Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71.543
Filtrar
1.
Nat Commun ; 11(1): 4747, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958761

RESUMO

Chromosome structure at the multi-nucleosomal level has remained ambiguous in spite of its central role in epigenetic regulation and genome dynamics. Recent investigations of chromatin architecture portray diverse modes of interaction within and between nucleosome chains, but how this is realized at the atomic level is unclear. Here we present near-atomic resolution crystal structures of nucleosome fibres that assemble from cohesive-ended dinucleosomes with and without linker histone. As opposed to adopting folded helical '30 nm' structures, the fibres instead assume open zigzag conformations that are interdigitated with one another. Zigzag conformations obviate extreme bending of the linker DNA, while linker DNA size (nucleosome repeat length) dictates fibre configuration and thus fibre-fibre packing, which is supported by variable linker histone binding. This suggests that nucleosome chains have a predisposition to interdigitate with specific characteristics under condensing conditions, which rationalizes observations of local chromosome architecture and the general heterogeneity of chromatin structure.


Assuntos
Nucleossomos/química , Nucleossomos/metabolismo , Sequência de Bases , Cromatina/química , Cromatina/metabolismo , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Histonas/química , Histonas/genética , Histonas/metabolismo , Humanos , Modelos Moleculares , Conformação Molecular , Ligação Proteica
2.
Nat Commun ; 11(1): 4758, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958811

RESUMO

Genetic programs operating in a history-dependent fashion are ubiquitous in nature and govern sophisticated processes such as development and differentiation. The ability to systematically and predictably encode such programs would advance the engineering of synthetic organisms and ecosystems with rich signal processing abilities. Here we implement robust, scalable history-dependent programs by distributing the computational labor across a cellular population. Our design is based on standardized recombinase-driven DNA scaffolds expressing different genes according to the order of occurrence of inputs. These multicellular computing systems are highly modular, do not require cell-cell communication channels, and any program can be built by differential composition of strains containing well-characterized logic scaffolds. We developed automated workflows that researchers can use to streamline program design and optimization. We anticipate that the history-dependent programs presented here will support many applications using cellular populations for material engineering, biomanufacturing and healthcare.


Assuntos
Modelos Genéticos , Biologia Sintética/métodos , Fenômenos Fisiológicos Celulares/genética , DNA/genética , DNA/metabolismo , Lógica , Recombinases/genética , Recombinases/metabolismo , Software , Fluxo de Trabalho
3.
Adv Exp Med Biol ; 1255: 1-6, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32949386

RESUMO

Clinical single-cell biomedicine has become a new emerging discipline, which integrates single-cell RNA and DNA sequencing, proteomics, and functions with clinical phenomes, therapeutic responses, and prognosis. It is of great value to discover disease-, phenome-, and therapy-specific diagnostic biomarkers and therapeutic targets on the basis of the principle of clinical single-cell biomedicine. This book reviews the roles of single-cell sequencing and methylation in diseases and explores disease-specific alterations of single-cell sequencing and methylation, especially focusing on potential applications of methodologies on human single-cell sequencing and methylation, on potential correlations between those changes with pulmonary diseases, and on potential roles of signaling pathways that cause heterogeneous cellular responses during treatment. This book also emphasizes the importance of methodologies in clinical practice and application, the potential of perspectives, challenges and solutions, and the significance of single-cell preparation standardization. Alterations of DNA and RNA methylation, demethylation in lung diseases, and a deep knowledge about the regulation and function of target gene methylation for diagnosing and treating diseases at the early stage are also provided. Importantly, this book aims to apply the measurement of single-cell sequencing and methylation for clinical diagnosis and treatment and to understand clinical values of those parameters and to headline and foresee the potential values of the application of single-cell sequencing in non-cancer diseases.


Assuntos
Metilação de DNA , Doença/genética , Análise de Sequência , Análise de Célula Única , DNA/genética , DNA/metabolismo , Humanos , Proteômica , RNA/genética , RNA/metabolismo
4.
Nat Commun ; 11(1): 4482, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32901011

RESUMO

Intracellular trafficking governs receptor signaling, pathogenesis, immune responses and fate of nanomedicines. These processes are typically tracked by observing colocalization of fluorescent markers using confocal microscopy. However, this method is low throughput, limited by the resolution of microscopy, and can miss fleeting interactions. To address this, we developed a localization sensor composed of a quenched SNAP-tag substrate (SNAPSwitch) that can be conjugated to biomolecules using click chemistry. SNAPSwitch enables quantitative detection of trafficking to locations of interest within live cells using flow cytometry. Using SNAPSwitch, we followed the trafficking of DNA complexes from endosomes into the cytosol and nucleus. We show that antibodies against the transferrin or hyaluronan receptor are initially sorted into different compartments following endocytosis. In addition, we can resolve which side of the cellular membrane material was located. These results demonstrate SNAPSwitch is a high-throughput and broadly applicable tool to quantitatively track localization of materials in cells.


Assuntos
DNA/metabolismo , Sondas Moleculares/química , Nanopartículas/metabolismo , Proteínas/metabolismo , Animais , Transporte Biológico Ativo , Técnicas Biossensoriais/métodos , Química Click , Citometria de Fluxo , Corantes Fluorescentes , Células HEK293 , Humanos , Camundongos , Microscopia Confocal , Técnicas de Sonda Molecular , Sondas Moleculares/metabolismo , Células NIH 3T3
5.
Nat Commun ; 11(1): 4845, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973148

RESUMO

Herpesviruses encode conserved protein kinases (CHPKs) to stimulate phosphorylation-sensitive processes during infection. How CHPKs bind to cellular factors and how this impacts their regulatory functions is poorly understood. Here, we use quantitative proteomics to determine cellular interaction partners of human herpesvirus (HHV) CHPKs. We find that CHPKs can target key regulators of transcription and replication. The interaction with Cyclin A and associated factors is identified as a signature of ß-herpesvirus kinases. Cyclin A is recruited via RXL motifs that overlap with nuclear localization signals (NLS) in the non-catalytic N termini. This architecture is conserved in HHV6, HHV7 and rodent cytomegaloviruses. Cyclin A binding competes with NLS function, enabling dynamic changes in CHPK localization and substrate phosphorylation. The cytomegalovirus kinase M97 sequesters Cyclin A in the cytosol, which is essential for viral inhibition of cellular replication. Our data highlight a fine-tuned and physiologically important interplay between a cellular cyclin and viral kinases.


Assuntos
Replicação do DNA/fisiologia , Infecções por Herpesviridae/metabolismo , Herpesviridae/metabolismo , Proteínas Quinases/metabolismo , Animais , Ciclina A/genética , Ciclina A/metabolismo , Citomegalovirus/genética , DNA/metabolismo , Células HEK293 , Herpesviridae/enzimologia , Herpesviridae/genética , Infecções por Herpesviridae/virologia , Humanos , Camundongos , Células NIH 3T3 , Sinais de Localização Nuclear/metabolismo , Fosforilação , Mapas de Interação de Proteínas , Proteínas Virais/genética , Proteínas Virais/metabolismo
6.
Proc Natl Acad Sci U S A ; 117(33): 19661-19663, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747537

RESUMO

The structural unit of eukaryotic chromatin is a nucleosome, comprising two histone H2A-H2B heterodimers and one histone (H3-H4)2 tetramer, wrapped around by ∼146 bp of DNA. The N-terminal flexible histone tails stick out from the histone core and have extensive posttranslational modifications, causing epigenetic changes of chromatin. Although crystal and cryogenic electron microscopy structures of nucleosomes are available, the flexible tail structures remain elusive. Using NMR, we have examined the dynamics of histone H3 tails in nucleosomes containing unmodified and tetra-acetylated H4 tails. In unmodified nucleosome, the H3 tail adopts a dynamic equilibrium structure between DNA-contact and reduced-contact states. In acetylated H4 nucleosome, however, the H3 tail equilibrium shifts to a mainly DNA-contact state with a minor reduced-contact state. The acetylated H4 tail is dynamically released from its own DNA-contact state to a reduced-contact state, while the H3 tail DNA-contact state becomes major. Notably, H3 K14 in the acetylated H4 nucleosome is much more accessible to acetyltransferase Gcn5 relative to unmodified nucleosome, possibly due to the formation of a favorable H3 tail conformation for Gcn5. In summary, each histone tail adopts a characteristic dynamic state but regulates one other, probably creating a histone tail network even on a nucleosome.


Assuntos
Histonas/química , Histonas/metabolismo , Nucleossomos/metabolismo , Acetilação , Motivos de Aminoácidos , DNA/genética , DNA/metabolismo , Histonas/genética , Humanos , Conformação de Ácido Nucleico , Nucleossomos/genética
7.
Nat Commun ; 11(1): 4196, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32826907

RESUMO

Cells utilise specialized polymerases from the Primase-Polymerase (Prim-Pol) superfamily to maintain genome stability. Prim-Pol's function in genome maintenance pathways including replication, repair and damage tolerance. Mycobacteria contain multiple Prim-Pols required for lesion repair, including Prim-PolC that performs short gap repair synthesis during excision repair. To understand the molecular basis of Prim-PolC's gap recognition and synthesis activities, we elucidated crystal structures of pre- and post-catalytic complexes bound to gapped DNA substrates. These intermediates explain its binding preference for short gaps and reveal a distinctive modus operandi called Synthesis-dependent Template Displacement (STD). This mechanism enables Prim-PolC to couple primer extension with template base dislocation, ensuring that the unpaired templating bases in the gap are ushered into the active site in an ordered manner. Insights provided by these structures establishes the molecular basis of Prim-PolC's gap recognition and extension activities, while also illuminating the mechanisms of primer extension utilised by closely related Prim-Pols.


Assuntos
Proteínas de Bactérias/química , DNA Primase/química , Reparo do DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/química , DNA/química , Mycobacterium/genética , Mycobacterium/metabolismo , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , DNA/metabolismo , DNA Primase/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Modelos Moleculares , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas
8.
Nat Commun ; 11(1): 4263, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32848132

RESUMO

Eukaryotic DNA replication initiation relies on the origin recognition complex (ORC), a DNA-binding ATPase that loads the Mcm2-7 replicative helicase onto replication origins. Here, we report cryo-electron microscopy (cryo-EM) structures of DNA-bound Drosophila ORC with and without the co-loader Cdc6. These structures reveal that Orc1 and Orc4 constitute the primary DNA binding site in the ORC ring and cooperate with the winged-helix domains to stabilize DNA bending. A loop region near the catalytic Walker B motif of Orc1 directly contacts DNA, allosterically coupling DNA binding to ORC's ATPase site. Correlating structural and biochemical data show that DNA sequence modulates DNA binding and remodeling by ORC, and that DNA bending promotes Mcm2-7 loading in vitro. Together, these findings explain the distinct DNA sequence-dependencies of metazoan and S. cerevisiae initiators in origin recognition and support a model in which DNA geometry and bendability contribute to Mcm2-7 loading site selection in metazoans.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Complexo de Reconhecimento de Origem/química , Complexo de Reconhecimento de Origem/metabolismo , Origem de Replicação , Domínio AAA , Trifosfato de Adenosina/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Microscopia Crioeletrônica , DNA/química , DNA/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Hidrólise , Proteínas de Manutenção de Minicromossomo/química , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Modelos Moleculares , Complexo de Reconhecimento de Origem/genética , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Origem de Replicação/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Nat Commun ; 11(1): 4072, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792663

RESUMO

Cpf1-linked base editors broaden the targeting scope of programmable cytidine deaminases by recognizing thymidine-rich protospacer-adjacent motifs (PAM) without inducing DNA double-strand breaks (DSBs). Here we present an unbiased in vitro method for identifying genome-wide off-target sites of Cpf1 base editors via whole genome sequencing. First, we treat human genomic DNA with dLbCpf1-BE ribonucleoprotein (RNP) complexes, which convert C-to-U at on-target and off-target sites and, then, with a mixture of E. coli uracil DNA glycosylase (UDG) and DNA glycosylase-lyase Endonuclease VIII, which removes uracil and produces single-strand breaks (SSBs) in vitro. Whole-genome sequencing of the resulting digested genome (Digenome-seq) reveals that, on average, dLbCpf1-BE induces 12 SSBs in vitro per crRNA in the human genome. Off-target sites with an editing frequency as low as 0.1% are successfully identified by this modified Digenome-seq method, demonstrating its high sensitivity. dLbCpf1-BEs and LbCpf1 nucleases often recognize different off-target sites, calling for independent analysis of each tool.


Assuntos
Citidina/metabolismo , Endonucleases/metabolismo , Sequenciamento Completo do Genoma/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Citidina/genética , DNA/genética , DNA/metabolismo , Endonucleases/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Edição de Genes , Genoma Humano/genética , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , RNA Guia/genética
11.
Science ; 369(6505): 823-828, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32792394

RESUMO

The appearance of DNA in the cytosol is perceived as a danger signal that stimulates potent immune responses through cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS). How cells regulate the activity of cGAS toward self-DNA and guard against potentially damaging autoinflammatory responses is a fundamental biological question. Here, we identify barrier-to-autointegration factor 1 (BAF) as a natural opponent of cGAS activity on genomic self-DNA. We show that BAF dynamically outcompetes cGAS for DNA binding, hence prohibiting the formation of DNA-cGAS complexes that are essential for enzymatic activity. Upon acute loss of nuclear membrane integrity, BAF is necessary to restrict cGAS activity on exposed DNA. Our observations reveal a safeguard mechanism, distinct from physical separation, by which cells protect themselves against aberrant immune responses toward genomic DNA.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/imunologia , Imunidade Inata , Nucleotidiltransferases/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Membrana Nuclear/metabolismo
12.
PLoS One ; 15(8): e0236709, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32790736

RESUMO

BACKGROUND: With the development of second-generation sequencing technology, more and more DNA sequence variations have been detected. Exon sequencing is the first choice for sequencing many cancer genes, and it can be better used to identify disease status by detecting gene variants. PCR sequence is an effective method to capture that sequence of an exon in the process of sequencing. Exon sequencing sequence contains PCR primer sequence, the correct position of the sequence can be determined by PCR primer sequence, which can be found in SNP, Indel mutation point by comparing the sequence of PCR primer sequence. RESULTS: In this paper, a matching algorithm based on the PCR primer sequence is proposed, which can effectively sequence the position of PCR primer sequence and find out the key position sequence. Then the sequencing sequence is sorted and the number of the same sequence is counted to reduce the matching times. Then, the sequenced sequence was matched with PCR primer sequence, so that the DNA position could be accurately matched and the variation in the sequenced sequence could be found more quickly. CONCLUSIONS: Compared with the traditional sequence matching method, PCR primer sequence matching method can match many sequences and find more variation. It also showed a high recall rate in the recall rate.


Assuntos
Algoritmos , Reação em Cadeia da Polimerase/métodos , DNA/química , DNA/genética , DNA/metabolismo , Primers do DNA/metabolismo , Éxons , Humanos , Mutação INDEL , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
13.
Nat Protoc ; 15(9): 3064-3087, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32807907

RESUMO

Targeted downregulation of select endogenous plant genes is known to confer disease or pest resistance in crops and is routinely accomplished via transgenic modification of plants for constitutive gene silencing. An attractive alternative to the use of transgenics or pesticides in agriculture is the use of a 'green' alternative known as RNAi, which involves the delivery of siRNAs that downregulate endogenous genes to confer resistance. However, siRNA is a molecule that is highly susceptible to enzymatic degradation and is difficult to deliver across the lignin-rich and multi-layered plant cell wall that poses the dominant physical barrier to biomolecule delivery in plants. We have demonstrated that DNA nanostructures can be utilized as a cargo carrier for direct siRNA delivery and gene silencing in mature plants. The size, shape, compactness and stiffness of the DNA nanostructure affect both internalization into plant cells and subsequent gene silencing efficiency. Herein, we provide a detailed protocol that can be readily adopted with standard biology benchtop equipment to generate geometrically optimized DNA nanostructures for transgene-free and force-independent siRNA delivery and gene silencing in mature plants. We further discuss how such DNA nanostructures can be rationally designed to efficiently enter plant cells and deliver cargoes to mature plants, and provide guidance for DNA nanostructure characterization, storage and use. The protocol described herein can be completed in 4 d.


Assuntos
DNA/química , Portadores de Fármacos/química , Engenharia , Nanoestruturas/química , RNA Interferente Pequeno/metabolismo , Tabaco/metabolismo , DNA/metabolismo , Portadores de Fármacos/metabolismo , RNA Interferente Pequeno/genética , Tabaco/genética
14.
Chem Biol Interact ; 330: 109216, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32810488

RESUMO

In our previous study, an antimutagenic compound from spinach (Spinacea oleracea L.), ethoxy-substituted phylloquinone (ESP) was isolated and characterized. The current study deals with elucidation of the possible mechanism of antimutagenicity of ESP against ethyl methanesulfonate (EMS) deploying model systems such as human lymphoblast (TK+/- or TK6) cell line (thymidine kinase gene mutation assay) and Escherichia coli MG1655 (rifampicin resistance assay). Findings of the study ruled out the possibility of direct inactivation of EMS by ESP. DAPI competitive binding assay indicated the DNA minor groove binding activity of ESP. Interestingly, ESP did not display major groove binding or intercalating abilities. Further, proteomics study using 2-D gel electrophoresis in E. coli and subsequent studies involving single gene knockout strains revealed the possible role of tnaA (tryptophanase) and dgcP (diguanylate cyclase) genes in observed antimutagenicity. These genes have been reported to be involved in indole and cyclic-di-GMP biosynthesis, respectively, which eventually lead to cell division inhibition. In case of TK+/- cell line system, ADCY genes (adenylate cyclase), a functional analogue of dgcP gene, were found to be transcriptionally up-regulated. The generation/doubling time were significantly higher in E. coli or TK+/- cells treated with ESP than control cells. The findings indicated inhibition of cell proliferation by ESP through gene regulation as a possible mechanism of antimutagenicity across the biological system. Cell division inhibition actually provides additional time for the repair of damaged DNA leading to antimutagenicity.


Assuntos
Mutagênese/efeitos dos fármacos , Spinacia oleracea/química , Vitamina K 1/química , Vitamina K 1/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , DNA/metabolismo , Relação Dose-Resposta a Droga , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Liases/metabolismo , Vitamina K 1/metabolismo
15.
Nat Commun ; 11(1): 3839, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737294

RESUMO

Chromatin regulates spatiotemporal gene expression during neurodevelopment, but it also mediates DNA damage repair essential to proliferating neural progenitor cells (NPCs). Here, we uncover molecularly dissociable roles for nucleosome remodeler Ino80 in chromatin-mediated transcriptional regulation and genome maintenance in corticogenesis. We find that conditional Ino80 deletion from cortical NPCs impairs DNA double-strand break (DSB) repair, triggering p53-dependent apoptosis and microcephaly. Using an in vivo DSB repair pathway assay, we find that Ino80 is selectively required for homologous recombination (HR) DNA repair, which is mechanistically distinct from Ino80 function in YY1-associated transcription. Unexpectedly, sensitivity to loss of Ino80-mediated HR is dependent on NPC division mode: Ino80 deletion leads to unrepaired DNA breaks and apoptosis in symmetric NPC-NPC divisions, but not in asymmetric neurogenic divisions. This division mode dependence is phenocopied following conditional deletion of HR gene Brca2. Thus, distinct modes of NPC division have divergent requirements for Ino80-dependent HR DNA repair.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Proteína BRCA2/genética , Cromatina/química , Proteínas de Ligação a DNA/genética , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Reparo de DNA por Recombinação , ATPases Associadas a Diversas Atividades Celulares/deficiência , Animais , Apoptose/genética , Proteína BRCA2/deficiência , Divisão Celular , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , DNA/genética , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/deficiência , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Transgênicos , Neocórtex/citologia , Neocórtex/crescimento & desenvolvimento , Neocórtex/metabolismo , Células-Tronco Neurais/citologia , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
16.
Phys Rev Lett ; 125(4): 048104, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32794805

RESUMO

The RNA world scenario posits replication by RNA polymerases. On early Earth, a geophysical setting is required to separate hybridized strands after their replication and to localize them against diffusion. We present a pointed heat source that drives exponential, RNA-catalyzed amplification of short RNA with high efficiency in a confined chamber. While shorter strands were periodically melted by laminar convection, the temperature gradient caused aggregated polymerase molecules to accumulate, protecting them from degradation in hot regions of the chamber. These findings demonstrate a size-selective pathway for autonomous RNA-based replication in natural nonequilibrium conditions.


Assuntos
Ecossistema , RNA/química , RNA/genética , Catálise , DNA/química , DNA/genética , DNA/metabolismo , Replicação do DNA , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Planeta Terra , Evolução Molecular , Temperatura Alta , Biossíntese de Proteínas/genética , RNA/metabolismo
17.
Nature ; 584(7820): 244-251, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32728217

RESUMO

DNase I hypersensitive sites (DHSs) are generic markers of regulatory DNA1-5 and contain genetic variations associated with diseases and phenotypic traits6-8. We created high-resolution maps of DHSs from 733 human biosamples encompassing 438 cell and tissue types and states, and integrated these to delineate and numerically index approximately 3.6 million DHSs within the human genome sequence, providing a common coordinate system for regulatory DNA. Here we show that these maps highly resolve the cis-regulatory compartment of the human genome, which encodes unexpectedly diverse cell- and tissue-selective regulatory programs at very high density. These programs can be captured comprehensively by a simple vocabulary that enables the assignment to each DHS of a regulatory barcode that encapsulates its tissue manifestations, and global annotation of protein-coding and non-coding RNA genes in a manner orthogonal to gene expression. Finally, we show that sharply resolved DHSs markedly enhance the genetic association and heritability signals of diseases and traits. Rather than being confined to a small number of distal elements or promoters, we find that genetic signals converge on congruently regulated sets of DHSs that decorate entire gene bodies. Together, our results create a universal, extensible coordinate system and vocabulary for human regulatory DNA marked by DHSs, and provide a new global perspective on the architecture of human gene regulation.


Assuntos
Cromatina/genética , DNA/metabolismo , Desoxirribonuclease I/metabolismo , Anotação de Sequência Molecular , Cromatina/química , Cromatina/metabolismo , DNA/química , DNA/genética , Regulação da Expressão Gênica , Genes/genética , Genoma Humano/genética , Humanos , Regiões Promotoras Genéticas/genética , Sequências Reguladoras de Ácido Nucleico/genética
18.
Nat Commun ; 11(1): 3713, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709841

RESUMO

A ring-shaped helicase unwinds DNA during chromosome replication in all organisms. Replicative helicases generally unwind duplex DNA an order of magnitude slower compared to their in vivo replication fork rates. However, the origin of slow DNA unwinding rates by replicative helicases and the mechanism by which other replication components increase helicase speed are unclear. Here, we demonstrate that engagement of the eukaryotic CMG helicase with template DNA at the replication fork impairs its helicase activity, which is alleviated by binding of the single-stranded DNA binding protein, RPA, to the excluded DNA strand. Intriguingly, we found that, when stalled due to interaction with the parental duplex, DNA rezipping-induced helicase backtracking reestablishes productive helicase-fork engagement, underscoring the significance of plasticity in helicase action. Our work provides a mechanistic basis for relatively slow duplex unwinding by replicative helicases and explains how replisome components that interact with the excluded DNA strand stimulate fork rates.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA/fisiologia , DNA/química , DNA/metabolismo , Animais , Bacteriófago T4 , Microscopia Crioeletrônica , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Drosophila melanogaster/genética , Escherichia coli/genética
19.
Nat Commun ; 11(1): 3723, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709850

RESUMO

DNA methylation maintenance by DNMT1 is an essential process in mammals but molecular mechanisms connecting DNA methylation patterns and enzyme activity remain elusive. Here, we systematically analyzed the specificity of DNMT1, revealing a pronounced influence of the DNA sequences flanking the target CpG site on DNMT1 activity. We determined DNMT1 structures in complex with preferred DNA substrates revealing that DNMT1 employs flanking sequence-dependent base flipping mechanisms, with large structural rearrangements of the DNA correlating with low catalytic activity. Moreover, flanking sequences influence the conformational dynamics of the active site and cofactor binding pocket. Importantly, we show that the flanking sequence preferences of DNMT1 highly correlate with genomic methylation in human and mouse cells, and 5-azacytidine triggered DNA demethylation is more pronounced at CpG sites with flanks disfavored by DNMT1. Overall, our findings uncover the intricate interplay between CpG-flanking sequence, DNMT1-mediated base flipping and the dynamic landscape of DNA methylation.


Assuntos
Sequência de Bases , DNA (Citosina-5-)-Metiltransferase 1/química , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA , DNA/química , DNA/metabolismo , Animais , Domínio Catalítico , Cristalografia por Raios X , DNA (Citosina-5-)-Metiltransferase 1/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Técnicas de Inativação de Genes , Cinética , Camundongos Knockout , Modelos Moleculares , Conformação de Ácido Nucleico , Oligonucleotídeos , Conformação Proteica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA