Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.318
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 44(15): 3305-3311, 2019 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-31602887

RESUMO

To enhance in vitro dissolution of Cur by preparing Cur solid dispersions. The ability of HPMCAS-HF,HPMCAS-MF,HPMCAS-LF and PVPK30 to maintain supersaturated solution was investigated by supersaturation test. Amorphous solid dispersions were prepared by the solvent-evaporation method. The prepared samples were characterized using infrared spectroscopy( IR) and differential scanning calorimetry( DSC),and in vitro dissolution was investigated. DSC and IR results showed that in 1 ∶3 and 1 ∶9 solid dispersions,Cur was amorphously dispersed in the carrier,and the interaction existed between drug and carrier. The supersaturation test showed that the order of the ability of polymer to inhibit crystallization of Cur was MF>HF>LF>K30. The dissolution results showed that Cur-K30 amorphous solid dispersion had the highest drug release rate; Cur-K30 and Cur-LF amorphous solid dispersions had a quicker but not stable dissolution rate,and the drug concentration decrease after 4 h; Cur-MF and Cur-HF solid dispersions had a low dissolution,which however increased steadily,attributing to the strong ability of the polymers to inhibit the crystallization of Cur. HPMCAS could inhibit the degradation of Cur better than K30,especially MF and HF. The amorphous solid dispersions of cur significantly enhanced the dissolution of Cur and improved the chemical stability of Cur. This study can provide a basis for the rational selection of the polymer used for Cur solid dispersion.


Assuntos
Curcumina/química , Metilcelulose/análogos & derivados , Química Farmacêutica , Estabilidade de Medicamentos , Metilcelulose/química , Polímeros , Solubilidade
2.
J Agric Food Chem ; 67(45): 12511-12519, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31626537

RESUMO

Self-assembled and cross-linked hybrid hydrogels for entrapment and delivery of hydrophilic and hydrophobic bioactive compounds were developed based on N-acetyl-l-cysteine (NAC)- or l-cysteine (CYS)-functionalized chitosan-ß-lactoglobulin nanoparticles (NPs). In both the systems, amphiphilic protein ß-lactoglobulin (ß-lg) was self-assembled by using glutaraldehyde for affinity binding with egg white-derived peptides (EWDP) and curcumin and then coated with NAC- or CYS-functionalized chitosan (CS) by electrostatic interaction. The resulting NPs were characterized in terms of size, polydispersity, and surface charge by dynamic light scattering. Results corroborated pH-sensitive properties of NAC-CS-ß-lg NPs and CYS-CS-ß-lg NPs with the particle size as small as 118 and 48 nm, respectively. The two kinds of NPs also showed excellent entrapment of EWDP and curcumin with the entrapment efficiency (EE) of EWDP and curcumin ranging from 51 to 89% and 42 to 57% in NAC-CS-ß-lg NPs, as well as 50-81% and 41-57% in CYS-CS-ß-lg NPs under different pH values. Fourier transform infrared and molecular docking studies provided support for the interaction mechanism of NAC/CYS-CS with ß-lg as well as the NPs with EWDP and curcumin. Strikingly, the in vitro release kinetics of EWDP and curcumin exhibited the controlled and sustained release properties up to 58 and 70 h from the NPs, respectively. Note that the permeability of QIGLF (pentapeptide, isolated from EWDP) and curcumin passing through Caco-2 cell monolayers were all improved after the entrapment in the NPs. This work offers promising methods for effective entrapment and oral delivery of both hydrophilic and hydrophobic bioactive compounds.


Assuntos
Acetilcisteína/química , Quitosana/química , Curcumina/química , Cisteína/química , Sistemas de Liberação de Medicamentos/métodos , Lactoglobulinas/química , Células CACO-2 , Curcumina/metabolismo , Portadores de Fármacos/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Nanopartículas/química , Tamanho da Partícula , Peptídeos/química
3.
J Agric Food Chem ; 67(44): 12245-12254, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31613624

RESUMO

The pH-shift method is a simple approach for incorporating certain kinds of polyphenol-based nutraceuticals into already existing colloidal systems. The polyphenols can be loaded into hydrophobic particles due to the fact that their water-solubility is relatively high under alkaline conditions but low under acid or neutral conditions. In this study, it was demonstrated that bovine milk could be enriched with curcumin using this approach, without adversely affecting milk fat globule stability. The storage stability of the curcumin-enriched bovine milk was assessed when samples were incubated for 60 days at different pH values and temperatures. The pH-stability was determined by storing curcumin-enriched milk at 4 °C for 60 days at pH 6.5, 7.0, and/or 8.0. At this low storage temperature, all milk samples were stable to fat globule aggregation, creaming, curcumin degradation (<13% loss), and color loss. The temperature-stability was determined by storing curcumin-enriched milk at pH 7 for 15 days at 4, 20, 37, or 55 °C. Curcumin breakdown decreased with decreasing storage temperature: 55 °C (43%) > 37 °C (21%) > 20 °C (10%) > 4 °C (5%). Interestingly, the color of the curcumin-enriched milks incubated at 4, 20, and 37 °C remained similar to that of the initial samples, but the sample stored at 55 °C showed significant color fading. Curcumin bioaccessibility determined using an in vitro gastrointestinal tract was around 40%, which was attributed to some chemical degradation and binding of the curcumin reducing its stability and solubilization. This study shows that a hydrophobic nutraceutical (curcumin) can be loaded into dairy milk products using a simple method, which could facilitate the creation of novel functional foods and beverages.


Assuntos
Curcumina/química , Leite/química , Animais , Disponibilidade Biológica , Bovinos , Curcumina/metabolismo , Estabilidade de Medicamentos , Trato Gastrointestinal/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Solubilidade , Temperatura Ambiente
4.
J Agric Food Chem ; 67(39): 10904-10912, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31508953

RESUMO

High-order multiple emulsions are of great interest in both fundamental research and industrial applications as vehicles for their encapsulation capability of actives. In this work, we report a hierarchically multicompartmental highly stable triple emulsion by emulsifying and assembling of natural Quillaja saponin. Water-in-oil-in-(oil-in-water) (W2/O2/(O1/W1)) triple emulsion indicates that the compartmented system consisted of surfaced saponin-coated nanodroplets (SNDs) and dispersed oil globules, which in turn contained smaller aqueous droplets. The effects of formulation parameters, including lipophilic emulsifier content, oil fraction, and SND concentration, on the formation of multiple emulsions were systematically investigated. The assembly into fibrillar network of SNDs at the outer oil-water interface effectively protected the triple emulsion droplets against flocculation and coalescence, and strongly prevented the osmotic-driven water diffusion between the internal water droplets and the external water phase, thus contributing to superior stability during 180 days storage. All of these characteristics make the multicompartmentalized emulsions suitable to co-encapsulate a hydrophilic bioactive (gardenia blue) and two hydrophobic bioactives (eapsanthin and curcumin) in a single emulsion droplet hierarchically for the segregation and protection of multiple cargos. This approach offers a promising route toward accessing the next generation of functional deliveries and encapsulation strategies.


Assuntos
Curcumina/química , Sistemas de Liberação de Medicamentos/métodos , Extratos Vegetais/química , Quillaja/química , Saponinas/química , Composição de Medicamentos , Sistemas de Liberação de Medicamentos/instrumentação , Emulsificantes/química , Emulsões/química , Glucosídeos/química , Óleos/química , Tamanho da Partícula , Água/química
5.
J Agric Food Chem ; 67(39): 10880-10890, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31508956

RESUMO

A sustainable biomass-based nanocomposite hydrogel was formulated, characterized, and applied for curcumin delivery. Phytosynthesized zinc oxide nanoparticles (ZnO NPs) employing musk melon (Cucumis melo) seed extract was embedded in the hydrogel matrices and cross-linked using Dialdehyde cellulose prepared from sugarcane (Saccharum officinarum) bagasse (SCB). Nanoparticle incorporation enhanced the hydrogel's swelling degree to 4048% at pH 4.0. Also, an improved tensile strength of 14.1 ± 0.32 MPa was exhibited by the nanocomposite hydrogel compared to 9.79 ± 0.76 MPa for the pure chitosan cellulose hydrogel. A curcumin loading efficiency of 89.68% with around 30% increased loading was exhibited for the nanocomposite hydrogel. A Fickian diffusion-controlled curcumin release mechanism with maximum release at pH 7.4 was obtained. The synergistic effect on the antimicrobial activity was exhibited against Staphylococcus aureus and Trichophyton rubrum. The in vitro cytotoxicity studies employing L929 cells and A431 cells demonstrated good biocompatibility and enhanced anticancer activity of the curcumin-loaded green nanocomposite hydrogel compared to pure curcumin.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Curcumina/química , Curcumina/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Celulose/química , Quitosana/química , Cucumis melo/química , Portadores de Fármacos/química , Hidrogéis/química , Nanocompostos/química , Nanopartículas/química , Sementes/química , Staphylococcus aureus/efeitos dos fármacos , Trichophyton/efeitos dos fármacos , Trichophyton/crescimento & desenvolvimento , Óxido de Zinco/química
6.
Eur J Pharm Biopharm ; 144: 154-164, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31542438

RESUMO

Curcumin, a multi-targeting pharmacologically active compound, is a promising molecule for the treatment of skin inflammation and infection in chronic wounds. However, its hydrophobic nature remains to be a challenge in development of its pharmaceutical products, including dermatopharmaceuticals. Here we propose deformable liposomes (DLs) as a mean to overcome the curcumin limitations in skin treatment. We explored the properties and biological effects of curcumin containing DLs (curcumin-DLs) with varying surface charge by preparing the neutral (NDLs), cationic (CDLs) and anionic (ADLs) nanocarriers. The vesicles of mean diameter 200-300 nm incorporated high curcumin load mirroring the type of employed surfactant. Curcumin-CDLs provided the most sustained ex vivo penetration of curcumin through the full thickness human skin. Although the curcumin-CDLs were the most potent regarding the in vitro anti-inflammatory activity, all curcumin-DLs were superior to curcumin in solution (control). No cytotoxicity in human skin fibroblasts was detected. All DLs significantly inhibited bacterial Staphylococcus aureus and Streptococcus pyogenes growth in vitro. The curcumin-CDLs were found superior to other DLs. The incorporation of curcumin in DLs enabled both its sustained skin penetration and enhancement of its biological properties. Cationic nanocarriers enhanced the activities of curcumin to the greatest extent.


Assuntos
Curcumina/administração & dosagem , Curcumina/química , Lipossomos/química , Pele/efeitos dos fármacos , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Administração Cutânea , Cátions/química , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Fibroblastos/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas/química , Tamanho da Partícula , Pele/microbiologia , Absorção Cutânea/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Infecções Cutâneas Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Infecções Estreptocócicas/tratamento farmacológico , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/efeitos dos fármacos , Tensoativos/química
7.
Int J Nanomedicine ; 14: 6425-6437, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31496695

RESUMO

Introduction: Curcumin (CUR) is a general ingredient of traditional Chinese medicine, which has potential antitumor effects. However, its use clinically has been limited due to its low aqueous solubility and bioavailability. In order to improve the therapeutic effect of CUR on osteosarcoma (i.e., bone cancer), a multifunctional micelle was developed here by combining active bone accumulating ability with tumor CD44 targeting capacity. Methods: The CUR loaded micelles were self-assembled by using alendronate-hyaluronic acid-octadecanoic acid (ALN-HA-C18) as an amphiphilic material. The obtained micelles were characterized for size and drug loading. In addition, the in vitro release behavior of CUR was investigated under PBS (pH 5.7) medium containing 1% Tween 80 at 37℃. Furthermore, an hydroxyapatite (the major inorganic component of bone) affinity experiment was studied. In vitro antitumor activity was evaluated. Finally, the anti-tumor efficiency was studied. Results: The size and drug loading of the CUR loaded ALN-HA-C18 micelles were about 118 ± 3.6 nm and 6 ± 1.2%, respectively. CUR was released from the ALN-HA-C18 micelles in a sustained manner after 12 h. The hydroxyapatite affinity experiment indicated that CUR loaded ALN-HA-C18 micelles exhibited a high affinity to bone. CUR loaded ALN-HA-C18 micelles exhibited much higher cytotoxic activity against MG-63 cells compared to free CUR. Finally, CUR loaded ALN-HA-C18 micelles effectively delayed anti-tumor growth properties in osteosarcoma bearing mice as compared with free CUR. Conclusion: The present study suggested that ALN-HA-C18 is a novel promising micelle for osteosarcoma targeting and delivery of the hydrophobic anticancer drug CUR.


Assuntos
Alendronato/uso terapêutico , Curcumina/uso terapêutico , Sistemas de Liberação de Medicamentos , Ácido Hialurônico/química , Micelas , Osteossarcoma/tratamento farmacológico , Ácidos Esteáricos/química , Alendronato/química , Animais , Antineoplásicos/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral , Curcumina/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Masculino , Camundongos Nus , Osteossarcoma/patologia , Tamanho da Partícula , Polímeros/química , Espectroscopia de Prótons por Ressonância Magnética
8.
Eur J Pharm Biopharm ; 142: 518-530, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31365879

RESUMO

Despite substantial advancements in divergent drug delivery systems (DDS), there is still room for novel and innovative nanoparticle-mediated drug delivery methodologies such as core/shell liposomes to deliver drugs in a kinetically controlled manner into the active site without any side effects. Herein, ((1E,6E)-3,5-dioxohepta-1,6-diene-1,7-diyl) bis (2-methoxy-4,1-phenylene) diacetate acetyl curcumin (AC)-loaded poly(lactic-co-glycolic acid) (PLGA) core/shell liposome nanoparticles (ACPCSLNPs) were prepared using an electron spray method under an applied electric field, which facilitated the uniform formation of nano-sized liposome nanoparticles (LNPs). Then, kinetically controlled and sustained drug release profiles were investigated using the as-prepared ACPCSLNPs. Moreover, the inner polymeric core could not only induce the generation of electrostatic interactions between the polymer and drug molecules but could also affect the prominent repulsions between the polar head groups of lipids and the nonpolar drug molecules. As a result, the sustained maximum release of the drug molecules (~48.5%) into the system was observed over a long period (~4 days). Furthermore, cell cytotoxicity studies were conducted in a human cervical cancer cell line (HeLa) and a healthy human dermal fibroblast cell line (HDFa) by employing all AC loaded LNPs along with free drugs. Multicolor cell imaging was also observed in HeLa cells using ACPCSLNPs. Notably, more curcumin was released from the ACPCSLNPs than AC due to the presence of polar group attractions and polar-polar interactions between the lipid head groups and curcumin since curcumin is more soluble than AC in aqueous medium. In addition, the predictions of the release kinetic patterns were also investigated thoroughly using the exponential-based Korsmeyer-Peppas (K-P) and Higuchi models for drug-loaded LNPs and PLGA NPs, respectively.


Assuntos
Curcumina/química , Lipossomos/química , Nanopartículas/química , Linhagem Celular Tumoral , Preparações de Ação Retardada/química , Sistemas de Liberação de Medicamentos/métodos , Células HeLa , Humanos , Lipídeos/química , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Nanomedicina Teranóstica/métodos
9.
Life Sci ; 233: 116710, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31369762

RESUMO

AIMS: The naturally occurring compound curcumin has been proposed for a number of pharmacological applications. In spite of the promising chemotherapeutic properties of the molecule, the use of curcumin has been largely limited by its chemical instability in water. In this work, we propose the use of water soluble proteins to overcome this issue in perspective applications to photodynamic therapy of tumors. MATERIALS AND METHODS: Curcumin was bound to bovine serum albumin and its photophysical properties was studied as well as its effect on cell viability after light exposure through MTT assay and confocal imaging. KEY FINDINGS: Bovine serum albumin binds curcumin with moderate affinity and solubilizes the hydrophobic compound preserving its photophysical properties for several hours. Cell viability assays demonstrate that when bound to serum albumin, curcumin is an effective photosensitizer for HeLa cells, with better performance than curcumin alone. Confocal fluorescence imaging reveals that when curcumin is delivered alone, it preferentially associates with mitochondria, whereas curcumin bound to bovine serum albumin is found in additional locations within the cell, a fact that may be related to the higher phototoxicity observed in this case. SIGNIFICANCE: The higher bioavailability of the photosensitizing compound curcumin when bound to serum albumin may be exploited to increase the efficiency of the drug in photodynamic therapy of tumors.


Assuntos
Apoproteínas/metabolismo , Apoptose/efeitos dos fármacos , Curcumina/farmacologia , Sistemas de Liberação de Medicamentos , Mioglobina/metabolismo , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Soroalbumina Bovina/metabolismo , Animais , Apoproteínas/química , Apoptose/efeitos da radiação , Bovinos , Sobrevivência Celular , Curcumina/química , Células HeLa , Cavalos , Humanos , Mioglobina/química , Fármacos Fotossensibilizantes/química , Soroalbumina Bovina/química
10.
Food Chem ; 300: 125231, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31374430

RESUMO

This research was to compare mortadella elaborated with synthetic antioxidant and microcrystals of curcumin in relation to its physicochemical and sensorial characteristics for a period of 90 days. It was detect no differences between the three evaluated treatments in relation to the pH, color, and texture profile features. The mortadella with curcumin microcrystals showed significantly lower TBARS values at the end of the storage when compared to the other treatments. In the sensory analysis, the addition of curcumin decreased the acceptance of color's sample and the purchase intention, but no significant difference was observed among the other attributes. The color of the sample containing curcumin also became worse than its day-of-production standard during storage. The results obtained suggest the potential of curcumin in replacing synthetic antioxidants in cooked meat sausage, since it practically does not modify its physicochemical characteristics, besides preventing the oxidation of the food.


Assuntos
Antioxidantes/química , Curcumina/química , Produtos da Carne , Ácido Ascórbico/química , Cor , Comportamento do Consumidor , Culinária , Armazenamento de Alimentos , Humanos , Concentração de Íons de Hidrogênio , Produtos da Carne/análise
11.
J Agric Food Chem ; 67(33): 9371-9381, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31379162

RESUMO

A major obstacle to the clinical use of curcumin (CUR) is its reduced bioavailability because of the drug's hydrophobic nature, low intestinal absorption, and rapid metabolism. In this study, a novel oral drug delivery system was constructed for improving the stability and enhancing mucoadhesion of CUR in the gastrointestinal (GI) tract. First, CUR was encapsulated in the bovine serum albumin nanoparticles (CUR-BSA-NPs). Then, N-acetyl cysteine (NAC)-modified CUR-BSA-NPs (CUR-NBSA-NPs) were obtained. The average particle size and zeta potential of CUR-NBSA-NPs were 251.6 nm and -30.66 mV, respectively; encapsulation efficiency and drug loading were 85.79 and 10.9%, respectively. CUR-NBSA-NPs exhibited a sustained release property and prominently enhanced stability in simulated GI conditions. Additionally, enhanced mucoadhesion of CUR-NBSA-NPs was also observed. An MTT study showed that the CUR-NBSA-NPs were safe for oral administration. Overall, NAC-modified BSA-NPs may potentially serve as an oral vehicle for improving CUR stability in the GI tract and enhancing mucoadhesion.


Assuntos
Acetilcisteína/química , Curcumina/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/instrumentação , Trato Gastrointestinal/metabolismo , Nanopartículas/química , Soroalbumina Bovina/química , Animais , Células CACO-2 , Bovinos , Curcumina/metabolismo , Estabilidade de Medicamentos , Humanos , Tamanho da Partícula
12.
Chem Pharm Bull (Tokyo) ; 67(7): 648-653, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31257320

RESUMO

Diabetic embryopathy is a diabetic complication, in which maternal hyperglycemia in early pregnancy causes birth defects in newborn infants. Under maternal diabetic conditions, hyperglycemia disturbs intracellular molecular activities and organelles functions. These include protein misfolding in the endoplasmic reticulum (ER), overproduction of reactive oxygen species (ROS) in mitochondria, and high levels of nitric oxide (NO). The resultant ER, oxidative, and nitrosative stresses activate apoptotic machinery to cause cell death in the embryo, ultimately resulting in developmental malformations. Based on the basic research data, efforts have been made to develop interventional strategies to alleviate the stress conditions and to reduce embryonic malformations. One of the challenges in birth defect prevention is to identify effective and safe agents to be used in pregnancy. One approach is to search and characterize naturally occurring phytochemicals, including flavonoids, curcuminoids and stilbenoids, for use in prevention of diabetic embryopathy.


Assuntos
Anormalidades Congênitas/prevenção & controle , Compostos Fitoquímicos/uso terapêutico , Gravidez em Diabéticas/prevenção & controle , Curcumina/química , Curcumina/farmacologia , Curcumina/uso terapêutico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Humanos , Estresse Oxidativo/efeitos dos fármacos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Gravidez , Estilbenos/química , Estilbenos/farmacologia , Estilbenos/uso terapêutico
13.
Int J Nanomedicine ; 14: 4683-4695, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31308653

RESUMO

Purpose: Clinical applications of curcumin (Cur) have been greatly restricted due to its low solubility and poor systemic bioavailability. Three-arm amphiphilic copolymer tricarballylic acid-poly (ε-caprolactone)-methoxypolyethylene glycol (Tri-CL-mPEG) nanoparticles (NPs) were designed to improve the solubility and bioavailability of Cur. The present study adopted a microchannel system to precisely control the preparation of self-assembly polymeric NPs via liquid flow-focusing and gas displacing method. Methods: The amphiphilic three-arm copolymer Tri-CL-mPEG was synthesized and self-assembled into nearly spherical NPs, yielding Cur encapsulated into NP cores (Cur-NPs). The obtained NPs were evaluated for physicochemical properties, morphology, toxicity, cellular uptake by A549 cells, release in vitro, biodistribution, and pharmacokinetics in vivo. Results: Rapidly fabricated and isodispersed Cur-NPs prepared by this method had an average diameter of 116±3 nm and a polydispersity index of 0.197±0.008. The drug loading capacity and entrapment efficiency of Cur-NPs were 5.58±0.23% and 91.42±0.39%, respectively. In vitro release experiments showed sustained release of Cur, with cumulative release values of 40.1% and 66.1% at pH 7.4 and pH 5.0, respectively, after 10 days post-incubation. The results of cellular uptake, biodistribution, and in vivo pharmacokinetics experiments demonstrated that Cur-NPs exhibited better biocompatibility and bioavailability, while additionally enabling greater cellular uptake and prolonged circulation with possible spleen, lung, and kidney targeting effects when compared to the properties of free Cur. Conclusion: These results indicate that Tri-CL-mPEG NPs are promising in clinical applications as a controllable delivery system for hydrophobic drugs.


Assuntos
Curcumina/farmacologia , Microfluídica/métodos , Nanopartículas/química , Polietilenoglicóis/química , Polímeros/química , Ácidos Tricarboxílicos/química , Células A549 , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Curcumina/química , Curcumina/farmacocinética , Liberação Controlada de Fármacos , Endocitose/efeitos dos fármacos , Humanos , Camundongos , Peso Molecular , Nanopartículas/ultraestrutura , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ratos Sprague-Dawley , Distribuição Tecidual/efeitos dos fármacos
14.
AAPS PharmSciTech ; 20(6): 250, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31297635

RESUMO

Melanoma is regarded as the fifth and sixth most common cancer in men and women, respectively, and it is estimated that one person dies from melanoma every hour in the USA. Unfortunately, the treatment of melanoma is difficult because of its aggressive metastasis and resistance to treatment. The treatment of melanoma continues to be a challenging issue due to the limitations of available treatments such as a low response rate, severe adverse reactions, and significant toxicity. Natural polyphenols have attracted considerable attention from the scientific community due to their chemopreventive and chemotherapeutic efficacy. It has been suggested that poorly soluble polyphenols such as curcumin, resveratrol, quercetin, coumarin, and epigallocatechin-3-gallate may have significant benefits in the treatment of melanoma due to their antioxidant, anti-inflammatory, antiproliferative, and chemoprotective efficacies. The major obstacles for the use of polyphenolic compounds are low stability and poor bioavailability. Numerous nanoformulations, including solid lipid nanoparticles, polymeric nanoparticles, micelles, and liposomes, have been formulated to enhance the bioavailability and stability, as well as the therapeutic efficacy of polyphenols. This review will provide an overview of poorly soluble polyphenols that have been reported to have antimetastatic efficacy in melanomas.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Melanoma/tratamento farmacológico , Polifenóis/administração & dosagem , Polifenóis/química , Neoplasias Cutâneas/tratamento farmacológico , Animais , Antioxidantes/administração & dosagem , Antioxidantes/química , Antioxidantes/metabolismo , Disponibilidade Biológica , Catequina/administração & dosagem , Catequina/análogos & derivados , Catequina/química , Catequina/metabolismo , Curcumina/administração & dosagem , Curcumina/química , Curcumina/metabolismo , Humanos , Melanoma/metabolismo , Melanoma/prevenção & controle , Nanopartículas/administração & dosagem , Nanopartículas/química , Nanopartículas/metabolismo , Polifenóis/metabolismo , Quercetina/administração & dosagem , Quercetina/química , Quercetina/metabolismo , Resveratrol/administração & dosagem , Resveratrol/química , Resveratrol/metabolismo , Neoplasias Cutâneas/metabolismo , Solubilidade
15.
AAPS PharmSciTech ; 20(6): 252, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31300965

RESUMO

The objective of the present study was to investigate the effect of partially hydrolyzed ginsenoside on the physicochemical properties and in vitro release of curcumin from phospholipid-based nanostructured lipid carrier (NLC). NLC formulas modified with partially hydrolyzed ginsenoside (NLC-PG) were prepared with different amounts of ginsenoside using the conventional hot-melt method. The average particle size of curcumin-loaded NLC-PG ranged from 150 to 200 nm, and polydispersity index was in the range of 0.101-0.177, indicating monodispersed particle size distribution. Optical microscopy showed no sedimentation or recrystallization of curcumin even at 10,000 µg/ml concentration as NLC-PG in distilled water, indicating significantly enhanced solubility. TEM image showed that the nanoparticles were monodispersed with a multilayered core/shell structure. X-ray diffraction and FTIR spectroscopy showed that curcumin was amorphous in the NLC-PG, and there was no interaction between curcumin and the excipients. In vitro release study using simulated gastric/intestinal fluid media revealed that the release rate (Jss) of curcumin from the NLC-PG increased as a function of the ginsenoside content in the lipid carrier. Moreover, the Jss of curcumin kept gradually increasing in the presence of lipase, whereas in the presence of viscozyme, it sharply increased until the ginsenoside content reached 9.09% and subsequently plateaued. Partially hydrolyzed ginsenoside increased the Jss of curcumin from curcumin-loaded NLC-PG and therefore may be useful for improving the bioavailability of curcumin.


Assuntos
Curcumina/química , Portadores de Fármacos/química , Ginsenosídeos/química , Lipídeos/química , Nanoestruturas/química , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacocinética , Curcumina/farmacocinética , Portadores de Fármacos/farmacocinética , Excipientes/química , Excipientes/farmacocinética , Ginsenosídeos/farmacocinética , Hidrólise , Lipídeos/farmacocinética , Lisofosfatidilcolinas/química , Lisofosfatidilcolinas/farmacocinética , Tamanho da Partícula , Fosfatidilcolinas/química , Fosfatidilcolinas/farmacocinética , Óleo de Soja/química , Óleo de Soja/farmacocinética , Difração de Raios X/métodos
16.
Food Chem ; 298: 125091, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31272049

RESUMO

The complexation of Lepidium sativum protein hydrolysate (LSPH) with a lipophilic molecule, curcumin (CUR), and its effect on curcumin in vitro bioaccessibility/stability, functional and antioxidant activity were investigated. Fluorescence spectroscopy of the LSPH/CUR complex confirmed the presence of hydrophobic interactions that led to the complex formation. The LSPH (10-30 kDa) fraction showed a compact complexation with curcumin at pH 3.0 with excellent aqueous solubility, stability, and bioaccessibility. Further, complexation enhanced the aqueous solubility of curcumin more than 856-fold. In vitro sequential simulated gastric and intestinal digestion indicated that the bioaccessibility of curcumin was increased from 67% to 95% post complexation. The functional attributes suggest that the LSPH/CUR complex has good foam-forming capacity and emulsion stability, which are crucial for food product formulations. The results indicate that, since LSPH is a dietary protein, it might possibly be formulated as a functional food and as an excellent lipophilic bioactive molecule delivery vehicle in food formulations.


Assuntos
Curcumina/administração & dosagem , Curcumina/química , Sistemas de Liberação de Medicamentos/métodos , Lepidium sativum/química , Hidrolisados de Proteína/química , Disponibilidade Biológica , Curcumina/farmacocinética , Digestão , Portadores de Fármacos/química , Emulsões/química , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Solubilidade , Espectrometria de Fluorescência
17.
Eur J Pharm Biopharm ; 142: 531-539, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31362056

RESUMO

Antimicrobial resistance is one of the most serious problems that researchers of multiple disciplines are working on. The number of new antibiotics and their targeted structures have continuously decreased emphasizing the demand of alternative therapy for bacterial infections. Photodynamic therapy is such a promising strategy that has been proven to be effective against a wide range of bacterial strains. In this study, an inhalable nanoformulation for photodynamic therapy against respiratory infections was developed in the form of nano-in-microparticles consisting of curcumin nanoparticles embedded in a mannitol matrix. The produced nano-in-microparticles exhibited suitable aerodynamic properties with a mass median aerodynamic diameter of 2.88 ±â€¯0.13 µm and a high fine particle fraction of 60.99 ±â€¯9.50%. They could be readily redispersed in an aqueous medium producing the original nanoparticles without any substantial changes in their properties. This was confirmed using dynamic light scattering and electron microscopy. Furthermore, the redispersed nanoparticles showed an efficient antibacterial photoactivity causing 99.99992% (6.1log10) and 97.75% (1.6log10) reduction in the viability of Staphylococcus saprophyticus subsp. bovis and Escherichia coli DH5 alpha respectively. Based on these findings, it can be concluded that nano-in-microparticles represent promising drug delivery systems for antimicrobial photodynamic therapy.


Assuntos
Antibacterianos/química , Curcumina/química , Nanopartículas/química , Administração por Inalação , Antibacterianos/farmacologia , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/métodos , Inaladores de Pó Seco/métodos , Escherichia coli/efeitos dos fármacos , Excipientes/química , Manitol/química , Tamanho da Partícula , Fotoquimioterapia/métodos , Pós/química , Staphylococcus saprophyticus/efeitos dos fármacos
18.
Eur J Pharm Biopharm ; 142: 449-459, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31326581

RESUMO

MicroRNAs (miRNAs) play a key role on gene expression regulation contributing to cell homeostasis, and they are highly dysregulated in cancer. Consequently, miRNA-based therapies are an attractive approach to develop novel anticancer strategies. The main objective of this work was to explore the full potential of protamine nanocapsules (Pr NCs) to develop an anticancer therapy based on the restoration of oncosuppressor miR-145, downregulated in colorectal cancer cells. The composition of Pr NCs was defined based on the selection of surfactants, and protamine that would enable an efficient association and intracellular delivery of miRNA mimics according to the layer-by-layer approach, and the encapsulation of curcumin within the oily core. After exposure of colorectal cancer cells with (i) miR-145 and (ii) curcumin-loaded Pr NCs, a strong increase in the intracellular levels of miR-145, which translated into a decreased cell proliferation rate and migration capacity of the treated cells, was observed. The potential of exploiting Pr NCs for the co-delivery of both biomolecules, miRNAs and curcumin, has also been proved. All together, here we evaluate the possibility to use Pr NCs to efficiently increase the intracellular levels of the oncosuppressor miR-145.


Assuntos
Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , MicroRNAs/genética , Nanocápsulas/química , Protaminas/química , Protaminas/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Neoplasias Colorretais/genética , Curcumina/química , Regulação para Baixo/efeitos dos fármacos , Portadores de Fármacos/química , Humanos
19.
Food Chem ; 299: 125097, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31284242

RESUMO

The low solubility, instability, and low bioavailability of food bioactive compounds such as polyphenols and flavonoids, restrict their applications in the fields of food science and nutrition. Ferritin protein has received more and more attention in encapsulation and delivery of the bioactive compounds due to its nanosized shell-like structure and its reversible self-assembly character. After encapsulation, bioactive compounds can be functionalized by the ferritin vehicle to achieve stabilization, solubilization, and targeted delivery. In addition, the outer interfaces and the porous structure of ferritin are also artfully harnessed for encapsulation. This review focuses on the newest advances in the fabrication, characterization, and application of ferritin-based nano-carriers for bioactive compounds by the reversible self-assembly, outer-interface decoration methods, and the channel-directed approach. The functional improvements of food bioactive compounds, including their solubility, stability, and cellular uptake, are emphasized. The limitations that affect ferritin encapsulation are also examined.


Assuntos
Ferritinas/química , Ferritinas/farmacocinética , Alimentos , Nanoestruturas/química , Antocianinas/administração & dosagem , Antocianinas/química , Antocianinas/farmacocinética , Disponibilidade Biológica , Catequina/análogos & derivados , Catequina/química , Quitosana/química , Curcumina/administração & dosagem , Curcumina/química , Curcumina/farmacocinética , Humanos , Polifenóis/administração & dosagem , Polifenóis/química , Polifenóis/farmacocinética , Proantocianidinas/administração & dosagem , Proantocianidinas/química , Proantocianidinas/farmacocinética , Solubilidade , beta Caroteno/administração & dosagem , beta Caroteno/química , beta Caroteno/farmacocinética
20.
Biomater Sci ; 7(9): 3866-3875, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31309204

RESUMO

Photothermal therapy (PTT) is emerging as a promising treatment for skin cancer. Plasmon-resonant gold-coated liposome nanoparticles (Au Lipos NPs) specifically absorb Near Infra-Red (NIR) light resulting in localized hyperthermia (PTT). In the current study, curcumin (a hydrophobic anticancer agent) was entrapped in Au Lipos NPs as nanocrystals to act as an adjuvant for the PTT of melanoma. NIR light irradiation on Au Lipos Cur NPs triggered the release of curcumin nanocrystals which coalesce to form curcumin microcrystals (CMCs). An in situ"nano to micro" transition in the crystal state of curcumin was observed. This in situ transition leads to the formation of CMCs. These CMCs exhibited sustained release of curcumin for a prolonged duration (>10 days). The localized availability of curcumin aids in enhancing PTT by inhibiting the growth and mobility of cancer cells that escape PTT. In the in vitro modified scratch assay, the Au Lipos Cur NP + Laser group showed >1.5 fold enhanced therapeutic coverage when compared with the Au Lipos NP + Laser group. In vivo PTT studies performed in a B16 tumor model using Au Lipos Cur NPs showed a significant reduction of the tumor volume along with the localized release of curcumin in the tumor environment. It was observed that the localized release of curcumin enables an immediate adjuvant effect resulting in the enhancement of PTT.


Assuntos
Adjuvantes Farmacêuticos/química , Antineoplásicos/química , Curcumina/química , Ouro/química , Lipossomos/química , Nanopartículas Metálicas/química , Adjuvantes Farmacêuticos/administração & dosagem , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Movimento Celular , Quimioterapia Adjuvante , Cristalização , Curcumina/administração & dosagem , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Hipertermia Induzida , Raios Infravermelhos , Melanoma/terapia , Nanopartículas Metálicas/administração & dosagem , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Fototerapia/métodos , Neoplasias Cutâneas/terapia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA