Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.337
Filtrar
1.
Life Sci ; 245: 117356, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31991181

RESUMO

AIMS: NPY-Y1R plays an important role in dietary regulation. Although germline knockdown of NPY-Y1R in mice alleviates high-fat-diet-induced obesity and increases CPT1α levels in the liver, the role of the Y1 receptor in specific tissues has not been studied. MAIN METHODS: MCD diet is the most widely used method to establish a model of lean NASH in a short time. We therefore evaluated the role of liver NPY-Y1R in NASH progression. KEY FINDINGS: In mice with liver-specific knockout of NPY-Y1R (LivKO) and wild-type control littermates fed MCD diet for 4 weeks, NPY-Y1R deficiency significantly decreased body and liver weight. Moreover, NPY-Y1R deletion protected mice against hepatic steatosis and injury. LivKO decreased TG, TC, and FFA levels in the liver and alanine aminotransferase activity in plasma. To clarify the mechanism, we evaluated the key enzymes involved in triglyceride hydrolase and fatty-acid oxidase. Expression of ATGL, CPT1α, and ACO was significantly increased in LivKO mice, whereas expression of fatty-acid synthase was significantly decreased. mRNA expression analysis revealed a marked reduction of genes involved in de-novo lipogenesis and monosaturated fatty-acid synthesis, including sterol-regulatory element-binding protein 1c and fatty-acid synthase. Moreover, liver injury-related factors were significantly decreased in LivKO mice, such as TNF-α, inducible nitric oxide synthase, and MCP-1. Thus, NPY-Y1R deficiency in the liver alleviates lipid deposition and injury. However, NPY-Y1R did not affect inflammation and fibrosis. SIGNIFICANCE: NPY-Y1R deficiency in the liver directly suppresses not only hepatic steatosis, but also liver injury, and thus provides a treatment option for NASH.


Assuntos
Deficiência de Colina/metabolismo , Fígado/metabolismo , Metionina/deficiência , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Animais , Western Blotting , Modelos Animais de Doenças , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/patologia , Reação em Cadeia da Polimerase em Tempo Real , Triglicerídeos/metabolismo
2.
Food Chem Toxicol ; 135: 110930, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31678261

RESUMO

Cigarette smoke (CS) is a risk factor for the development of nonalcoholic fatty liver disease. However, the role of mainstream CS (MSCS) in the pathogenesis of nonalcoholic steatohepatitis (NASH) remains unclear. During the first (early exposure) or last (late exposure) three weeks of methionine-choline deficient with high fat diet feeding (6 weeks), each diet group was exposed to MSCS (300 or 600 µg/L). Hepatic or serum biochemical analysis showed that MSCS differentially modulated hepatic injury in NASH milieu, depending on exposure time points. Consistently, NASH-related hepatocellular apoptosis and fibrosis were increased in the early exposure group, but decreased in the late exposure group, except for steatosis. Ex vivo experiments showed that CS extract differentially regulated inflammatory responses in co-cultured hepatocytes and macrophages isolated from steatohepatitic livers after 10 days or 3 weeks of diet feeding. Furthermore, CS differentially up- and down-regulated the expression levels of M1/M2 polarization markers and peroxisome proliferator-activated receptor-gamma (PPARγ) in livers (29% and 38%, respectively) or co-cultured macrophages (2 and 2.5 fold, respectively). Collectively, our findings indicate that opposite effects of MSCS on NASH progression are mediated by differential modulation of PPARγ and its-associated M1/M2 polarization in hepatic macrophages, depending on exposure time points.


Assuntos
Fumar Cigarros/efeitos adversos , Inflamação/fisiopatologia , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Animais , Peso Corporal/efeitos dos fármacos , Deficiência de Colina , Citocinas/metabolismo , Dieta Hiperlipídica , Progressão da Doença , Inflamação/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Cirrose Hepática/patologia , Cirrose Hepática/fisiopatologia , Macrófagos/efeitos dos fármacos , Masculino , Metionina/deficiência , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/patologia , Tamanho do Órgão/efeitos dos fármacos , PPAR gama/metabolismo , Fatores de Tempo
3.
Molecules ; 24(17)2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31470620

RESUMO

Non-alcoholic fatty liver disease is a highly prevalent condition worldwide that increases the risk to develop liver fibrosis, cirrhosis, and hepatocellular carcinoma. Thus, it is imperative to develop novel diagnostic tools that together with liver biopsy help to differentiate mild and advanced degrees of steatosis. Ex-vivo liver samples were collected from mice fed a methionine-choline deficient diet for two or eight weeks, and from a control group. The degree of hepatic steatosis was histologically evaluated, and fat content was assessed by Oil-Red O staining. On the other hand, fluorescence spectroscopy was used for the assessment of the steatosis progression. Fluorescence spectra were recorded at excitation wavelengths of 330, 365, 385, 405, and 415 nm by establishing surface contact of the fiber optic probe with the liver specimens. A multi-variate statistical approach based on principal component analysis followed by quadratic discriminant analysis was applied to spectral data to obtain classifiers able to distinguish mild and moderate stages of steatosis at the different excitation wavelengths. Receiver Operating Characteristic (ROC) curves were computed to compare classifier's performances for each one of the five excitation wavelengths and steatosis stages. Optimal sensitivity and specificity were calculated from the corresponding ROC curves using the Youden index. Intensity in the endogenous fluorescence spectra at the given wavelengths progressively increased according to the time of exposure to diet. The area under the curve of the spectra was able to discriminate control liver samples from those with steatosis and differentiate among the time of exposure to the diet for most of the used excitation wavelengths. High specificities and sensitivities were obtained for every case; however, fluorescence spectra obtained by exciting with 405 nm yielded the best results distinguishing between the mentioned classes with a total classification error of 1.5% and optimal sensitivities and specificities better than 98.6% and 99.3%, respectively.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Deficiência de Colina/diagnóstico por imagem , Fígado/diagnóstico por imagem , Metionina/deficiência , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Espectrometria de Fluorescência/métodos , Tecido Adiposo/química , Tecido Adiposo/patologia , Animais , Área Sob a Curva , Deficiência de Colina/metabolismo , Deficiência de Colina/patologia , Análise Discriminante , Modelos Animais de Doenças , Progressão da Doença , Humanos , Fígado/química , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Análise de Componente Principal , Curva ROC , Sensibilidade e Especificidade , Índice de Gravidade de Doença , Espectrometria de Fluorescência/normas
4.
Anticancer Res ; 39(8): 4061-4064, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31366488

RESUMO

BACKGROUND/AIM: Circulating tumor cells (CTCs) may have an important role in metastasis. CTC clusters, which contain fibroblasts, indicate poor prognosis. In the present study, we used our malignant lymphoma metastatic mouse model to compare the effect of a choline-deficient-diet (CDD) and the control diet (CD) on fibroblasts in CTCs. MATERIALS AND METHODS: We compared the number and morphology of CTCs in CDD and CD mice using color-coded imaging with fluorescent proteins. Malignant lymphoma EL4 cells expressing RFP were injected in the spleen of transgenic C57B/6-GFP mice, which were fed a CDD or CD. Two weeks later, we harvested and observed the number of CTCs and fibroblast-like cells both in heart blood and portal blood. Imaging of CTC morphology was performed with smeared glass slides and in culture. RESULTS AND CONCLUSION: There was no significant difference in the number of CTCs between CDD and CD mice. The number of fibroblast-like cells in the CTC microenvironment in CD mouse portal blood was significantly larger than in CDD mouse portal blood. These differences may be caused by deficiency in choline that leads to less metastasis in choline-deficient-diet-induced fatty liver.


Assuntos
Colina/metabolismo , Linfoma/sangue , Células Neoplásicas Circulantes/metabolismo , Células Estromais/metabolismo , Animais , Linhagem Celular Tumoral , Deficiência de Colina/sangue , Deficiência de Colina/genética , Deficiência de Colina/patologia , Dieta/efeitos adversos , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibroblastos/patologia , Proteínas de Fluorescência Verde/química , Humanos , Proteínas Luminescentes/química , Linfoma/genética , Linfoma/patologia , Camundongos , Camundongos Transgênicos , Metástase Neoplásica , Células Neoplásicas Circulantes/patologia , Células Estromais/patologia , Microambiente Tumoral/genética
5.
Oxid Med Cell Longev ; 2019: 3201873, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316716

RESUMO

Objective: In this study, we evaluated the efficacy of simvastatin in the treatment of nonalcoholic steatohepatitis induced by methionine and choline-deficient diet in mice and its possible effect on factors involved in the pathogenesis of the disease including oxidative stress and endoplasmic reticulum stress. Method: Male C57BL6 mice were fed either a normal diet (control) or a methionine and choline-deficient diet for four weeks and then treated orally with simvastatin (4 mg/kg once a day) for two final weeks. At the end of the experimental period, liver integrity, biochemical analysis, hepatic lipids, histology, DNA damage, biomarkers of oxidative stress, and endoplasmic reticulum stress were assessed. Results: Simvastatin treatment was able to significantly reduce hepatic damage enzymes and hepatic lipids and lower the degree of hepatocellular ballooning, without showing genotoxic effects. Simvastatin caused significant decreases in lipid peroxidation, with some changes in antioxidant enzymes superoxide dismutase and glutathione peroxidase. Simvastatin activates antioxidant enzymes via Nrf2 and inhibits endoplasmic reticulum stress in the liver. Conclusions: In summary, the results provide evidence that in mice with experimental nonalcoholic steatohepatitis induced by a methionine and choline-deficient diet, the reduction of liver damage by simvastatin is associated with attenuated oxidative and endoplasmic reticulum stress.


Assuntos
Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Sinvastatina/uso terapêutico , Animais , Antioxidantes/metabolismo , Deficiência de Colina/complicações , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Inflamação/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Metionina/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo
6.
Mol Med Rep ; 20(3): 2743-2753, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31322255

RESUMO

Liver inflammation and macrophage infiltration are critical steps in the progression of non­alcoholic fatty liver to the development of non­alcoholic steatohepatitis. Bone morphogenetic protein­9 is a cytokine involved in the regulation of chemokines and lipogenesis. However, the function of bone morphogenetic protein­9 in non­alcoholic steatohepatitis is still unknown. The present study hypothesized that bone morphogenetic protein­9 may contribute to steatohepatitis in mice fed a methionine choline deficiency diet (MCD). C57BL/6 mice overexpressing bone morphogenetic protein­9 and control mice were fed the MCD diet for 4 weeks. Liver tissue and serum samples were obtained for subsequent measurements. Bone morphogenetic protein­9 overexpression exacerbated steatohepatitis in mice on the MCD diet, as indicated by liver histopathology, increased serum alanine aminotransferase activity, aspartate transaminase activity, hepatic inflammatory gene expression and M1 macrophage recruitment. Although bone morphogenetic protein­9 overexpression did not affect the expression of pro­fibrogenic genes, including Collagen I (α)1 or matrix metalloproteinase (MMP) 9, it did upregulate the expression of transforming growth factor­ß and plasminogen activator inhibitor 1, and downregulated the expression of MMP2. The above results indicate that bone morphogenetic protein­9 exerts a pro­inflammatory role in MCD diet­induced non­alcoholic steatohepatitis.


Assuntos
Fator 2 de Diferenciação de Crescimento/genética , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/genética , Adenoviridae/genética , Animais , Deficiência de Colina/complicações , Fígado/metabolismo , Masculino , Metionina/deficiência , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , RNA Mensageiro/genética , Regulação para Cima
7.
Gastroenterology ; 157(3): 807-822, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31194980

RESUMO

BACKGROUND & AIMS: In one-third of hepatocellular carcinomas (HCCs), cancer cells have mutations that activate ß-catenin pathway. These cells have alterations in glutamine, bile, and lipid metabolism. We investigated whether positron emission tomography (PET) imaging allows identification of altered metabolic pathways that might be targeted therapeutically. METHODS: We studied mice with activation of ß-catenin in liver (Apcko-liv mice) and male C57Bl/6 mice given injections of diethylnitrosamine, which each develop HCCs. Mice were fed a conventional or a methionine- and choline-deficient diet or a choline-deficient (CD) diet. Choline uptake and metabolism in HCCs were analyzed by micro-PET imaging of mice; livers were collected and analyzed by histologic, metabolomic, messenger RNA quantification, and RNA-sequencing analyses. Fifty-two patients with HCC underwent PET imaging with 18F-fluorodeoxyglucose, followed by 18F-fluorocholine tracer metabolites. Human HCC specimens were analyzed by immunohistochemistry, quantitative polymerase chain reaction, and DNA sequencing. We used hepatocytes and mouse tumor explants for studies of incorporation of radiolabeled choline into phospholipids and its contribution to DNA methylation. We analyzed HCC progression in mice fed a CD diet. RESULTS: Livers and tumors from Apcko-liv mice had increased uptake of dietary choline, which contributes to phospholipid formation and DNA methylation in hepatocytes. In patients and in mice, HCCs with activated ß-catenin were positive in 18F-fluorocholine PET, but not 18F-fluorodeoxyglucose PET, and they overexpressed the choline transporter organic cation transporter 3. The HCC cells from Apcko-liv mice incorporated radiolabeled methyl groups of choline into phospholipids and DNA. In Apcko-liv mice, the methionine- and choline-deficient diet reduced proliferation and DNA hypermethylation of hepatocytes and HCC cells, and the CD diet reduced long-term progression of tumors. CONCLUSIONS: In mice and humans, HCCs with mutations that activate ß-catenin are characterized by increased uptake of a fluorocholine tracer, but not 18F-fluorodeoxyglucose, revealed by PET. The increased uptake of choline by HCCs promotes phospholipid formation, DNA hypermethylation, and hepatocyte proliferation. In mice, the CD diet reverses these effects and promotes regression of HCCs that overexpress ß-catenin.


Assuntos
Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/genética , Mutação , Tomografia por Emissão de Pósitrons , beta Catenina/genética , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/patologia , Proliferação de Células , Colina/administração & dosagem , Colina/análogos & derivados , Deficiência de Colina/complicações , Metilação de DNA , Dietilnitrosamina , Modelos Animais de Doenças , Genes APC , Predisposição Genética para Doença , Humanos , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/patologia , Masculino , Metionina/deficiência , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Fosfolipídeos/metabolismo , Valor Preditivo dos Testes , Compostos Radiofarmacêuticos/administração & dosagem , beta Catenina/metabolismo
8.
Int J Mol Sci ; 20(11)2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31163617

RESUMO

Various rodent models have been proposed for basic research; however, the pathogenesis of human nonalcoholic steatohepatitis (NASH) is difficult to closely mimic. Lipopolysaccharide (LPS) has been reported to play a pivotal role in fibrosis development during NASH progression via activation of toll-like receptor 4 (TLR4) signaling. This study aimed to clarify the impact of low-dose LPS challenge on NASH pathological progression and to establish a novel murine NASH model. C57BL/6J mice were fed a choline-deficient l-amino-acid-defined (CDAA) diet to induce NASH, and low-dose LPS (0.5 mg/kg) was intraperitoneally injected thrice a week. CDAA-fed mice showed hepatic CD14 overexpression, and low-dose LPS challenge enhanced TLR4/NF-κB signaling activation in the liver of CDAA-fed mice. LPS challenge potentiated CDAA-diet-mediated insulin resistance, hepatic steatosis with upregulated lipogenic genes, and F4/80-positive macrophage infiltration with increased proinflammatory cytokines. It is noteworthy that LPS administration extensively boosted pericellular fibrosis with the activation of hepatic stellate cells in CDAA-fed mice. Exogenous LPS administration exacerbated pericellular fibrosis in CDAA-mediated steatohepatitis in mice. These findings suggest a key role for LPS/TLR4 signaling in NASH progression, and the authors therefore propose this as a suitable model to mimic human NASH.


Assuntos
Aminoácidos/deficiência , Deficiência de Colina/complicações , Dieta/efeitos adversos , Lipopolissacarídeos/efeitos adversos , Cirrose Hepática/etiologia , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores Toll-Like/metabolismo , Animais , Biomarcadores , Modelos Animais de Doenças , Humanos , Cirrose Hepática/diagnóstico , Cirrose Hepática/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Transdução de Sinais
9.
J Med Food ; 22(4): 344-354, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30990755

RESUMO

Methionine and choline, which are essential nutrients for mammalian animals, are important for cell composition, as metabolic factors, and for the synthesis of other biochemical compounds for cell metabolism. Methionine and choline, which are methyl group donors, play key roles in the homocysteine cycle and neuronal development and maintenance. In this study, we investigated the effects of methionine and choline deficiency on adult hippocampal neurogenesis and neural stem cell (NSC) lineage in the adult stage. For this study, we divided C57BL/6 mice into three groups as follows: normal chow (NC)-fed, methionine choline sufficient (MCS) diet-fed, and methionine choline deficient (MCD) diet-fed mice. The mice were fed the NC, MCS, and MCD diets for 4 weeks from the age of 8 weeks. MCD diet-fed mice showed significantly decreased proliferation and differentiation of NSCs when compared with the NC diet-fed or MCS diet-fed mice. In addition, the survival of newly generated neurons was critically impaired in the MCD diet-fed mice. We confirmed a decrease in the proliferation and differentiation of NSCs after 4 weeks of MCD diet administration, compared with that in NC- and MCS diet-fed mice. MCD diet critically impaired NSCs survival and survival of neurons during the 4 weeks. The number of phosphorylated cyclic AMP response element binding (pCREB) protein immunoreactive nuclei was decreased in the MCD diet-fed mice compared with that in the NC- or MCS diet-fed group. These results suggest that suitable levels of methionine and choline are essential for the maintenance of hippocampal neurogenesis in mice and affect NSC proliferation and differentiation through phosphorylation of CREB.


Assuntos
Deficiência de Colina/complicações , Hipocampo/citologia , Metionina/deficiência , Neurogênese , Animais , Proliferação de Células , Sobrevivência Celular , Colina/metabolismo , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo
10.
Int J Exp Pathol ; 100(2): 72-82, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30887659

RESUMO

Vitronectin (VN), an extracellular matrix protein, is a promising immune biomarker of non-alcoholic steatohepatitis (NASH); however, its precise function remains unclear. This study investigated how VN deficiency contributes to the development of NASH. Towards this aim, wild-type (WT) and VN-/- mice were fed with a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) for 6 and 10 weeks to induce NASH, and the livers were isolated. In WT mice fed with CDAHFD for 6 and 10 weeks, the expression of Vn mRNA and protein was up-regulated compared with that in mice fed with the MF control diet, indicating that VN is regulated in NASH condition. VN-/- mice showed decreased picrosirius red staining in the liver area and Col1a2 mRNA expression levels, compared with WT mice, indicating that the severity of hepatic fibrosis is attenuated in the CDAHFD-fed VN-/- mice. In addition, VN deficiency did not affect the area of lipid droplets in haematoxylin-eosin staining and the mRNA expression levels of fatty acid synthases, Srebp, Acc and Fas in the CDAHFD-fed mice. Moreover, VN deficiency decreased the inflammation score and the mRNA expression levels of Cd11b and F4/80, macrophage markers, as well as Tnf-α and Il-1ß, inflammatory cytokines in the CDAHFD-fed mice. Furthermore, VN deficiency decreased the protein and mRNA expression levels of α-smooth muscle actin in the CDAHFD-fed mice, suggesting that VN deficiency inhibits the activation of hepatic stellate cells (HSCs). Our findings indicate that VN contributes to the development of fibrosis in the NASH model mice via modulation of the inflammatory reaction and activation of HSCs.


Assuntos
Cirrose Hepática/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Vitronectina/fisiologia , Animais , Deficiência de Colina/complicações , Dieta Hiperlipídica , Modelos Animais de Doenças , Progressão da Doença , Regulação da Expressão Gênica , Células Estreladas do Fígado/fisiologia , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/etiologia , Cirrose Hepática/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/patologia , RNA Mensageiro/genética , Vitronectina/deficiência , Vitronectina/genética
11.
Nutrients ; 11(3)2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30889905

RESUMO

BACKGROUND: Choline is essential for the synthesis of liver phosphatidylcholine (PC), parenchymal maintenance, bile formation, and lipoprotein assembly to secrete triglycerides. In choline deficiency, the liver accretes choline/PC at the expense of lung tissue, thereby impairing pulmonary PC homoeostasis. In cystic fibrosis (CF), exocrine pancreas insufficiency results in impaired cleavage of bile PC and subsequent fecal choline loss. In these patients, the plasma choline concentration is low and correlates with lung function. We therefore investigated the effect of choline supplementation on plasma choline/PC concentration and metabolism, lung function, and liver fat. METHODS: 10 adult male CF patients were recruited (11/2014⁻1/2016), and orally supplemented with 3 × 1 g choline chloride for 84 (84⁻91) days. Pre-/post-supplementation, patients were spiked with 3.6 mg/kg [methyl-D9]choline chloride to assess choline/PC metabolism. Mass spectrometry, spirometry, and hepatic nuclear resonance spectrometry served for analysis. RESULTS: Supplementation increased plasma choline from 4.8 (4.1⁻6.2) µmol/L to 10.5 (8.5⁻15.5) µmol/L at d84 (p < 0.01). Whereas plasma PC concentration remained unchanged, D9-labeled PC was decreased (12.2 [10.5⁻18.3] µmol/L vs. 17.7 [15.5⁻22.4] µmol/L, p < 0.01), indicating D9-tracer dilution due to higher choline pools. Supplementation increased Forced Expiratory Volume in 1 second percent of predicted (ppFEV1) from 70.0 (50.9⁻74.8)% to 78.3 (60.1⁻83.9)% (p < 0.05), and decreased liver fat from 1.58 (0.37⁻8.82)% to 0.84 (0.56⁻1.17)% (p < 0.01). Plasma choline returned to baseline concentration within 60 h. CONCLUSIONS: Choline supplementation normalized plasma choline concentration and increased choline-containing PC precursor pools in adult CF patients. Improved lung function and decreased liver fat suggest that in CF correcting choline deficiency is clinically important. Choline supplementation of CF patients should be further investigated in randomized, placebo-controlled trials.


Assuntos
Deficiência de Colina/tratamento farmacológico , Colina/uso terapêutico , Fibrose Cística/tratamento farmacológico , Volume Expiratório Forçado/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Adolescente , Adulto , Colina/sangue , Colina/farmacologia , Deficiência de Colina/sangue , Deficiência de Colina/complicações , Fibrose Cística/sangue , Fibrose Cística/patologia , Fibrose Cística/fisiopatologia , Suplementos Nutricionais , Insuficiência Pancreática Exócrina/sangue , Insuficiência Pancreática Exócrina/complicações , Insuficiência Pancreática Exócrina/tratamento farmacológico , Fígado Gorduroso/sangue , Fígado Gorduroso/etiologia , Fígado Gorduroso/prevenção & controle , Humanos , Fígado/metabolismo , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Fosfatidilcolinas/sangue , Triglicerídeos/sangue , Adulto Jovem
12.
Int J Mol Sci ; 20(6)2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30917489

RESUMO

MicroRNA-29 (miR-29) has been found to reduce liver inflammation and fibrosis following a liver injury. Meanwhile, DNA methyltransferase has been reported to participate in the development of non-alcoholic steatohepatitis (NASH). The aim of this study is to investigate the miR-29a regulation of methyltransferase signaling and epigenetic program in NASH progression. Methods: miR-29a transgenic mice (miR-29aTg mice) and wild-type littermates were subjected to the methionine-choline-deficient (MCD) diet-induced animal model of NASH. Primary hepatic stellate cells were transfected with a miR-29a mimic and antisense inhibitor. We then analyzed gene expressions with qRT-PCR, immunohistochemical stain, Western blot, and luciferase reporter assay. The results demonstrated that increased miR-29a alleviated the MCD diet-induced body weight loss and steatosis and decreased aspartate aminotransferase (AST) levels in mice. Furthermore, hepatic tissue in miR-29aTg mice displayed a weak fibrotic matrix, as shown with Sirius Red staining concomitant with low fibrotic α-SMA expression within affected tissues compared to the wild-type mice fed the MCD diet. Forced miR-29a expression reduced the MCD diet exaggeration of reactive oxygen species (ROS) production by immunohistochemically staining 8-OHdG. Increased miR-29a signaling also resulted in the downregulation of DNMT3b, TGF-ß, IL-6, heme oxygenase-1 (HO-1), p-SMAD3, PI3K, and L3BII expression within the liver tissue. An in vitro luciferase reporter assay further confirmed that miR-29a mimic transfection reduced DNMT3b expression in primary HSCs. Our data provide new insights that miR-29a improves MCD diet-induced liver inflammation, steatosis and fibrosis, and highlight the potential of miR-29a targeted therapy for treating NASH.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , MicroRNAs/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Células Cultivadas , Deficiência de Colina/complicações , DNA (Citosina-5-)-Metiltransferases/metabolismo , Hepatócitos/metabolismo , Interleucina-6/metabolismo , Masculino , Metionina/deficiência , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Fosfatidilinositol 3-Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo
13.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(5): 677-687, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30735854

RESUMO

Group VIA calcium-independent phospholipase A2 (iPla2ß) is among modifier genes of non-alcoholic fatty liver disease which leads to non-alcoholic steatohepatitis (NASH). Consistently, iPla2ß deletion protects hepatic steatosis and obesity in genetic ob/ob and obese mice chronically fed with high-fat diet by replenishing the loss of hepatic phospholipids (PL). As mouse feeding with methionine- and choline-deficient (MCD) diet is a model of lean NASH, we tested whether iPla2ß-null mice could still be protected since PL syntheses are disturbed. MCD-diet feeding of female wild-type for 5 weeks induced hepatic steatosis with a severe reduction of body and visceral fat weights concomitant with a decrease of hepatic phosphatidylcholine. These parameters were not altered in MCD-fed iPla2ß-null mice. However, iPla2ß deficiency attenuated MCD-induced elevation of serum transaminase activities and hepatic expression of fatty-acid translocase Cd36, fatty-acid binding protein-4, peroxisome-proliferator activated receptorγ, and HDL-uptake scavenger receptor B type 1. The reduction of lipid uptake genes was consistent with a decrease of hepatic esterified and unesterified fatty acids and cholesterol esters. On the contrary, iPla2ß deficiency under MCD did not have any effects on inflammasomes and pro-inflammatory markers but exacerbated hepatic expression of myofibroblast α-smooth muscle actin and vimentin. Thus, without any rescue of PL loss, iPla2ß inactivation attenuated hepatocellular injury in MCD-induced NASH with a novel mechanism of lipid uptake inhibition. Taken together, we have shown that iPla2ß mediates hepatic steatosis and lipotoxicity in hepatocytes in both obese and lean NASH, but elicits exacerbated liver fibrosis in lean NASH likely by affecting other cell types.


Assuntos
Fosfolipases A2 do Grupo VI/genética , Hepatopatia Gordurosa não Alcoólica/genética , Fosfolipídeos/metabolismo , Animais , Deficiência de Colina/complicações , Dieta/efeitos adversos , Feminino , Deleção de Genes , Fosfolipases A2 do Grupo VI/metabolismo , Metionina/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fosfolipídeos/genética
14.
Mar Drugs ; 17(2)2019 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-30744124

RESUMO

Nonalcoholic steatohepatitis (NASH) progresses from nonalcoholic fatty liver disease (NAFLD); however, efficacious drugs for NASH treatment are lacking. Sodium alginate (SA), a soluble dietary fiber extracted from brown algae, could protect the small intestine from enterobacterial invasion. NASH pathogenesis has been suggested to be associated with enterobacterial invasion, so we examined the effect of SA on methionine- and choline-deficient (MCD) diet-induced steatohepatitis in mice (the most widely-used model of NASH). The mice (n = 31) were divided into three groups (mice fed with regular chow, MCD diet, and MCD diet premixed with 5% SA) for 4 and 8 weeks. The MCD diet increased lipid accumulation and inflammation in the liver, the NAFLD Activity Score and hepatic mRNA expression of tumor necrosis factor- and collagen 11, and induced macrophage infiltration. Villus shortening, disruption of zonula occludens-1 localization and depletion of mucus production were observed in the small intestine of the MCD-group mice. SA administration improved lipid accumulation and inflammation in the liver, and impaired barrier function in the small intestine. Collectively, these results suggest that SA is useful for NASH treatment because it can prevent hepatic inflammation and fatty degeneration by maintaining intestinal barrier function.


Assuntos
Alginatos/farmacologia , Fígado Gorduroso/tratamento farmacológico , Metionina/deficiência , Animais , Deficiência de Colina/tratamento farmacológico , Deficiência de Colina/metabolismo , Deficiência de Colina/patologia , Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
15.
Toxicol Appl Pharmacol ; 368: 49-54, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30794826

RESUMO

INTRODUCTION: Nonalcoholic steatohepatitis (NASH) afflicts 20-36% of individuals with nonalcoholic fatty liver disease (NAFLD). A lipotoxic hepatic environment, altered innate immune signaling and inflammation are defining features of progression to NASH. Activated resident liver macrophages express folate receptor beta (FR-ß) which may be an indicator of progression from steatosis to NASH. The goals of this study were to characterize FR-ß protein expression in human NAFLD and rodent models of NASH, and demonstrate liver targeting of an FR-ß imaging agent to the liver of a rodent NASH model using FR-ß. METHODS: Rat liver lysates from methionine choline deficient (MCD) fed rats, high fat diet (HFD) and methionine choline sufficient (MC+) rat controls were analyzed for hepatic FR-ß protein. The FR-ß-targeted agent, Etarfolatide was injected into MCD and MC + -fed C57BL/6 mice for efficient FastSPECT hepatic imaging. Additionally, FR-ß expression across the stages of human NAFLD from normal to NASH was assessed. RESULTS: FastSPECT images show targeting of Etarfolatide to the liver of mice fed 8 weeks of MCD diet but not control-fed mice. The MCD rat model exhibited significantly increased protein expression of hepatic FR-ß in contrast to HFD or normal samples. Similarly human liver samples categorized as NASH Fatty or NASH Not Fatty showed elevated FR-ß protein when compared to normal liver. FR-ß transcript expression levels were elevated across both NASH Fatty and NASH Not Fatty samples. CONCLUSION: The findings in this study indicate that FR-ß expression in NASH may be harnessed to target agents directly to the liver.


Assuntos
Receptor 2 de Folato/metabolismo , Fígado/diagnóstico por imagem , Fígado/metabolismo , Macrófagos/metabolismo , Imagem Molecular/métodos , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/metabolismo , Tomografia Computadorizada de Emissão de Fóton Único , Animais , Biomarcadores/metabolismo , Deficiência de Colina/complicações , Dieta Hiperlipídica , Modelos Animais de Doenças , Receptor 2 de Folato/genética , Ácido Fólico/administração & dosagem , Ácido Fólico/análogos & derivados , Humanos , Masculino , Metionina/deficiência , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Compostos de Organotecnécio/administração & dosagem , Valor Preditivo dos Testes , Compostos Radiofarmacêuticos/administração & dosagem , Ratos Sprague-Dawley
16.
Int J Mol Sci ; 20(2)2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30646522

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in western countries, with a continuously rising incidence. Gut-liver communication and microbiota composition have been identified as critical drivers of the NAFLD progression. Hence, it has been shown that microbiota depletion can ameliorate high-fat diet or western-diet induced experimental Non-alcoholic steatohepatitis (NASH). However, its functional implications in the methionine-choline dietary model, remain incompletely understood. Here, we investigated the physiological relevance of gut microbiota in methionine-choline deficient (MCD) diet induced NASH. Experimental liver disease was induced by 8 weeks of MCD feeding in wild-type (WT) mice, either with or without commensal microbiota depletion, by continuous broad-spectrum antibiotic (AB) treatment. MCD diet induced steatohepatitis was accompanied by a reduced gut microbiota diversity, indicating intestinal dysbiosis. MCD treatment prompted macroscopic shortening of the intestine, as well as intestinal villi in histology. However, gut microbiota composition of MCD-treated mice, neither resembled human NASH, nor did it augment the intestinal barrier integrity or intestinal inflammation. In the MCD model, AB treatment resulted in increased steatohepatitis activity, compared to microbiota proficient control mice. This phenotype was driven by pronounced neutrophil infiltration, while AB treatment only slightly increased monocyte-derived macrophages (MoMF) abundance. Our data demonstrated the differential role of gut microbiota, during steatohepatitis development. In the context of MCD induced steatohepatitis, commensal microbiota was found to be hepatoprotective.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Inflamação/genética , Cirrose Hepática/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Colina/efeitos adversos , Colina/metabolismo , Deficiência de Colina/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Microbioma Gastrointestinal/genética , Variação Genética/genética , Humanos , Inflamação/metabolismo , Inflamação/microbiologia , Cirrose Hepática/etiologia , Cirrose Hepática/patologia , Masculino , Metionina/efeitos adversos , Metionina/deficiência , Metionina/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia
17.
Eur J Pharmacol ; 848: 39-48, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30689995

RESUMO

We examined the effects of betaine, an endogenous and dietary methyl donor essential for the methionine-homocysteine cycle, on oxidative stress, inflammation, apoptosis, and autophagy in methionine-choline deficient diet (MCD)-induced non-alcoholic fatty liver disease (NAFLD). Male C57BL/6 mice received standard chow (control), standard chow and betaine (1.5% w/v in drinking water), MCD, or MCD and betaine. After six weeks, serum and liver samples were collected for analysis. Betaine reduced MCD-induced increase in liver transaminases and inflammatory infiltration, as well as hepatosteatosis and serum levels of low-density lipoprotein, while it increased that of high-density lipoprotein. MCD-induced hepatic production of reactive oxygen and nitrogen species was significantly reduced by betaine, which also improved liver antioxidative defense by increasing glutathione content and superoxide-dismutase, catalase, glutathione peroxidase, and paraoxonase activity. Betaine reduced the liver expression of proinflammatory cytokines tumor necrosis factor and interleukin-6, as well as that of proapoptotic mediator Bax, while increasing the levels of anti-inflammatory cytokine interleukin-10 and antiapoptotic Bcl-2 in MCD-fed mice. In addition, betaine increased the expression of autophagy activators beclin 1, autophagy-related (Atg)4 and Atg5, as well as the presence of autophagic vesicles and degradation of autophagic target sequestosome 1/p62 in the liver of NAFLD mice. The observed effects of betaine coincided with the increase in the hepatic phosphorylation of mammalian target of rapamycin (mTOR) and its activator Akt. In conclusion, the beneficial effect of betaine in MCD-induced NAFLD is associated with the reduction of liver oxidative stress, inflammation, and apoptosis, and the increase in cytoprotective Akt/mTOR signaling and autophagy.


Assuntos
Betaína/uso terapêutico , Deficiência de Colina/metabolismo , Metionina/deficiência , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Betaína/farmacologia , Deficiência de Colina/complicações , Fármacos Gastrointestinais/farmacologia , Fármacos Gastrointestinais/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
18.
Gastroenterology ; 156(1): 187-202.e14, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30267710

RESUMO

BACKGROUND & AIMS: Upon liver injury in which hepatocyte proliferation is compromised, liver progenitor cells (LPCs), derived from biliary epithelial cells (BECs), differentiate into hepatocytes. Little is known about the mechanisms of LPC differentiation. We used zebrafish and mouse models of liver injury to study the mechanisms. METHODS: We used transgenic zebrafish, Tg(fabp10a:CFP-NTR), to study the effects of compounds that alter epigenetic factors on BEC-mediated liver regeneration. We analyzed zebrafish with disruptions of the histone deacetylase 1 gene (hdac1) or exposed to MS-275 (an inhibitor of Hdac1, Hdac2, and Hdac3). We also analyzed zebrafish with mutations in sox9b, fbxw7, kdm1a, and notch3. Zebrafish larvae were collected and analyzed by whole-mount immunostaining and in situ hybridization; their liver tissues were collected for quantitative reverse transcription polymerase chain reaction. We studied mice in which hepatocyte-specific deletion of ß-catenin (Ctnnb1flox/flox mice injected with Adeno-associated virus serotype 8 [AAV8]-TBG-Cre) induces differentiation of LPCs into hepatocytes after a choline-deficient, ethionine-supplemented (CDE) diet. Liver tissues were collected and analyzed by immunohistochemistry and immunoblots. We performed immunohistochemical analyses of liver tissues from patients with compensated or decompensated cirrhosis or acute on chronic liver failure (n = 15). RESULTS: Loss of Hdac1 activity in zebrafish blocked differentiation of LPCs into hepatocytes by increasing levels of sox9b mRNA and reduced differentiation of LPCs into BECs by increasing levels of cdk8 mRNA, which encodes a negative regulator gene of Notch signaling. We identified Notch3 as the receptor that regulates differentiation of LPCs into BECs. Loss of activity of Kdm1a, a lysine demethylase that forms repressive complexes with Hdac1, produced the same defects in differentiation of LPCs into hepatocytes and BECs as observed in zebrafish with loss of Hdac1 activity. Administration of MS-275 to mice with hepatocyte-specific loss of ß-catenin impaired differentiation of LPCs into hepatocytes after the CDE diet. HDAC1 was expressed in reactive ducts and hepatocyte buds of liver tissues from patients with cirrhosis. CONCLUSIONS: Hdac1 regulates differentiation of LPCs into hepatocytes via Sox9b and differentiation of LPCs into BECs via Cdk8, Fbxw7, and Notch3 in zebrafish with severe hepatocyte loss. HDAC1 activity was also required for differentiation of LPCs into hepatocytes in mice with liver injury after the CDE diet. These pathways might be manipulated to induce LPC differentiation for treatment of patients with advanced liver diseases.


Assuntos
Ductos Biliares/enzimologia , Diferenciação Celular , Proliferação de Células , Quinase 8 Dependente de Ciclina/metabolismo , Hepatócitos/enzimologia , Histona Desacetilase 1/metabolismo , Regeneração Hepática , Fígado/enzimologia , Fatores de Transcrição SOX9/metabolismo , Células-Tronco/enzimologia , Proteínas de Peixe-Zebra/metabolismo , Insuficiência Hepática Crônica Agudizada/enzimologia , Insuficiência Hepática Crônica Agudizada/patologia , Animais , Ductos Biliares/patologia , Deficiência de Colina/genética , Deficiência de Colina/metabolismo , Deficiência de Colina/patologia , Quinase 8 Dependente de Ciclina/genética , Modelos Animais de Doenças , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Hepatócitos/patologia , Histona Desacetilase 1/genética , Humanos , Fígado/patologia , Cirrose Hepática/enzimologia , Cirrose Hepática/patologia , Camundongos Knockout , Mutação , Receptor Notch3/genética , Receptor Notch3/metabolismo , Fatores de Transcrição SOX9/genética , Transdução de Sinais , Células-Tronco/patologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , beta Catenina/genética , beta Catenina/metabolismo
19.
J Diabetes Investig ; 10(3): 659-666, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30369082

RESUMO

AIMS/INTRODUCTION: Non-alcoholic steatohepatitis (NASH), which occurs in association with insulin resistance and hepatic fat accumulation, is characterized by chronic liver injury and fibrosis. NASH onset and progression is closely related to hepatic inflammation, which is partly regulated by the vagus nerve through the α7 nicotinic acetylcholine receptor (α7nAchR). Hepatic α7nAchR action is impeded in obesity and insulin resistance. In the present study, using α7nAchR knockout (α7KO) mice, we elucidated the effect of α7nAchR deficiency on NASH-related inflammation and fibrosis. MATERIALS AND METHODS: α7KO mice were fed an atherogenic high-fat diet (AD) for 32 weeks or methionine/choline-deficient diet (MCD) for 6 weeks, both of which induce NASH. Mice were then examined for the degree of NASH-related inflammation and fibrosis by hepatic gene expression analysis and Sirius red histological staining. RESULTS: Hepatic triglyceride accumulation and elevated plasma transaminase levels were observed in both AD and MCD mice, but the plasma transaminase level increase was higher in α7KO mice than in control mice. α7KO mice fed an AD showed significant upregulation of the Col1a1 gene encoding alpha-1 type I collagen, which is involved in liver fibrosis, and the Ccl2 gene encoding C-C motif chemokine ligand 2, a pro-inflammatory chemokine; α7KO mice fed an MCD had significant upregulation of the Col1a1 gene and the Tnf gene, an inflammatory cytokine. Histological analysis showed that AD and MCD exacerbated liver fibrosis in α7KO mice. CONCLUSIONS: The results of this study suggest that α7nAchR deficiency exacerbates hepatic inflammation and fibrosis in a diet-induced mouse model of NASH.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Inflamação/patologia , Cirrose Hepática/patologia , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Receptores Nicotínicos/fisiologia , Animais , Deficiência de Colina/complicações , Colágeno Tipo I/metabolismo , Citocinas/metabolismo , Inflamação/etiologia , Cirrose Hepática/etiologia , Masculino , Metionina/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/etiologia
20.
Biomed Pharmacother ; 110: 285-293, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30522014

RESUMO

OBJECTIVE: Wuzhi (WZ) capsule contains an ethanol extract of Schisandra sphenanthera. The efficacy of WZ in treating non-alcoholic fatty liver disease (NAFLD) has not yet been elucidated. The present study assessed the effects of WZ on NAFLD. MATERIAL AND METHODS: A C57BL/6 male mouse model of NAFLD was established by feeding the animals a methionine-choline-deficient (MCD) diet. Mice fed the basal diet were used as controls. Both groups were randomly administered WZ or vehicle by gavage for 5 weeks. Body weight change, liver/body weight ratio, metabolic parameters, and histological changes were assessed. Serum levels of IL-1ß, IL-6, IL-10, and TNF-α were analysed by ELISA; mRNA expression of these genes in the liver was studied by real-time PCR. Western blotting was used to analyse the protein levels of PPAR-α, PPAR-γ, MCAD, LCAD, and p65 in the liver. RESULTS: After 5 weeks of the MCD diet, the liver/body weight ratio of WZ mice was higher than that of control mice. Liver histology revealed significantly less steatosis, inflammation, and necrosis, which was confirmed by decreased intrahepatic triglycerides and serum ALT in WZ-treated mice. WZ also reduced the liver mRNA expression of IL-1ß, IL-6, and TNF-α and the serum levels of IL-1ß and IL-6. Sensitivity to steatohepatitis due to WZ administration correlated significantly with alterations in the expression of PPAR-α/γ, as well as the NF-κB signalling pathway. CONCLUSIONS: WZ plays a protective role against MCD-induced steatohepatitis. The underlying mechanism likely involves the upregulation of PPAR-α/γ and downregulation of the NF-κB signalling pathway. Based on its beneficial effects on the liver, WZ is a promising therapeutic for NAFLD patients.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Schisandra , Animais , Deficiência de Colina/complicações , Deficiência de Colina/metabolismo , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/isolamento & purificação , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/metabolismo , Masculino , Metionina/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA