Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 600
Filtrar
1.
Nutrients ; 13(9)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34578969

RESUMO

Postmenopausal women are vulnerable to aging and oxidative stress due to reduced estrogen. Previous studies have shown that Korean red ginseng (KRG) has beneficial effects on aging and antioxidant capacity. Therefore, we evaluated the effects of KRG on biological aging and antioxidant capacity in postmenopausal women. This study conducted a double-blinded, placebo-controlled clinical trial. The participants were randomly administered KRG or a placebo, and the following metrics were measured: mitochondria DNA (mtDNA) copy number as an indicator of biological aging and, total antioxidant status (TAS) as a marker of antioxidant capacity. Clinical symptoms of fatigue, as measured by the fatigue severity scale, were assessed before and after KRG administration. There were 63 participants, of whom 33 received KRG and 30 received a placebo. The mtDNA copy number (KRG group: 1.58 ± 2.05, placebo group: 0.28 ± 2.36, p = 0.023) and TAS (KRG group: 0.11 ± 0.25 mmol/L, placebo group: -0.04 ± 0.16 mmol/L, p = 0.011) increased and the fatigue severity scale (KRG group: -7 ± 12, placebo group: -1 ± 11, p = 0.033) decreased significantly more in the KRG group than the placebo group. KRG significantly increased the mtDNA copy number, total antioxidant status, and improved symptoms of fatigue in postmenopausal women.


Assuntos
Envelhecimento/efeitos dos fármacos , Antioxidantes/administração & dosagem , Panax/química , Extratos Vegetais/administração & dosagem , Pós-Menopausa , Idoso , Antioxidantes/análise , DNA Mitocondrial/sangue , Método Duplo-Cego , Feminino , Ginsenosídeos/administração & dosagem , Humanos , Pessoa de Meia-Idade , Placebos , República da Coreia
2.
Nat Med ; 27(9): 1564-1575, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34426706

RESUMO

Mitochondrial DNA (mtDNA) variants influence the risk of late-onset human diseases, but the reasons for this are poorly understood. Undertaking a hypothesis-free analysis of 5,689 blood-derived biomarkers with mtDNA variants in 16,220 healthy donors, here we show that variants defining mtDNA haplogroups Uk and H4 modulate the level of circulating N-formylmethionine (fMet), which initiates mitochondrial protein translation. In human cytoplasmic hybrid (cybrid) lines, fMet modulated both mitochondrial and cytosolic proteins on multiple levels, through transcription, post-translational modification and proteolysis by an N-degron pathway, abolishing known differences between mtDNA haplogroups. In a further 11,966 individuals, fMet levels contributed to all-cause mortality and the disease risk of several common cardiovascular disorders. Together, these findings indicate that fMet plays a key role in common age-related disease through pleiotropic effects on cell proteostasis.


Assuntos
Biomarcadores/sangue , Doenças Cardiovasculares/genética , DNA Mitocondrial/genética , Mitocôndrias/genética , Idade de Início , Doadores de Sangue , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/epidemiologia , DNA Mitocondrial/sangue , Feminino , Seguimentos , Haplótipos/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/patologia , N-Formilmetionina/metabolismo , Proteostase , Fatores de Risco , Reino Unido/epidemiologia
3.
Cell Death Dis ; 12(7): 673, 2021 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-34218252

RESUMO

The STING pathway and its induction of autophagy initiate a potent immune defense response upon the recognition of pathogenic DNA. However, this protective response is minimal, as STING activation worsens organ damage, and abnormal autophagy is observed during progressive sepsis. Whether and how the STING pathway affects autophagic flux during sepsis-induced acute lung injury (sALI) are currently unknown. Here, we demonstrate that the level of circulating mtDNA and degree of STING activation are increased in sALI patients. Furthermore, STING activation was found to play a pivotal role in mtDNA-mediated lung injury by evoking an inflammatory storm and disturbing autophagy. Mechanistically, STING activation interferes with lysosomal acidification in an interferon (IFN)-dependent manner without affecting autophagosome biogenesis or fusion, aggravating sepsis. Induction of autophagy or STING deficiency alleviated lung injury. These findings provide new insights into the role of STING in the regulatory mechanisms behind extrapulmonary sALI.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Autofagia , Ácidos Nucleicos Livres/sangue , DNA Mitocondrial/sangue , Pulmão/metabolismo , Proteínas de Membrana/metabolismo , Sepse/complicações , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/patologia , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Ácidos Nucleicos Livres/genética , DNA Mitocondrial/genética , Modelos Animais de Doenças , Humanos , Concentração de Íons de Hidrogênio , Mediadores da Inflamação/metabolismo , Interferons/metabolismo , Pulmão/patologia , Lisossomos/genética , Lisossomos/metabolismo , Lisossomos/patologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células RAW 264.7 , Sepse/microbiologia
4.
Front Immunol ; 12: 628564, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211456

RESUMO

Neutrophil extracellular traps (NETs) and mitochondrial DNA (mtDNA) are inflammatory mediators involved in the development of type 1 diabetes (T1D). Pancreas-infiltrating neutrophils can release NETs, contributing to the inflammatory process. Levels of NETs are increased in serum from patients with T1D and mtDNA is increased in adult T1D patients. Our aim was to investigate extracellular DNA (NETs, mtDNA and nuclear DNA) in children with newly diagnosed T1D and in children at high risk of the disease. We also elucidated if extracellular DNA short after diagnosis could predict loss of endogenous insulin production. Samples were analysed for mtDNA and nuclear DNA using droplet digital PCR and NETs were assessed by a NET-remnants ELISA. In addition, in vitro assays for induction and degradation of NETs, as well as analyses of neutrophil elastase, HLA genotypes, levels of c-peptide, IL-1beta, IFN and autoantibodies (GADA, IA-2A, IAA and ZnT8A) were performed. In serum from children 10 days after T1D onset there was an increase in NETs (p=0.007), mtDNA (p<0.001) and nuclear DNA (p<0.001) compared to healthy children. The elevated levels were found only in younger children. In addition, mtDNA increased in consecutive samples short after onset (p=0.017). However, levels of extracellular DNA short after onset did not reflect future loss of endogenous insulin production. T1D serum induced NETs in vitro and did not deviate in the ability to degrade NETs. HLA genotypes and autoantibodies, except for ZnT8A, were not associated with extracellular DNA in T1D children. Serum from children with high risk of T1D showed fluctuating levels of extracellular DNA, sometimes increased compared to healthy children. Therefore, extracellular DNA in serum from autoantibody positive high-risk children does not seem to be a suitable biomarker candidate for prediction of T1D. In conclusion, we found increased levels of extracellular DNA in children with newly diagnosed T1D, which might be explained by an ongoing systemic inflammation.


Assuntos
Núcleo Celular/genética , DNA Mitocondrial/sangue , DNA/sangue , Diabetes Mellitus Tipo 1/sangue , Armadilhas Extracelulares/metabolismo , Adolescente , Fatores Etários , Autoanticorpos/sangue , Biomarcadores/sangue , Estudos de Casos e Controles , Criança , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Feminino , Humanos , Estudos Longitudinais , Masculino , Medição de Risco , Fatores de Risco , Regulação para Cima
5.
Front Immunol ; 12: 680648, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248963

RESUMO

Mitochondrial dysfunction is increasingly considered as a critical contributor to the occurrence and progression of acute kidney injury (AKI). However, the mechanisms by which damaged mitochondria mediate AKI progression are multifactorial and complicated. Mitochondrial DNA (mtDNA) released from damaged mitochondria could serve as a danger-associated molecular pattern (DAMP) and activate the innate immune system through STING, TLR9, NLRP3, and some other adaptors, and further mediate tubular cell inflammation and apoptosis. Accumulating evidence has demonstrated the important role of circulating mtDNA and its related pathways in the progression of AKI, and regulating the proteins involved in these pathways may be an effective strategy to reduce renal tubular injury and alleviate AKI. Here, we aim to provide a comprehensive overview of recent studies on mtDNA-mediated renal pathological events to provide new insights in the setting of AKI.


Assuntos
Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Ácidos Nucleicos Livres/imunologia , DNA Mitocondrial/imunologia , Imunidade Inata , Transdução de Sinais , Injúria Renal Aguda/patologia , Animais , Biomarcadores , Ácidos Nucleicos Livres/sangue , DNA Mitocondrial/sangue , Suscetibilidade a Doenças , Humanos , Inflamassomos/metabolismo
6.
FASEB J ; 35(7): e21694, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34165220

RESUMO

Among cardiovascular disease (CVD) biomarkers, the mitochondrial DNA copy number (mtDNAcn) is a promising candidate. A growing attention has been also dedicated to trimethylamine-N-oxide (TMAO), an oxidative derivative of the gut metabolite trimethylamine (TMA). With the aim to identify biomarkers predictive of CVD, we investigated TMA, TMAO, and mtDNAcn in a population of 389 coronary artery disease (CAD) patients and 151 healthy controls, in association with established risk factors for CVD (sex, age, hypertension, smoking, diabetes, glomerular filtration rate [GFR]) and troponin, an established marker of CAD. MtDNAcn was significantly lower in CAD patients; it correlates with GFR and TMA, but not with TMAO. A biomarker including mtDNAcn, sex, and hypertension (but neither TMA nor TMAO) emerged as a good predictor of CAD. Our findings support the mtDNAcn as a promising plastic biomarker, useful to monitor the exposure to risk factors and the efficacy of preventive interventions for a personalized CAD risk reduction.


Assuntos
Biomarcadores/sangue , Doenças Cardiovasculares/diagnóstico , Variações do Número de Cópias de DNA , DNA Mitocondrial/sangue , Trato Gastrointestinal/metabolismo , Metilaminas/sangue , Idoso , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/genética , Estudos de Casos e Controles , Estudos de Coortes , DNA Mitocondrial/genética , Feminino , Humanos , Masculino , Fatores de Risco
7.
Nutrients ; 13(6)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072630

RESUMO

There is limited evidence regarding the potential risk of untargeted iron supplementation, especially among individuals who are iron-replete or have genetic hemoglobinopathies. Excess iron exposure can increase the production of reactive oxygen species, which can lead to cellular damage. We evaluated the effect of daily oral supplementation on relative leukocyte telomere length (rLTL) and blood mitochondrial DNA (mtDNA) content in non-pregnant Cambodian women (18-45 years) who received 60 mg of elemental iron as ferrous sulfate (n = 190) or a placebo (n = 186) for 12 weeks. Buffy coat rLTL and mtDNA content were quantified by monochrome multiplex quantitative polymerase chain reaction. Generalized linear mixed-effects models were used to predict the absolute and percent change in rLTL and mtDNA content after 12 weeks. Iron supplementation was not associated with an absolute or percent change in rLTL after 12 weeks compared with placebo (ß-coefficient: -0.04 [95% CI: -0.16, 0.08]; p = 0.50 and ß-coefficient: -0.96 [95% CI: -2.69, 0.77]; p = 0.28, respectively). However, iron supplementation was associated with a smaller absolute and percent increase in mtDNA content after 12 weeks compared with placebo (ß-coefficient: -11 [95% CI: -20, -2]; p = 0.02 and ß-coefficient: -11 [95% CI: -20, -1]; p= 0.02, respectively). Thus, daily oral iron supplementation for 12 weeks was associated with altered mitochondrial homeostasis in our study sample. More research is needed to understand the risk of iron exposure and the biological consequences of altered mitochondrial homeostasis in order to inform the safety of the current global supplementation policy.


Assuntos
DNA Mitocondrial , Suplementos Nutricionais , Ferro , Leucócitos/efeitos dos fármacos , Telômero/efeitos dos fármacos , Adulto , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Camboja , DNA Mitocondrial/sangue , DNA Mitocondrial/efeitos dos fármacos , Feminino , Humanos , Ferro/administração & dosagem , Ferro/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Adulto Jovem
8.
Methods Mol Biol ; 2277: 247-268, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34080155

RESUMO

Changes in circulating mitochondrial DNA (mtDNA) are widely used to indicate mitochondrial dysfunction in common non-genetic diseases where mitochondrial dysfunction may play a role. However, the methodology being used is not always specific and reproducible, and most studies use whole blood rather than evaluating cellular and cell-free mtDNA separately. Cellular mtDNA is contained within the mitochondrion and encodes vital subunits of the OXPHOS machinery. Conversely, cell-free mtDNA can have harmful effects, triggering inflammatory responses and potentially contributing to pathogenic processes. In this chapter, we describe a protocol to accurately measure the amount of cellular and cell-free human mtDNA in peripheral blood. Absolute quantification is carried out using real-time quantitative PCR (qPCR) to quantify cellular mtDNA, measured as the mitochondrial genome to nuclear genome ratio (designated the Mt/N ratio) in whole blood and peripheral blood mononuclear cells (PBMCs) and the number of mtDNA copies per µL in plasma and serum. We describe how to (1) separate whole blood into PBMCs, plasma, and serum fractions, (2) prepare DNA from each of these fractions, (3) prepare dilution standards for absolute quantification, (4) carry out qPCR for either relative or absolute quantification from test samples, (5) analyze qPCR data, and (6) calculate the sample size to adequately power studies. The protocol presented here is suitable for high-throughput use and can be modified to quantify mtDNA from other body fluids, human cells, and tissues.


Assuntos
Ácidos Nucleicos Livres/sangue , DNA Mitocondrial/sangue , Reação em Cadeia da Polimerase em Tempo Real/métodos , Ácidos Nucleicos Livres/isolamento & purificação , DNA Mitocondrial/isolamento & purificação , Humanos , Leucócitos Mononucleares/fisiologia , Reação em Cadeia da Polimerase em Tempo Real/instrumentação
9.
Mil Med Res ; 8(1): 30, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33985568

RESUMO

BACKGROUND: Aeromedical evacuation of patients with burn trauma is an important transport method in times of peace and war, during which patients are exposed to prolonged periods of hypobaric hypoxia; however, the effects of such exposure on burn injuries, particularly on burn-induced lung injuries, are largely unexplored. This study aimed to determine the effects of hypobaric hypoxia on burn-induced lung injuries and to investigate the underlying mechanism using a rat burn model. METHODS: A total of 40 male Wistar rats were randomly divided into four groups (10 in each group): sham burn (SB) group, burn in normoxia condition (BN) group, burn in hypoxia condition (BH) group, and burn in hypoxia condition with treatment intervention (BHD) group. Rats with 30% total body surface area burns were exposed to hypobaric hypoxia (2000 m altitude simulation) or normoxia conditions for 4 h. Deoxyribonuclease I (DNase I) was administered systemically as a treatment intervention. Systemic inflammatory mediator and mitochondrial deoxyribonucleic acid (mtDNA) levels were determined. A histopathological evaluation was performed and the acute lung injury (ALI) score was determined. Malonaldehyde (MDA) content, myeloperoxidase (MPO) activity, and the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome level were determined in lung tissues. Data among groups were compared using analysis of variance followed by Tukey's test post hoc analysis. RESULTS: Burns resulted in a remarkably higher level of systemic inflammatory cytokines and mtDNA release, which was further heightened by hypobaric hypoxia exposure (P < 0.01). Moreover, hypobaric hypoxia exposure gave rise to increased NLRP3 inflammasome expression, MDA content, and MPO activity in the lung (P < 0.05 or P < 0.01). Burn-induced lung injuries were exacerbated, as shown by the histopathological evaluation and ALI score (P < 0.01). Administration of DNase I markedly reduced mtDNA release and systemic inflammatory cytokine production. Furthermore, the NLRP3 inflammasome level in lung tissues was decreased and burn-induced lung injury was ameliorated (P < 0.01). CONCLUSIONS: Our results suggested that simulated aeromedical evacuation further increased burn-induced mtDNA release and exacerbated burn-induced inflammation and lung injury. DNase I reduced the release of mtDNA, limited mtDNA-induced systemic inflammation, and ameliorated burn-induced ALI. The intervening mtDNA level is thus a potential target to protect from burn-induced lung injury during aeromedical conditions and provides safer air evacuations for severely burned patients.


Assuntos
Altitude , Queimaduras/complicações , DNA Mitocondrial/efeitos dos fármacos , Lesão Pulmonar/tratamento farmacológico , Animais , Queimaduras/tratamento farmacológico , Queimaduras/patologia , Citocinas/análise , Citocinas/sangue , DNA Mitocondrial/análise , DNA Mitocondrial/sangue , Modelos Animais de Doenças , Lesão Pulmonar/etiologia , Lesão Pulmonar/fisiopatologia , Masculino , Ratos , Ratos Wistar
10.
Mol Biol Rep ; 48(4): 3327-3336, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33886057

RESUMO

HIV infection is a global health concern. Current HIV-diagnostics provide information about the disease progression and efficacy of anti-retroviral therapies (ARVs), but this information is very limited and sometimes imprecise. Present study assessed the potential role of mononuclear cell (MNC) death, expression of caspases (1&3) and cell free mitochondrial DNA (CF mt-DNA) in HIV infected individuals. Apoptosis, cell-count, expression of caspases and CF mt-DNA were measured through flow cytometry and qPCR, respectively, in HIV infected individuals (n = 120) divided in two groups i.e. ARVs-receiving (treated, n = 87), ART-naïve (untreated, n = 37) and healthy individuals (n = 47). Data showed significant (p < 0.0001) cell death in untreated individuals than treated and healthy individuals. CD4-positive T-cell percentage declined (p < 0.0001) in untreated as compared to treated individuals. Caspase-1, an indicator of pyroptosis, and CF mt-DNA were also elevated in untreated HIV infected individuals. Untreated individuals when administered with ARVs showed improved CD4-positive T-cell percentage, lower caspase-1, CF mt-DNA and cell death. Data elucidated positive co-relation between cell death and CF mt-DNA in treated and untreated HIV infected individuals. While CD4-positive T-cell percentage was negatively correlated with caspase-1 expression and CF mt-DNA. Elevated levels of CF mt-DNA and caspase-1 in HIV infected individuals, positive correlation between cell death and CF mt-DNA, negative correlation of CD4-positive T-cell percentage with CF mt-DNA and caspase-1 expression clearly indicated the potential of CF mt-DNA and caspase-1 as a novel disease progression and ARTs effectiveness biomarkers in HIV.


Assuntos
Antivirais/uso terapêutico , Caspase 1/genética , DNA Mitocondrial/sangue , Infecções por HIV/sangue , Adulto , Apoptose , Ácidos Nucleicos Livres/sangue , Feminino , Regulação da Expressão Gênica , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Infecções por HIV/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Resultado do Tratamento , Adulto Jovem
11.
Respir Res ; 22(1): 126, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33902556

RESUMO

BACKGROUND: There is a lack of mechanism-driven, clinically relevant biomarkers in chronic obstructive pulmonary disease (COPD). Mitochondrial dysfunction, a proposed disease mechanism in COPD, is associated with the release of mitochondrial DNA (mtDNA), but plasma cell-free mtDNA has not been previously examined prospectively for associations with clinical COPD measures. METHODS: P-mtDNA, defined as copy number of mitochondrially-encoded NADH dehydrogenase-1 (MT-ND1) gene, was measured by real-time quantitative PCR in 700 plasma samples from participants enrolled in the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS) cohort. Associations between p-mtDNA and clinical disease parameters were examined, adjusting for age, sex, smoking status, and for informative loss to follow-up. RESULTS: P-mtDNA levels were higher in participants with mild or moderate COPD, compared to smokers without airflow obstruction, and to participants with severe COPD. Baseline increased p-mtDNA levels were associated with better CAT scores in female smokers without airflow obstruction and female participants with mild or moderate COPD on 1-year follow-up, but worse 6MWD in females with severe COPD. Higher p-mtDNA levels were associated with better 6MWD in male participants with severe COPD. These associations were no longer significant after adjusting for informative loss to follow-up. CONCLUSION: In this study, p-mtDNA levels associated with baseline COPD status but not future changes in clinical COPD measures after accounting for informative loss to follow-up. To better characterize mitochondrial dysfunction as a potential COPD endotype, these results should be confirmed and validated in future studies. TRIAL REGISTRATION:  ClinicalTrials.gov NCT01969344 (SPIROMICS).


Assuntos
DNA Mitocondrial/genética , NADH Desidrogenase/genética , Doença Pulmonar Obstrutiva Crônica/genética , Idoso , DNA Mitocondrial/sangue , Progressão da Doença , Tolerância ao Exercício , Feminino , Volume Expiratório Forçado , Humanos , Estudos Longitudinais , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , NADH Desidrogenase/sangue , Estudos Prospectivos , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Índice de Gravidade de Doença , Fumantes , Fumar/efeitos adversos , Inquéritos e Questionários , Fatores de Tempo , Estados Unidos , Teste de Caminhada
12.
Biochem Biophys Res Commun ; 556: 93-98, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33845310

RESUMO

Sepsis remains a leading cause of mortality in critically ill patients and is characterized by multi-organ dysfunction. Mitochondrial damage has been proposed to be involved in the pathophysiology of sepsis. In addition to metabolic impairments resulting from mitochondrial dysfunction, mitochondrial DNA (mtDNA) causes systemic inflammation as a damage-associated molecular pattern when it is released to the circulation. Metabolic derangements in skeletal muscle are a major complication of sepsis and negatively affects clinical outcomes of septic patients. However, limited knowledge is available about sepsis-induced mitochondrial damage in skeletal muscle. Here, we show that sepsis induced profound abnormalities in cristae structure, rupture of the inner and outer membranes and enlargement of the mitochondria in mouse skeletal muscle in a time-dependent manner, which was associated with increased plasma mtDNA levels. Farnesyltransferase inhibitor, FTI-277, prevented sepsis-induced morphological aberrations of the mitochondria, and blocked the increased plasma mtDNA levels along with improved survival. These results indicate that protein farnesylation plays a role in sepsis-induced damage of the mitochondria in mouse skeletal muscle. Our findings suggest that mitochondrial disintegrity in skeletal muscle may contribute to elevated circulating mtDNA levels in sepsis.


Assuntos
DNA Mitocondrial/sangue , Farnesiltranstransferase/antagonistas & inibidores , Mitocôndrias/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Sepse/tratamento farmacológico , Animais , Masculino , Metionina/análogos & derivados , Metionina/farmacologia , Camundongos , Mitocôndrias/patologia , Músculo Esquelético/patologia , Sepse/sangue , Sepse/patologia , Fatores de Tempo
13.
Cells ; 10(4)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917426

RESUMO

The analysis of circulating cell free DNA (ccf-DNA) is an emerging diagnostic tool for the detection and monitoring of tissue injury, disease progression, and potential treatment effects. Currently, most of ccf-DNA in tissue and liquid biopsies is analysed with real-time quantitative PCR (qPCR) that is primer- and template-specific, labour intensive and cost-inefficient. In this report we directly compare the amounts of ccf-DNA in serum of healthy volunteers, and subjects presenting with various stages of lung adenocarcinoma, and survivors of traumatic brain injury using qPCR and quantitative PicoGreen™ fluorescence assay. A significant increase of ccf-DNA in lung adenocarcinoma and traumatic brain injury patients, in comparison to the group of healthy human subjects, was found using both analytical methods. However, the direct correlation between PicoGreen™ fluorescence and qPCR was found only when mitochondrial DNA (mtDNA)-specific primers were used. Further analysis of the location of ccf-DNA indicated that the majority of DNA is located within lumen of extracellular vesicles (EVs) and is easily detected with mtDNA-specific primers. We have concluded that due to the presence of active DNases in the blood, the analysis of DNA within EVs has the potential of providing rapid diagnostic outcomes. Moreover, we speculate that accurate and rapid quantification of ccf-DNA with PicoGreen™ fluorescent probe used as a point of care approach could facilitate immediate assessment and treatment of critically ill patients.


Assuntos
Lesões Encefálicas Traumáticas/sangue , Ácidos Nucleicos Livres/análise , DNA Mitocondrial/análise , Vesículas Extracelulares/genética , Biópsia Líquida , Índice de Gravidade de Doença , Adenocarcinoma de Pulmão/sangue , Adenocarcinoma de Pulmão/genética , Adulto , Idoso , Lesões Encefálicas Traumáticas/genética , DNA Mitocondrial/sangue , Feminino , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/genética , Masculino , Pessoa de Meia-Idade , Compostos Orgânicos/química
14.
Science ; 372(6538)2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33833097

RESUMO

Liquid biopsies that analyze cell-free DNA in blood plasma are used for noninvasive prenatal testing, oncology, and monitoring of organ transplant recipients. DNA molecules are released into the plasma from various bodily tissues. Physical and molecular features of cell-free DNA fragments and their distribution over the genome bear information about their tissues of origin. Moreover, patterns of DNA methylation of these molecules reflect those of their tissue sources. The nucleosomal organization and nuclease content of the tissue of origin affect the fragmentation profile of plasma DNA molecules, such as fragment size and end motifs. Besides double-stranded linear fragments, other topological forms of cell-free DNA also exist-namely circular and single-stranded molecules. Enhanced by these features, liquid biopsies hold promise for the noninvasive detection of tissue-specific pathologies with a range of clinical applications.


Assuntos
Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/genética , Fragmentação do DNA , Metilação de DNA , DNA/sangue , DNA/genética , Biópsia Líquida , Animais , Biomarcadores/sangue , DNA Circular/sangue , DNA Mitocondrial/sangue , DNA de Neoplasias/sangue , DNA de Neoplasias/genética , Desoxirribonucleases/metabolismo , Epigênese Genética , Feminino , Feto , Humanos , Gravidez , Transplantes
15.
Aging (Albany NY) ; 13(6): 8440-8453, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33714205

RESUMO

We previously showed that donor plasma mitochondrial DNA (dmtDNA) levels were correlated with renal allograft function. The aim of the current study was to determine whether dmtDNA levels are associated with the occurrence of antibody-mediated rejection (ABMR). This is a retrospective open cohort study comprised of 167 donors and 323 recipients enrolled from January 2015 to December 2017. We quantified the mtDNA level present in donor plasma using quantitative real-time polymerase chain reaction. The average plasma dmtDNA level in the acute rejection (AR) group was higher than that of the control group (0.156 versus 0.075, p<0.001). Multivariate logistic regression analysis showed that dmtDNA levels were also significantly associated with AR (OR=1.588, 95% CI 1.337-4.561, p<0.001). When the dmtDNA level was >0.156, the probability of AR was 62.9%. The plasma dmtDNA level in the ABMR group was significantly higher than that of the T cell-mediated rejection group (0.185 versus 0.099, p=0.032). The area under the receiver operating characteristic curve of dmtDNA for prediction of ABMR was as high as 0.910 (95% CI 0.843-0.977). We demonstrated that plasma dmtDNA was an independent risk factor for ABMR, which is valuable in organ evaluation. dmtDNA level is a possible first predictive marker for ABMR.


Assuntos
Biomarcadores/sangue , DNA Mitocondrial/sangue , Rejeição de Enxerto/sangue , Transplante de Rim , Adulto , Aloenxertos , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Doadores de Tecidos
16.
Oxid Med Cell Longev ; 2021: 6687096, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33680285

RESUMO

Heart failure threatens the lives of patients and reduces their quality of life. Heart failure, especially heart failure with preserved ejection fraction, is closely related to systemic and local cardiac persistent chronic low-grade aseptic inflammation, microvascular damage characterized by endothelial dysfunction, oxidative stress, myocardial remodeling, and fibrosis. However, the initiation and development of persistent chronic low-grade aseptic inflammation is unexplored. Oxidative stress-mediated neutrophil extracellular traps (NETs) are the main immune defense mechanism against external bacterial infections. Furthermore, NETs play important roles in noninfectious diseases. After the onset of myocardial infarction, atrial fibrillation, or myocarditis, neutrophils infiltrate the damaged tissue and aggravate inflammation. In tissue injury, damage-related molecular patterns (DAMPs) may induce pattern recognition receptors (PRRs) to cause NETs, but whether NETs are directly involved in the pathogenesis and development of heart failure and the mechanism is still unclear. In this review, we analyzed the markers of heart failure and heart failure-related diseases and comorbidities, such as mitochondrial DNA, high mobility box group box 1, fibronectin extra domain A, and galectin-3, to explore their role in inducing NETs and to investigate the mechanism of PRRs, such as Toll-like receptors, receptor for advanced glycation end products, cGAS-STING, and C-X-C motif chemokine receptor 2, in activating NETosis. Furthermore, we discussed oxidative stress, especially the possibility that imbalance of thiol redox and MPO-derived HOCl promotes the production of 2-chlorofatty acid and induces NETosis, and analyzed the possibility of NETs triggering coronary microvascular thrombosis. In some heart diseases, the deletion or blocking of neutrophil-specific myeloperoxidase and peptidylarginine deiminase 4 has shown effectiveness. According to the results of current pharmacological studies, MPO and PAD4 inhibitors are effective at least for myocardial infarction, atherosclerosis, and certain autoimmune diseases, whose deterioration can lead to heart failure. This is essential for understanding NETosis as a therapeutic factor of heart failure and the related new pathophysiology and therapeutics of heart failure.


Assuntos
Armadilhas Extracelulares/metabolismo , Insuficiência Cardíaca/metabolismo , Animais , Citocinas/metabolismo , DNA Mitocondrial/sangue , Insuficiência Cardíaca/sangue , Humanos , Modelos Biológicos , Estresse Oxidativo
17.
BMC Pulm Med ; 21(1): 66, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33632166

RESUMO

BACKGROUND: Mitochondrial DNA (mtDNA) is a critical activator of inflammation. Circulating mtDNA released causes lung injury in experimental models. We hypothesized that elevated plasma mtDNA levels are associated with acute lung injury (ALI) in septic patients. METHODS: We enrolled 66 patients with sepsis admitted to the Department of Critical Care Medicine of Peking Union Medical College Hospital between January 2019 and October 2019. Respiratory, hemodynamic and bedside echocardiographic parameters were recorded. Plasma mtDNA, procalcitonin, interleukin 6, and interleukin 8 levels were examined. RESULTS: Plasma mtDNA levels within 24 h after admission were significantly increased in the group of septic patients with ALI [5.01 (3.38-6.64) vs 4.13 (3.20-5.07) log copies/µL, p 0.0172]. mtDNA levels were independently associated with mortality (hazard ratio, 3.2052; 95% CI 1.1608-8.8500; p 0.0253) and ALI risk (odds ratio 2.7506; 95% CI 1.1647-6.4959; p 0.0210). Patients with high mtDNA levels had worse outcomes, and post hoc tests showed significant differences in 28-day survival rates. Increased mtDNA levels were seen in patients with abdominal infection. CONCLUSIONS: Increased plasma mtDNA levels within 24 h after admission were significantly associated with ALI incidence and mortality in septic patients.


Assuntos
Lesão Pulmonar Aguda/sangue , DNA Mitocondrial/sangue , Sepse/sangue , Lesão Pulmonar Aguda/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Curva ROC , Sepse/mortalidade , Índice de Gravidade de Doença , Análise de Sobrevida
18.
J Am Heart Assoc ; 10(4): e018776, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33533264

RESUMO

Background We sought to determine whether mitochondrial DNA (mtDNA) content can be used as markers for 12 key phenotypes among cardiovascular disease patients, and whether these markers are valid across patients with diverse ancestries. Methods and Results DNA was collected from the peripheral blood of 996 cardiovascular disease patients at the Cleveland Clinic. The mtDNA copy number and DNA-level variation were assessed from whole-genome sequence. Patients were also ascertained retrospectively for histories of 10 clinical events, as well as for maximum stenosis and extent of disease at baseline. Self-reported race and maternal ancestry inferred from mtDNA sequence were recorded. MtDNA copy number and overall mtDNA rare variant load were significantly lower in patients with histories of various adverse clinical events, and mtDNA copy number was inversely correlated with extent of disease. Strong associations were also found between absence of rare variants in the genes MT-ATP6 and MT-COII and patient histories of hyperlipidemia and myocardial infarction, respectively. Importantly, associations were not ancestry dependent. Conclusions This study provides evidence that mtDNA copy number in circulation is associated with a variety of cardiovascular disease patient phenotypes. Results also suggest a protective role for some rare inherited mtDNA variants. Overall, the study supports the potential of mtDNA content and abundance as biomarkers in heart disease, in a manner that is valid across diverse ancestries.


Assuntos
Doenças Cardiovasculares/genética , DNA Mitocondrial/sangue , DNA Mitocondrial/genética , Biomarcadores/sangue , Doenças Cardiovasculares/sangue , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Estudos Prospectivos
19.
Biochem Biophys Res Commun ; 546: 138-144, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33582556

RESUMO

Hepatic injury is common in patients who suffer from severe burns plus delayed resuscitation (B + DR). Stimulator of interferon genes (STING) is primarily expressed in Kupffer cells (KCs). We demonstrated that B + DR caused hepatic injury and oxidative stress. Reactive oxygen species (ROS) damage mitochondrial membranes in hepatocytes, leading to the release of mitochondrial DNA (mtDNA) into the hepatocyte cytosol and the circulation. The damaged hepatocytes then activate the mtDNA/STING pathway in KCs and trigger KCs polarization towards pro-inflammatory phenotype. SS-31 is a strong antioxidant that specifically concentrates in the inner mitochondrial membrane. SS-31 prevented hepatic injury by neutralizing ROS, inhibiting the release of mtDNA, protecting hepatocyte mitochondria, suppressing the activation of the mtDNA/STING pathway and inhibiting KCs polarization into pro-inflammatory phenotype.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Queimaduras/complicações , DNA Mitocondrial/efeitos dos fármacos , Macrófagos do Fígado/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/lesões , Proteínas de Membrana/metabolismo , Oligopeptídeos/farmacologia , Ressuscitação , Animais , DNA Mitocondrial/sangue , DNA Mitocondrial/metabolismo , Espaço Extracelular/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Macrófagos do Fígado/metabolismo , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
20.
Cells ; 10(1)2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33418977

RESUMO

Circulating extracellular DNA (ecDNA) is known to worsen the outcome of many diseases. ecDNA released from neutrophils during infection or inflammation is present in the form of neutrophil extracellular traps (NETs). It has been shown that higher ecDNA concentration occurs in a number of inflammatory diseases including inflammatory bowel disease (IBD). Enzymes such as peptidyl arginine deiminases (PADs) are crucial for NET formation. We sought to describe the dynamics of ecDNA concentrations and fragmentation, along with NETosis during a mouse model of chemically induced colitis. Plasma ecDNA concentration was highest on day seven of dextran sulfate sodium (DSS) intake and the increase was time-dependent. This increase correlated with the percentage of cells undergoing NETosis and other markers of disease activity. Relative proportion of nuclear ecDNA increased towards more severe colitis; however, absolute amount decreased. In colon explant medium, the highest concentration of ecDNA was on day three of DSS consumption. Early administration of PAD4 inhibitors did not alleviate disease activity, but lowered the ecDNA concentration. These results uncover the biological characteristics of ecDNA in IBD and support the role of ecDNA in intestinal inflammation. The therapeutic intervention aimed at NETs and/or nuclear ecDNA has yet to be fully investigated.


Assuntos
Colite/induzido quimicamente , DNA/metabolismo , Espaço Extracelular/metabolismo , Inflamação/patologia , Intestinos/patologia , Animais , Biomarcadores/metabolismo , Colite/sangue , Colite/patologia , DNA/sangue , DNA Mitocondrial/sangue , Desoxirribonucleases/metabolismo , Sulfato de Dextrana , Endoscopia , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/metabolismo , Inflamação/sangue , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Intestinos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Ornitina/análogos & derivados , Ornitina/farmacologia , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Índice de Gravidade de Doença , Estreptonigrina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...