RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Liver injury, the main factor in the pathogenesis of most liver diseases, is a known contributor to acute liver failure, liver fibrosis, or liver cancer. Curcuma phaeocaulis Val. (PEZ) has been broadly used in treating liver injury with satisfying therapeutic effects; however, the mechanism is still unclear. AIM OF THE STUDY: This study aimed to explore the mechanism of PEZ in ameliorating thioacetamide (TAA)-induced zebrafish liver injury based on a comprehensive method integrating network-based computational prediction and experimental validations. MATERIALS AND METHODS: Ultrahigh-performance liquid chromatography-quadrupole exactive mass spectrometry/mass spectrometry (UPLC-Q-Exactive MS/MS) analysis was used to analyze components in raw and vinegar-processed PEZ (VPEZ). Network pharmacology was used to construct a compound-target network for liver injury to predict the possible biological targets of PEZ along with potential signaling pathways. TAA-induced zebrafish larvae liver injury model was established, and the anti-liver injury effect of PEZ by a series of indexes was measured, including liver phenotype analysis, histopathological analysis of liver tissues, and biochemical indexes analysis. Remarkably, the predicted pathway by network pharmacology was further validated using RT-qPCR and Western blotting analyzes in animal experiments. RESULTS: 40 chemical constituents derived from PEZ were identified, while 45 chemical components derived from VPEZ were identified. Based on it, 565 genes related to these identified compounds in PEZ and 1023 genes linked to liver injury were collected by network pharmacology. Critically, KEGG analysis indicated that the TLR4/MyD88/NF-κB signaling pathway was recommended as one of the main pathways related to the anti-liver injury effect of PEZ. Experimentally, PEZ could alleviate TAA-induced liver injury. Compared to the liver injury model group without any treatment, the treatment of PEZ significantly reduced the expression of both mRNA and protein targets in the TLR4/MyD88/NF-κB signaling pathway. In addition, the effect of VPEZ was more significant than that of the raw one. CONCLUSION: The raw and vinegar-processed PEZ could ameliorate TAA-induced zebrafish liver injury through TLR4/MyD88/NF-κB signaling pathway.
Assuntos
NF-kappa B , Peixe-Zebra , Animais , NF-kappa B/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Curcuma , Ácido Acético , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Tioacetamida , Espectrometria de Massas em Tandem , Transdução de Sinais , Fígado , Proteínas de Peixe-Zebra/metabolismoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: In traditional Chinese medicine, the causes of diabetic retinopathy (DR) are blood stasis and heat. Curcuma wenyujin Y. H. Chen & C. Ling and its extracts have the effects of promoting blood circulation to remove blood stasis, clearing the heart, and cooling the blood, and have been used in the treatment of DR. Elema-1,3,7 (11),8-tetraen-8,12-lactam (Ele), an N-containing sesquiterpene isolated from this plant. However, the anti-inflammatory and anti-angiogenic effects of Ele and its therapeutic potential in DR are still unknown. AIM OF THE STUDY: To evaluate the anti-inflammatory and anti-angiogenic effects of Ele and its therapeutic potential in DR. MATERIALS AND METHODS: In vitro, anti-inflammatory and anti-angiogenic effects were assessed using TNF-α or VEGF-stimulated HUVECs. Protein expression was analyzed using Western blotting. ICAM-1 and TNF-α mRNA expressions were analyzed using real-time quantitative RT-PCR. The therapeutic potential in DR was assessed using both animal models of STZ-induced diabetes and oxygen-induced retinopathy. The retinal vascular permeability was measured using Evans blue, and the quantitation of retinal leukostasis using FITC-coupled Con A. The retinal neovascular tufts were analyzed using fluorescein angiography and counting pre-retinal vascular lumens. RESULTS: Ele inhibited NF-κB pathway, and ICAM-1, TNF-α mRNA expression in TNF-α- stimulated HUVECs. It also inhibits the multistep process of angiogenesis by inhibiting the phosphorylation of VEGFR2 and its downstream signaling kinases Src, Erk1/2, Akt, and mTOR in VEGF-stimulated HUVECs. Intravitreal injection of Ele can significantly reduce retinal microvascular leakage, leukostasis, and expression of ICAM-1, TNF-α in diabetic rats and inhibits oxygen-induced retinal neovascularization and VEGFR2 phosphorylation in OIR mice. CONCLUSIONS: Ele has anti-inflammatory and anti-angiogenic effects through inhibiting NF-κB and VEGFR2 signaling pathways, and it may be a potential drug candidate for DR.
Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Leucostasia , Ratos , Camundongos , Animais , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , NF-kappa B/metabolismo , Curcuma , Molécula 1 de Adesão Intercelular/genética , Diabetes Mellitus Experimental/tratamento farmacológico , Leucostasia/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator de Necrose Tumoral alfa , Oxigênio , Anti-Inflamatórios/efeitos adversos , RNA MensageiroRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Curcuma latifolia Roscoe, a plant in the Curcuma genus, has been used as a food additive and folk medicine in Thailand to treat pelvic pain and improve premenstrual syndrome. Although it has been used for centuries, no scientific studies have proved its potential effects on inflammatory pain and central nervous system (CNS) safety profiles. AIM OF THE STUDY: This study aimed to evaluate the potential effects of the ethanolic extract of C. latifolia rhizome on inflammatory pain in mice, together with its CNS safety profiles. MATERIALS AND METHODS: First, network pharmacology was employed to identify the role of bioactive constituents in C. latifolia on inflammatory pain. In addition, in vitro pharmacology was also evaluated to confirm the anti-inflammatory activity of C. latifolia extract at cellular levels in activated macrophages and microglia. Furthermore, the efficacy of the plant extract in attenuating formalin-induced pain-like behaviors in mice was evaluated. Mice were orally administered the extract (125, 250, 500 mg/kg) followed by the measurement of formalin-induced pain-like behaviors. The LABORAS automated behavioral analysis and rotarod test were used to assess potential CNS side effects of C. latifolia extract (500 mg/kg) in mice. RESULTS: The results demonstrated that major bioactive constituents present in C. latifolia have the ability to regulate multiple targets, biological processes and pathways associated with inflammatory pain as assessed by network pharmacology. C. latifolia modulated peripheral and central immune cells via reducing proinflammatory mediators (NO, TNF-α, and IL-6). C. latifolia extract improved formalin-induced pain-like behaviors in a dose-dependent manner during phase II of the formalin test. The efficacy of the plant extract at doses of 250 and 500 mg/kg was comparable to that of the positive control (indomethacin 10 mg/kg). Furthermore, the highest therapeutic dose of the extract did not affect motor coordination, exploratory behaviors, general behaviors, and overall well-being of mice, indicating no development of potential CNS adverse effects after administration of the extract. CONCLUSION: These findings provide novel perspectives on using C. latifolia extract for pain management, considering its therapeutic efficacy and CNS safety.
Assuntos
Analgésicos , Curcuma , Feminino , Camundongos , Animais , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Dor/tratamento farmacológico , Dor/induzido quimicamente , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Sistema Nervoso Central , FormaldeídoRESUMO
OBJECTIVE: Achilles tendinopathy is a frequent pathological condition in adults with overused ankles, causing microtrauma, inducing tenocyte apoptosis and inflammatory response. Common treatment involves oral prescription or injection of anti-inflammatory agents, surgery, or shock-wave therapy. However, prolonged administration is not advisable due to adverse effects. Therefore, a novel and safe regimen is needed. Curcuma longa and Glycyrrhiza glabra extracts are known for their anti-inflammatory effects owing to their active compounds (curcumin and glycyrrhizin, respectively). This study aimed to determine the effect of combined extracts of Curcuma longa and Glycyrrhiza glabra on tendon healing in an animal model of Achilles tendinopathy (Wistar rats). MATERIALS AND METHODS: This study took place from February to May 2022 and compared the regimens administered to 32 animal models of Wistar rats with 4 healthy rats as a control group to determine the most effective therapeutic regimen: immobilization, immobilization with ibuprofen, or immobilization with the combined extract. The outcomes were measured to find which intervention provided the lowest inflammatory markers [High Mobility Group Box-1 (HMGB-1), Tumor Necrosis Factor-α (TNF-α), Chemokin motif ligand 12 (CXCL-12)], and improved tissue morphology represented by the BONAR score, decreased cross-sectional area (CSA), and increased Macrophage 2 (M2) differentiation. RESULTS: After Achilles tendinopathy was induced, total immobilization (I1) was proven to be the most effective with the lowest CSA, whereas immobilization+175 mg/kg Curcuma longa+110 mg/kg Glycyrrhiza glabra extract (I5) was the most effective with the lowest HMGB-1 levels and the lowest CXCL-12 levels. Immobilization+131 mg/kg Curcuma longa+82.5 mg/kg Glycyrrhiza glabra extract (I6) was the most effective with the lowest Bonar score, while immobilization+87.5 mg/kg Curcuma longa+55 mg/kg Glycyrrhiza glabra extract (I7) was proven to be the most effective with the highest M2 coverage area and the lowest TNF-α levels. CONCLUSIONS: We found that combined extract therapy was the most effective intervention for treating Achilles tendinopathy due to its ability to provide the lowest inflammatory markers.
Assuntos
Tendão do Calcâneo , Glycyrrhiza , Doenças Musculoesqueléticas , Tendinopatia , Ratos , Animais , Ratos Wistar , Curcuma , Fator de Necrose Tumoral alfa/uso terapêutico , Tendinopatia/tratamento farmacológico , Extratos Vegetais , Inflamação/tratamento farmacológico , Doenças Musculoesqueléticas/tratamento farmacológico , Proteínas HMGBRESUMO
Curcuma longa L., is recognized worldwide as a medicinally and economically important plant species due to its curcumin content which is an industrially important compound. In this study, a total of 329 accessions were collected from four states of India and planted in the experimental farm of CSIR-NEIST, Jorhat, India, in augmented design. Among these, 152 high curcumin (> 1.50%) accessions were screened for molecular divergence study using 39 SSR primers. The primers showed the most efficient outcome with 2-8 allele/ loci and a total 163 number of alleles with 100% polymorphism. Cluster analysis revealed the construction of three clusters, out of which one cluster was geographically dependent, and germplasm was particularly from Assam state. Jaccard's pairwise coefficient showed maximum genetic dissimilarity of (0.75) between accession RRLJCL 3 and RRLJCL 126, indicating high variation as it was from two different states viz Arunachal Pradesh and Nagaland respectively and minimum genetic dissimilarity of (0.09) between RRLJCL 58 and RRLJCL 59 indicating significantly less variation as the two accessions were from same state, i.e., Arunachal Pradesh. Analysis of Molecular Variance (AMOVA) revealed high molecular variation within the population (87%) and significantly less variation among the population (13%). Additionally, Neighbour Joining dendrogram, Principal Component Analysis (PCA), and bar plot structure revealed similar clustering of germplasm. This diversity assessment will help in selecting the trait-specific genotypes, crop improvement program, conservation of gene pool, marker-assisted breeding, and quantitative trait loci identification. Moreover, to the best of our knowledge, it is the first molecular diversity report among 152 high curcumin lines of C. longa from North East India using 39 SSR primers.
Assuntos
Curcumina , Variação Genética , Curcuma/genética , Melhoramento Vegetal , Biologia Molecular , Repetições de MicrossatélitesRESUMO
We report on a systematic review of the efficacy of turmeric derivatives for the in vivo treatment of peripheral neuropathies. Our review protocol followed the PRISMA Statement. The Medline (PubMed), Web of Science, Scopus, and Scielo databases were used. The search strategy was ("neuropathy" OR "neuropathies" OR "nerve injury" OR "nerve injuries") AND ("curcumin" OR "turmeric yellow" OR "yellow, turmeric" OR "diferuloylmethane"). Eligibility criteria were in vivo animal models, published in English, Portuguese, Spanish, or French, evaluating the efficacy of turmeric derivatives in the treatment of peripheral neuropathies. We have included 30 papers, and all consisted of pre-clinical trials with good methodological quality. Animals treated with turmeric derivatives (i.e., curcumin, curcumin by-products and curcumin loaded delivery systems) demonstrated remarkable amelioration in the injuries caused by diabetic and sciatic neuropathy, as well as for vincristine, cisplatin, and alcohol-induced neuropathy, especially with regards to the functional recovery of the affected nerve. Turmeric has great potential for the treatment of peripheral neuropathies, including those associated with diabetes mellitus. Clinical trials still need to be performed to assess the feasibility of human treatment as an alternative or adjuvant to existing pharmacological therapy.
Assuntos
Curcumina , Doenças do Sistema Nervoso Periférico , Animais , Humanos , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Curcuma , Curcumina/uso terapêutico , Modelos AnimaisRESUMO
The aim of this study was to investigate the ability of shell (coating) formulations comprised of alginate and glucono delta lactone (GDL) to encapsulate a mixture of green tea and turmeric extracts. Three concentrations of alginate and GDL were used at 0.5%, 0.75%, and 1%, w/v and their solid ratio was varied using a factorial design. A response surface model was applied to optimize the retention of catechin and curcuminoid contents, to determine encapsulation efficiency, and to minimize undesirable flavor and taste. Increasing the concentration of alginate and GDL significantly increased the retention of catechin and curcuminoid contents, encapsulation efficiency, and consumer acceptance (p < 0.05). The encapsulating solution containing 1% of each alginate and GDL performed the best against each criterion. The thermal treatment carried out at the boiling point of water for 15 min had a significant impact on the retention of catechin and curcuminoid content which, in the thermally-treated beads, was 5.15 and 3.85 times higher than unencapsulated, respectively. The consumer acceptance of the encapsulated beads after thermal treatment was higher than that of the unencapsulated formulations as they exhibited lesser pungent flavor and bitterness. The innovative process of thermally stable microencapsulation can produce anti-cancer activity compounds involved in functional food industrial sectors.
Assuntos
Catequina , Chá , Curcuma , Alginatos , DiarileptanoidesRESUMO
In this study, the fraction extracted from turmeric powder with 50% ethanol and fractionated with n-hexane were administered to diet-induced NASH model rats. NASH model was prepared with SD rats by feeding an originally designed choline-deficient, high-fat, high-fructose (HFF-CD) diet for 10 weeks. To the HFF-CD diet, hexane fraction and 50% ethanol fraction after hexane fractionation were added at 100 mg/kg body weight. 10 weeks later, blood samples and liver were collected for the following parameters: lipid weights, serum ALT, AST, TG, liver TG, TBARS levels, lipid metabolism-related gene expression and histopathological examination of the liver. As the results, the hexane fraction and 50% ethanol fraction showed a decrease in lipid weight, a decrease in hepatic TG, and activation of PPAR-α in the lipid metabolism-related gene test. These results suggest that the hexane fraction of turmeric has an inhibitory effect on fat accumulation in the liver by promoting lipid metabolism in NASH model rats.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Ratos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Curcuma , Hexanos/metabolismo , Ratos Sprague-Dawley , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Cirrose Hepática/patologia , Lipídeos/farmacologia , Etanol/farmacologia , Metabolismo dos Lipídeos/genéticaRESUMO
Processing with heat treatment has been reported to alter several therapeutic effects of turmeric. In Vietnamese traditional medicine, turmeric has been long used for bacterial infections, and roasting techniques are sometimes applied with this material. However, there have been no studies investigating the effects of these thermal processes on the plant's antibacterial properties. Our study was therefore performed to examine the changes that roasting produced on this material. Slices of dried turmeric were further subjected to light-roasting (80 °C in 20 min) or dark-roasting (160 °C in 20 min) processes. Broth dilution and agar-well diffusion methods were applied to examine and compare the effects of ethanol extracts obtained from non-roasted, light-roasted and dark-roasted samples, on a set of 6 gram-positive and gram-negative bacteria. In both investigations, dark-roasted turmeric was significantly less antibacterial than non-roasted and light-roasted materials, as evident by the higher values of minimum inhibitory concentrations and the smaller diameters of induced inhibitory zones. In addition, dark-roasting was also found to clearly reduce curcumin contents, total polyphenol values and antioxidant activities of the extracts. These results suggest that non-roasting or light-roasting might be more suitable for the processing of turmeric materials that are aimed to be applied for bacterial infections.
Assuntos
Infecções Bacterianas , Curcuma , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Extratos Vegetais/farmacologia , RizomaRESUMO
Goats are an excellent animal model for research on some physiological and pathophysiological processes in humans. The search for supplements that prevent homeostasis disorders and strengthen the immune system is necessary to reduce the risk of many diseases in both humans and animals. The aim of the study was to analyze the effect of supplementation with a mixture of dried extracts of Curcuma longa and Rosmarinus officinalis on the expression of acute-phase protein (SAA, HP, CRP, LALBA, AGP, CP, FGA, FGB, and FGG), cathelicidin (BAC5, BAC7.5, BAC3.4, MAP28, MAP34, and HEPC), beta-defensin-1 (GBD1, DEFB1), and beta-defensin-2, and cytolytic protein (LIZ and LF) genes in the livers of young castrated bucks of the Polish White Improved breed. The higher expression of LF in the control group suggests that it is important for the first line of hepatic immune defense and its expression is downregulated by the mixture of turmeric and rosemary extracts; thus, the spice-herb mixture mutes its activity. The lower expression of FGB and the higher expression of BAC5 genes in the livers of healthy, young castrated bucks who were administered the supplement suggest the silencing effects of the mixture on the acute-phase response and the stimulating effect on the antimicrobial activity of the immune system.
Assuntos
Rosmarinus , beta-Defensinas , Animais , Humanos , Catelicidinas , Proteínas de Fase Aguda , Curcuma , Polônia , beta-Defensinas/genética , Melhoramento Vegetal , Fígado , Suplementos Nutricionais , Expressão GênicaRESUMO
Cisplatin (CDDP) is a commonly prescribed chemotherapeutic agent; however, its associated nephrotoxicity limits its clinical efficacy and sometimes requires discontinuation of its use. The existing study was designed to explore the reno-therapeutic efficacy of turmeric (Tur) alone or conjugated with selenium nanoparticles (Tur-SeNPs) against CDDP-mediated renal impairment in mice and the mechanisms underlying this effect. Mice were orally treated with Tur extract (200 mg/kg) or Tur-SeNPs (0.5 mg/kg) for 7 days after administration of a single dose of CDDP (5 mg/kg, i.p.). N-acetyl cysteine NAC (100 mg/kg) was used as a standard antioxidant compound. The results revealed that Tur-SeNPs counteracted CDDP-mediated serious renal effects in treated mice. Compared with the controls, Tur or Tur-SeNPs therapy remarkably decreased the kidney index along with the serum levels of urea, creatinine, Kim-1, and NGAL of the CDDP-injected mice. Furthermore, Tur-SeNPs ameliorated the renal oxidant status of CDDP group demonstrated by decreased MDA and NO levels along with elevated levels of SOD, CAT, GPx, GR, GSH, and gene expression levels of HO-1. Noteworthy, lessening of renal inflammation was exerted by Tur-SeNPs via lessening of IL-6 and TNF-α besides down-regulation of NF-κB gene expression in mouse kidneys. Tur-SeNPs treatment also restored the renal histological features attained by CDDP challenge and hindered renal apoptosis through decreasing the Bax levels and increasing Bcl-2 levels. Altogether, these outcomes suggest that the administration of Tur conjugated with SeNPs is effective neoadjuvant chemotherapy to guard against the renal adverse effects that are associated with CDDP therapy.
Assuntos
Cisplatino , Selênio , Camundongos , Animais , Cisplatino/efeitos adversos , Selênio/farmacologia , Selênio/metabolismo , Curcuma , Rim/patologia , Apoptose , Estresse OxidativoRESUMO
In the present study, chitosan and chitosan/turmeric-based membranes were produced, characterized and applied in in vivo experiments showing the applicability for skin wound repair. Chitosan 1 % (w/v), chitosan + glycerol 30 % (w/w) and chitosan + glycerol 30 % + turmeric 1.5 % (w/w) membranes were produced through the casting technique. Self-sustainable, homogeneous, and flexible membranes were obtained from all materials tested. The FTIR spectra showed the main vibrational bands for materials used in the chemical groups. The membranes containing glycerol are more flexible than those formed with pure chitosan. Membranes formed with glycerol and glycerol/turmeric are more hydrophilic compared to the membranes formed by pure chitosan. The in vivo results showed that the group who received the chi/gly/turmeric membrane had a statistically greater reduction in the injured area, as well as a better healing process in the histological analysis compared to the other experimental groups. The material developed here is from a natural source, low cost and easy to apply and can accelerate the process of repairing skin lesions.
Assuntos
Quitosana , Quitosana/química , Curcuma , Glicerol , Cicatrização , Pele/patologiaRESUMO
Chronic obstructive pulmonary disease (COPD) is a common respiratory disease characterized by symptoms of shortness of breath and chronic inflammation. Curcuma zedoaria (Christm.) Roscoe is a well-documented traditional medical herb that is frequently used in the treatment of COPD. Previously, we identified a diarylheptanoid compound (1-(4-hydroxy-5-methoxyphenyl)-7-(4,5-dihydroxyphenyl)-3,5-dihydroxyheptane; abbreviated as HMDD) from this herb that exhibited potent agonistic activity on ß2-adrenergic receptors (ß2 adrenoreceptor) that are present on airway smooth muscle cells. In this work, we used chemically synthesized HMDD compound, and confirmed its bioactivity on ß2 adrenoreceptors. Then by a proteomics study and anti-inflammatory evaluation detections, we found that HMDD downregulated the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) signaling pathway and suppressed the NLRP3 receptor expression in RAW264.7 macrophages and in a COPD model in A549 lung carcinoma cells. HMDD also decreased nitric oxide production levels, and impacted other interleukins and the phosphorylation of NF-κB and ERK pathways. We performed molecular docking of HMDD on ß2 adrenoreceptor and NLRP3 protein models. This work reports the anti-inflammatory effects of HMDD and suggests a dual-targeting mechanism of ß2-adrenoreceptor agonism and NLRP3 inhibition. Such a mechanism scientifically supports the clinical uses of Curcuma zedoaria (Christm.) Roscoe in treating COPD, as it can simultaneously relieve persistent breathlessness and inflammation. HMDD can be considered as a potential non-steroidal anti-inflammatory drug in novel therapy design for the treatment of COPD and other inflammatory diseases.
Assuntos
Proteína 3 que Contém Domínio de Pirina da Família NLR , Doença Pulmonar Obstrutiva Crônica , Humanos , Curcuma , Diarileptanoides/farmacologia , Simulação de Acoplamento Molecular , Transdução de Sinais , Anti-Inflamatórios/farmacologia , NF-kappa B/metabolismo , Inflamação/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológicoRESUMO
Curcumin, the primary polyphenol found in turmeric, is derived from the Curcuma longa plant. Since curcumin is nontoxic and has a wide range of medicinal qualities, including anti-oxidant, analgesic, anti-inflammatory, and antibacterial action, it has been widely employed in Ayurveda medicine for ages. Curcumin has recently been discovered to have anti-cancer properties through its impact on numerous biological pathways involved in carcinogenesis, metastasis, tumorigenesis, cell cycle regulation, mutagenesis, and oncogene expression. In this study, we determined the Antiproliferative activity and apoptosis-inducing mechanism of C. longa (Turmimax®) on human cancer cells. The cytotoxic effect was evaluated against HeLa cell lines using the MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay. Flow cytometric analysis was performed to detect apoptotic cell death. Turmimax® exhibits promising properties as a potential anti-cancer therapeutic agent in human cervical adenocarcinomas and possibly other cancer types, with an IC50 value of 87.89 µg/mL. In HeLa cells treated with Turmimax®, cell cycle arrest was seen in the G0/G1 and S phases. By inducing apoptosis and increasing the number of apoptotic cells in a dose-dependent manner, the experimental data suggest that Turmimax® has considerable promise in cancer prevention and treatment.
Assuntos
Antineoplásicos , Curcumina , Humanos , Células HeLa , Curcumina/farmacologia , Curcumina/uso terapêutico , Curcuma , Apoptose , Antineoplásicos/farmacologia , Linhagem Celular TumoralRESUMO
This study examined the effects of turmeric bioactive compounds, curcumin C3 complex® (CUR) and bisdemethoxycurcumin (BDMC), on mechanical hypersensitivity and the gene expression of markers for glial activation, mitochondrial function, and oxidative stress in the spinal cord and amygdala of rats with neuropathic pain (NP). Twenty-four animals were randomly assigned to four groups: sham, spinal nerve ligation (SNL, an NP model), SNL+100 mg CUR/kg BW p.o., and SNL+50 mg BDMC/kg BW p.o. for 4 weeks. Mechanical hypersensitivity was assessed by the von Frey test (VFT) weekly. The lumbosacral section of the spinal cord and the right amygdala (central nucleus) were collected to determine the mRNA expression of genes (IBA-1, CD11b, GFAP, MFN1, DRP1, FIS1, PGC1α, PINK, Complex I, TLR4, and SOD1) utilizing qRT-PCR. Increased mechanical hypersensitivity and increased gene expression of markers for microglial activation (IBA-1 in the amygdala and CD11b in the spinal cord), astrocyte activation (GFAP in the spinal cord), mitochondrial dysfunction (PGC1α in the amygdala), and oxidative stress (TLR4 in the spinal cord and amygdala) were found in untreated SNL rats. Oral administration of CUR and BDMC significantly decreased mechanical hypersensitivity. CUR decreased CD11b and GFAP gene expression in the spinal cord. BDMC decreased IBA-1 in the spinal cord and amygdala as well as CD11b and GFAP in the spinal cord. Both CUR and BDMC reduced PGC1α gene expression in the amygdala, PINK1 gene expression in the spinal cord, and TLR4 in the spinal cord and amygdala, while they increased Complex I and SOD1 gene expression in the spinal cord. CUR and BDMC administration decreased mechanical hypersensitivity in NP by mitigating glial activation, oxidative stress, and mitochondrial dysfunction.
Assuntos
Curcuma , Neuralgia , Ratos , Animais , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos Sprague-Dawley , Superóxido Dismutase-1/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Medula Espinal , Nervos Espinhais/cirurgia , Nervos Espinhais/metabolismo , Tonsila do Cerebelo , Neuralgia/tratamento farmacológico , Neuralgia/etiologiaRESUMO
Glioma is the most common primary central nervous tumor and its malignant and high recurrence rate are seriously threatening patient's life. The prognosis of glioma patients is still poor with a variety of modern treatments. Traditional Chinese medicine (TCM) is widely used in the adjuvant treatment or alternative medicine of glioma. Curcumae Rhizoma is one of the most commonly used in traditional Chinese medicine prescriptions for its anti-tumor characteristics. There are also many studies that reveals the anti-tumor effect of its active ingredients and some of which have been made into drugs and have been used in clinical practice. This review summarizes the new research progress on Curcumae Rhizoma for the treatment of glioma in recent years.
Assuntos
Medicamentos de Ervas Chinesas , Glioma , Humanos , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/uso terapêutico , Curcuma , Rizoma , Glioma/tratamento farmacológicoRESUMO
The growing popularity of the use of nutraceuticals in the prevention and alleviation of symptoms of many diseases in humans and dogs means that they are increasingly the subject of research. A representative of the nutraceutical that deserves special attention is turmeric. Turmeric belongs to the family Zingiberaceae and is grown extensively in Asia. It is a plant used as a spice and food coloring, and it is also used in traditional medicine. The biologically active factors that give turmeric its unusual properties and color are curcuminoids. It is a group of substances that includes curcumin, de-methoxycurcumin, and bis-demethoxycurcumin. Curcumin is used as a yellow-orange food coloring. The most important pro-health effects observed after taking curcuminoids include anti-inflammatory, anticancer, and antioxidant effects. The aim of this study was to characterize turmeric and its main substance, curcumin, in terms of their properties, advantages, and disadvantages, based on literature data.
Assuntos
Curcumina , Corantes de Alimentos , Humanos , Cães , Animais , Curcumina/farmacologia , Curcuma , Diarileptanoides , Anti-Inflamatórios , Extratos Vegetais/farmacologiaRESUMO
ß-Elemene (C15H24), a sesquiterpenoid compound isolated from the volatile oil of Curcuma wenyujin, has been proven to be effective for multiple cancers and is widely used in clinical treatment. Unfortunately, the ß-elemene content in C. wenyujin is very low, which cannot meet market demands. Our previous research showed that methyl jasmonate (MeJA) induced the accumulation of ß-elemene in C. wenyujin. However, the regulatory mechanism is unclear. In this study, 20 jasmonate ZIM-domain (JAZ) proteins in C. wenyujin were identified, which are the core regulatory factors of the JA signaling pathway. Then, the conservative domains, motifs composition, and evolutionary relationships of CwJAZs were analyzed comprehensively and systematically. The interaction analysis indicated that CwJAZs can form homodimers or heterodimers. Fifteen out of twenty CwJAZs were significantly induced via MeJA treatment. As the master switch of the JA signaling pathway, the CwMYC2-like protein has also been identified and demonstrated to interact with CwJAZ2/3/4/5/7/15/17/20. Further research found that the overexpression of the CwMYC2-like gene increased the accumulation of ß-elemene in C. wenyujin leaves. Simultaneously, the expressions of HMGR, HMGS, DXS, DXR, MCT, HDS, HDR, and FPPS related to ß-elemene biosynthesis were also up-regulated by the CwMYC2-like protein. These results indicate that CwJAZs and the CwMYC2-like protein respond to the JA signal to regulate the biosynthesis of ß-elemene in C. wenyujin.
Assuntos
Curcuma , Sesquiterpenos , Curcuma/metabolismo , Sesquiterpenos/farmacologia , Ciclopentanos/farmacologia , Ciclopentanos/metabolismoRESUMO
INTRODUCTION: Glycemic control is of utmost importance both as a preventive measure in individuals at risk of diabetes and in the management of patients with disturbed glycemia. Turmeric/curcumin has been extensively studied in this field. In the present systematic review and meta-analysis, we aimed at investigating the impact of turmeric/curcumin supplementation on glycemic control. METHODS: Major online databases (PubMed, Scopus, Web of Science, Cochrane Library and Google Scholar) were systematically searched from inception up to October 2022. Relevant randomized controlled trials (RCTs) meeting our eligible criteria were included. Weighted mean differences (WMDs) with confidence intervals (CIs) were expressed using a random-effect model. Subgroup analyses were conducted to find the sources of heterogeneities. To detect risk of bias in the included studies, we used the Cochrane risk-of-bias tool. The registration number was CRD42022374874. RESULTS: Out of 4182 articles retrieved from the initial search, 59 RCTs were included. Our findings suggested that turmeric/curcumin supplementation was significantly effective in improving fasting blood sugar (WMD: 4.60 mg/dl; 95% CI: 5.55, -3.66), fasting insulin levels (WMD: 0.87 µIU/ml; 95% CI: 1.46, -0.27), hemoglobin A1c (HbA1c) (WMD: 0.32%; 95% CI: 0.45, -0.19), and homeostatic model assessment of insulin resistance (HOMA-IR) (WMD: 0.33; 95% CI: 0.43, -0.22). CONCLUSION: Our results indicate that turmeric/curcumin supplementation can be considered as a complementary method in the management of disturbed glycemia.
Assuntos
Curcumina , Resistência à Insulina , Humanos , Adulto , Índice Glicêmico , Curcumina/uso terapêutico , Curcuma , Ensaios Clínicos Controlados Aleatórios como Assunto , Suplementos Nutricionais/análise , Glicemia/análiseRESUMO
BACKGROUND: Curcuminoids are the phenolic compounds found exclusively in turmeric. Their presence is known to increase immunity and resistance against certain cancers and neurological disorders in humans also, protecting the plant itself against salinity stress. METHODS: In this experiment, we studied the expression levels of MAPK1 and DCS genes, their curcuminoid biosynthesis under salinity stress conditions so that the impact of individual genes can be understood using semi- quantitative PCR. RESULTS: The expressions of the genes with respect to curcuminoid biosynthesis showed fluctuations in their band intensity values due to the production of curcuminoids, which is initiated first in the leaves followed by the rhizomes. Not all the genes responsible for the curcuminoid biosynthesis show positive regulation under salt stress conditions which is observed in response to the severity of the stress imposed on the cultivars. CONCLUSIONS: In our findings, both the genes MAPK1 and DCS were down-regulated for curcuminoid biosynthesis compared to their controls in both the cultivars Vallabh Sharad and Selection 1.