenorii to date. Sensory evaluation showed that the taste quality of α-SI also was obviously better than mogroside IIIE. In addition to α-SI possessing a good stability similar to that of SI, it also did not cause a significant decrease in cell viability at a concentration of 200 µg/mL and had a negative influence on islets function at 1 µM. All of these preliminarily results pave the way for promoting α-SI as a potential low-calorie sweetener.


Assuntos
Glucosídeos/metabolismo , Adoçantes não Calóricos/química , Triterpenos/metabolismo , Cucurbitaceae/metabolismo , Glucosiltransferases , Glicosilação , Humanos , Saponinas/química , Paladar , Triterpenos/química
18.
Food Chem ; 353: 129484, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33812162

RESUMO

Aroma is an essential trait in melon fruit quality, but its complexity and genetic basis are still poorly understood. The aim of this study was the identification of quantitative trait loci (QTLs) underlying volatile organic compounds (VOCs) biosynthesis in melon rind and flesh, using a Recombinant Inbred Line (RIL) population from the cross 'Piel de Sapo' (PS) × 'Védrantais' (VED), two commercial varieties segregating for ripening behavior. A total of 82 VOCs were detected by gas chromatography-mass spectrometry (GC-MS), and 166 QTLs were identified. The main QTL cluster was on chromosome 8, collocating with the previously described ripening-related QTL ETHQV8.1, with an important role in VOCs biosynthesis. QTL clusters involved in esters, lipid-derived volatiles and apocarotenoids were also identified, and candidate genes have been proposed for ethyl 3-(methylthio)propanoate and benzaldehyde biosynthesis. Our results provide genetic insights for deciphering fruit aroma in melon and offer new tools for flavor breeding.


Assuntos
Cucurbitaceae/genética , Locos de Características Quantitativas , Compostos Orgânicos Voláteis/metabolismo , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Cucurbitaceae/química , Cucurbitaceae/metabolismo , Frutas/química , Frutas/genética , Frutas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Fenótipo , Análise de Componente Principal , Microextração em Fase Sólida , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/isolamento & purificação
19.
Genes (Basel) ; 12(3)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668231

RESUMO

Dirigent (DIR) proteins are induced under various stress conditions and involved in sterio- and regio-selective coupling of monolignol. A striking lack of information about dirigent genes in cucurbitaceae plants underscores the importance of functional characterization. In this study, 112 DIR genes were identified in six species, and 61 genes from major cultivated species were analyzed. DIRs were analyzed using various bioinformatics tools and complemented by expression profiling. Phylogenetic analysis segregated the putative DIRs into six distinctively known subgroups. Chromosomal mapping revealed uneven distribution of genes, whereas synteny analysis exhibited that duplication events occurred during gene evolution. Gene structure analysis suggested the gain of introns during gene diversification. Gene ontology (GO) enrichment analysis indicates the participation of proteins in lignification and pathogen resistance activities. We also determined their organ-specific expression levels in three species revealing preferential expression in root and leaves. Furthermore, the number of CmDIR (CmDIR1, 6, 7 and 12) and ClDIR (ClDIR2, 5, 8, 9 and 17) genes exhibited higher expression in resistant cultivars after powdery mildew (PM) inoculation. In summary, based on the expression and in-silico analysis, we propose a role of DIRs in disease resistance mechanisms.


Assuntos
Cucurbitaceae , Resistência à Doença , Filogenia , Doenças das Plantas , Folhas de Planta , Proteínas de Plantas , Raízes de Plantas , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Cucurbitaceae/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia
20.
Plant Sci ; 304: 110809, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33568307

RESUMO

Melon (Cucumis melo L.) is an important diploid crop with a wide variety of flavors due to its distinct aromatic volatile organic compounds (VOC). To understand the development of VOC profiles during fruit development, we performed metabolomic and transcriptomic analysis of two cantaloupe varieties over the course of fruit development. A total of 130 metabolites were detected in fruit samples, and 449014207 reads were mapped to the melon genome. A total of 4469 differentially expressed genes in fruits were identified and used to visualize the transition of VOC and transcriptomic profiles during the fruit development. A shift of VOC profiles in both varieties was observed from early-fruit profiles enriched in C5-C8 lipid-derived VOCs to late-fruit profiles abundant in C9 lipid-derived VOCs, apocarotenoids, and esters. The shift coincided with the expression of specific isoforms of lipid and carotenoid metabolizing enzymes as well as transcription factors involved in fruit ripening, metabolite regulation, and hormone signaling.


Assuntos
Cucurbitaceae/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Compostos Orgânicos Voláteis/metabolismo , Aminoácidos/metabolismo , Carotenoides/metabolismo , Cromatografia Líquida de Alta Pressão , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Frutas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Família Multigênica , Reação em Cadeia da Polimerase , RNA de Plantas/genética , Alinhamento de Sequência , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...