Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 783
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 46(16): 4034-4039, 2021 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-34467712

RESUMO

As anti-aging ingredients, ß-nicotinamide mononucleotide(NMN) and nicotinamide adenine dinucleotide(NAD~+) have attracted worldwide attention in recent years. After oral administration, NMN can be converted into NAD~+ in vivo and the latter is the actual ingredient which exerts anti-aging effect. In order to explore the "rejuvenating and anti-aging" effect of Dendrobium officinale, which was firstly recorded in Shennong's Herbal Classic of Materia Medica, this study established the quantitative method of UPLC-MS/MS for simultaneous determination of NMN and NAD~+ in D. officinale and the congeneric species for the first time, and 34 batches of samples were detected. UPLC conditions are as follows: ACQUITY UPLC HSS T3 column(2.1 mm × 100 mm, 1.8 µm), gradient elution with acetonitrile-0.1% formic acid in water at the flow rate of 0.3 mL·min~(-1), and column temperature of 40 ℃. MS conditions were scanned electrospray ionization source and multiple reaction monitoring mode. The method was verified by systematic methodology. The mean recoveries of NMN and NAD~+ were 77.58% and 80.70%, respectively, with RSD of 3.6% and 4.3%, separately. All results showed that the content of NMN was higher in D. officinale than in the other congeneric species. Particularly, the content in fresh D. officinale stems was as high as 0.931 9 µg·g~(-1). NAD~+ was only found in D. officinale and the content was three times higher than that of NMN. This may be the reason that D. officinale topped the "nine famous anti-aging herbs". In addition, processing method influences the content of NMN and NAD~+ in Dendrobium. Specifically, the content of NMN and NAD~+ was in the order of fresh Dendrobium stems > dried Dendrobium stem segments > spiral or spring-like dried Dendrobium stems.


Assuntos
Dendrobium , Mononucleotídeo de Nicotinamida , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , NAD , Espectrometria de Massas em Tandem
2.
Zhongguo Zhong Yao Za Zhi ; 46(15): 3853-3858, 2021 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-34472259

RESUMO

Fifteen bibenzyls were isolated and purified from the ethyl acetate extract of the stems of Dendrobium officinale by macroporous resin, MCI, silica gel, Sephadex LH-20, and ODS column chromatographies, as well as preparative thin-layer chromatography and preparative HPLC. The structures of compounds were identified according to the spectra data of ~1H-NMR, ~(13)C-NMR, and MS, and the physical and physiochemical properties: dendrocandin X(1), 3,4'-dihydroxy-4,5-dimethoxybibenzyl(2), 6″-de-O-methyldendrofindlaphenol A(3), 3,4-dihydroxy-4',5-dimethoxybibenzyl(4), dendrosinen B(5), 3,4,4'-trihydroxy-5-methoxybibenzyl(6), 3,3'-dihydroxy-4,5-dimethoxybibenzyl(7), 3,4'-dihydroxy-5-methoxybibenzyl(8), moscatilin(9), gigantol(10), 4,4'-dihydroxy-3,5-dimethoxybibenzyl(11), 3,4',5-trihydroxy-3'-methoxybibenzyl(12), 3-O-methylgigantol(13), dendrocandin U(14), and dendrocandin N(15). Compound 1 was a novel compound. Compound 2 was isolated from Dendrobium species for the first time. Compounds 3-7 were isolated from D. officinale for the first time.


Assuntos
Bibenzilas , Dendrobium , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância Magnética
3.
Chem Biol Interact ; 347: 109615, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34363819

RESUMO

It has been reported that Dendrobium officinale polysaccharides (DOPS) could alleviate colitis in animal model and suppress the activation of NLRP3 inflammasome and ß-arrestin1 in vitro. However, it remains unclear whether DOPS has effect on protecting against colitis-induced pulmonary injury. The purpose of this study was to explore the protective effect and mechanism of DOPS on colitis-induced lung injury. A dextran sodium sulfate (DSS)-induced mice colitis model and lipopolysaccharide (LPS)-stimulated BEAS-2B cells model were applied in this study. The results showed that DOPS treatment restored histopathological changes, reduced inflammatory cells infiltration, pro-inflammatory cytokines levels, reactive oxygen species (ROS) formation and MDA generation, and increased anti-oxidative enzymes activities including SOD and GSH-Px in colitis mice. Further investigation showed that DOPS significantly inhibited the protein expression of TLR4, and apparently up-regulated proteins expressions of nuclear-Nrf2, HO-1 and NQO-1 in lung tissues of colitis mice and in BEAS-2B cells. These results indicated that DOPS significantly inhibited inflammation and oxidative stress to alleviate colitis-induced secondary lung injury, and its mechanisms are closely related to the inhibition of TLR4 signaling pathway and the activation of Nrf2 signaling pathway. DOPS may be a promising drug for alleviating colitis-induced lung injury.


Assuntos
Colite/complicações , Inflamação/tratamento farmacológico , Lesão Pulmonar/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Polissacarídeos/uso terapêutico , Substâncias Protetoras/uso terapêutico , Animais , Linhagem Celular , Dendrobium/química , Humanos , Inflamação/patologia , Mucosa Intestinal/metabolismo , Lipopolissacarídeos/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/etiologia , Lesão Pulmonar/patologia , Masculino , Camundongos Endogâmicos BALB C , Fator 2 Relacionado a NF-E2/metabolismo , Permeabilidade/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
4.
BMC Plant Biol ; 21(1): 360, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362300

RESUMO

BACKGROUND: Dendrobium catenatum belongs to the Orchidaceae, and is a precious Chinese herbal medicine. In the past 20 years, D. catenatum industry has developed from an endangered medicinal plant to multi-billion dollar grade industry. The necrotrophic pathogen Sclerotium delphinii has a devastating effection on over 500 plant species, especially resulting in widespread infection and severe yield loss in the process of large-scale cultivation of D. catenatum. It has been widely reported that Jasmonate (JA) is involved in plant immunity to pathogens, but the mechanisms of JA-induced plant resistance to S. delphinii are unclear. RESULTS: In the present study, the role of JA in enhancing D. catenatum resistance to S. delphinii was investigated. We identified 2 COI1, 13 JAZ, and 12 MYC proteins in D. catenatum genome. Subsequently, systematic analyses containing phylogenetic relationship, gene structure, protein domain, and motif architecture of core JA pathway proteins were conducted in D. catenatum and the newly characterized homologs from its closely related orchid species Phalaenopsis equestris and Apostasia shenzhenica, along with the well-investigated homologs from Arabidopsis thaliana and Oryza sativa. Public RNA-seq data were investigated to analyze the expression patterns of D. catenatum core JA pathway genes in various tissues and organs. Transcriptome analysis of MeJA and S. delphinii treatment showed exogenous MeJA changed most of the expression of the above genes, and several key members, including DcJAZ1/2/5 and DcMYC2b, are involved in enhancing defense ability to S. delphinii in D. catenatum. CONCLUSIONS: The findings indicate exogenous MeJA treatment affects the expression level of DcJAZ1/2/5 and DcMYC2b, thereby enhancing D. catenatum resistance to S. delphinii. This research would be helpful for future functional identification of core JA pathway genes involved in breeding for disease resistance in D. catenatum.


Assuntos
Basidiomycota/patogenicidade , Ciclopentanos/metabolismo , Dendrobium/microbiologia , Oxilipinas/metabolismo , Imunidade Vegetal/fisiologia , Proteínas de Plantas/genética , Acetatos/farmacologia , Ciclopentanos/farmacologia , Dendrobium/efeitos dos fármacos , Dendrobium/imunologia , Dendrobium/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Família Multigênica , Oxilipinas/farmacologia , Filogenia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/imunologia , Transdução de Sinais/genética
5.
Zhongguo Zhong Yao Za Zhi ; 46(13): 3330-3336, 2021 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-34396752

RESUMO

The present study aimed to explore the correlation between agronomic traits and quality indexes of Dendrobium nobile and its application value in agricultural breeding. The cultivated strains of D. nobile in Hejiang-Chishui producing areas were extensively collected,and the main agronomic traits and quality indexes were measured. The agronomic traits with significant correlation with quality indexes were screened out by the correlation analysis,and then the parental lines and self-bred F_1 generation plants were furtherverified. Among 96 lines of D. nobile,the content of soluble polysaccharides showed a significant negative correlation with dendrobine( P < 0. 01),and no significant correlation with agronomic traits in stems and leaves. The content of dendrobine exhibited a significant positive correlation with the stem width-thickness ratio( at the largest cross section; P < 0. 01),and no significant correlation with other agronomic traits. Regression analysis further verified the positive correlation between dendrobine content and stem width-thickness ratio( R2> 0. 9). Two lines,JC-10 and JC-35,with significant differences in stem width-thickness ratio were screened out( P <0. 05). The corresponding F1 generation plants by self-pollination both showed that the dendrobine content was higher with greater stem width-thickness ratio( P < 0. 01). The experimental results suggested that within a certain range,the dendrobine content was higher in D. nobile with flatter stem. Therefore,in the breeding of D. nobile,this specific trait could be used for screening plants with high content of quality indexes such as dendrobine.


Assuntos
Dendrobium , Agricultura , Dendrobium/genética , Melhoramento Vegetal , Folhas de Planta/genética , Polissacarídeos
6.
Behav Neurol ; 2021: 9990375, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447483

RESUMO

Background: Aß deposition abnormally in the mitochondria can damage the mitochondrial respiratory chain and activate the mitochondrial-mediated apoptosis pathway, resulting in AD-like symptoms. Objective: To observe the protective effects of Dendrobium nobile Lindl. alkaloids (DNLA) on Aß 25-35-induced oxidative stress and apoptosis in PC12 cells explore its possible protective mechanisms. Methods: PC12 cells were treated with DNLA with different concentrations (0.035 mg/L, 0.3 mg/L, and 3.5 mg/L) for 6 h, followed by administration with Aß 25-35 (10 µM) for 24 h. MTT assay and flow cytometer observe the effect of DNLA on Aß 25-35-induced cytotoxicity and apoptosis of PC12 cell. Based on the mitochondrial apoptosis pathway to study the antiapoptotic effect of DNLA on this model and its relationship with oxidative stress, flow cytometer detected the level of reactive oxygen species (ROS), and ELISA kits were used to detect superoxide dismutase activity (SOD) and glutathione (GSH) content in cells. The JC-1 fluorescent staining observed the effect of DNLA on the mitochondrial membrane potential (MMP) with inverted immunofluorescence microscopy. Western blot was used to detect the levels of mitochondrial apoptosis pathway-related protein and its major downstream proteins Bax, Bcl-2, cleaved-caspase-9, and cleaved-caspase-3. Results: DNLA can significantly improve the viability and apoptosis rate of PC12 cell damage induced by Aß 25-35. It also can restore the reduced intracellular ROS content and MMP, while SOD activity and GSH content increase significantly. The expression of apoptosis-related protein Bax, cleaved-caspase-9, and cleaved-caspase-3 decreased when the Bcl-2 protein expression was significantly increased. Conclusion: These findings suggest that it can significantly inhibit the apoptosis of PC12 cell damage induced by Aß 25-35. The mechanism may reduce the level of cellular oxidative stress and thus inhibit the mitochondrial-mediated apoptosis pathway.


Assuntos
Alcaloides , Dendrobium , Alcaloides/farmacologia , Animais , Apoptose , Estresse Oxidativo , Células PC12 , Ratos
7.
Zhongguo Zhong Yao Za Zhi ; 46(14): 3605-3613, 2021 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-34402284

RESUMO

A novel HPLC method with the quantitative analysis of multi-components by single marker( QAMS) combined with the dual-wavelength method was developed for simultaneous determination of six flavonoids in Dendrobium officinale stems from different producing areas,cultivation and processing methods to clarify the main factors contributing to the different composition of flavonoids.The separation of six flavonoids was performed on a Shiseido Capcell PAK MGⅡ C18 column( 4. 6 mm×250 mm,5 µm) using a linear gradient elution system of acetonitrile-0. 1% formic acid aqueous solution. Schaftoside,isoschaftoside,vicenin-2,and glucosylvitexin were simultaneously analyzed using rutin as a reference standard at detection wavelength of 340 nm,and naringenin was determined at290 nm. The credibility and feasibility of QAMS method were validated and the results demonstrated that no significant differences were observed as compared with the external standard method. Finally,a total of 82 batches of D. officinale samples were analyzed and principal component analysis( PCA) and discriminant analysis were applied to distinguish and compare D. officinale samples from different producing areas,cultivation and processing methods. The results showed that the total flavonoid content of D. officinale stems cultivated in the simulated wild( attached tree cultivation or attached stone cultivation) was significantly higher than that in greenhouse bed cultivation. The content of flavonoids in simulated-wild D. officinale stems was higher in Jiangxi,Guizhou,Zhejiang,and Fujian provinces,while that in greenhouse bed cultivation was higher in Fujian and Zhejiang provinces. The content of naringenin was positively correlated with processing temperature,and that of the other five flavonoids was negatively correlated with processing temperature. PCA showed that wild-simulated D. officinale and greenhouse bed-cultivated D. officinale could be roughly divided into two clusters. The samples cultivated in the greenhouse bed were divided into four categories according to the geographical habitats. Wild-simulated D. officinale samples from Guizhou gathered together,and there was no obvious rule in samples from other producing areas. The established method simplified the determination method of flavonoids in D. officinale,and could provide the basis for effective quality control,cultivation and processing of D. officinale.


Assuntos
Dendrobium , Medicamentos de Ervas Chinesas , Cromatografia Líquida de Alta Pressão , Flavonoides , Controle de Qualidade
8.
Phytother Res ; 35(8): 4511-4525, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34236105

RESUMO

Erianin is a small-molecule compound that is isolated from Dendrobium chrysotoxum Lindl. In recent years, it has been found to have evident antitumor activity in various cancers, such as bladder cancer, cervical cancer, and nasopharyngeal carcinoma. In this study, we assessed the effect of erianin on lung cancer in terms of cell growth inhibition and the related mechanism. First, erianin at a concentration of less than 1 nmol/L exhibited cytotoxicity in H1975, A549, LLC lung cancer cells, did not cause marked growth inhibition in normal lung and kidney cells, induced obvious apoptosis and G2/M phase arrest of cells, and inhibited the migration and invasion of lung cancer cells in vitro. Second, in a mouse xenograft model of lewis lung cancer (LLC), oral administration of erianin (50, 35, and 10 mg kg-1  day-1 for 12 days) substantially inhibited nodule growth, reduced the fluorescence counts of lewis cells and the percentage vascularity of tumor tissues, increased the number of apoptotic tumor cells, the thymus indices, up-regulated the levels of interleukin (IL)-2 and tumor necrosis factor-α (TNF-α), decreased IL-10 levels and the spleen index, and enhanced immune function. Lastly, the possible targets of erianin were determined by molecular docking and verified via western blot assay. The results indicated that erianin may achieve the above effects via inhibiting the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway in vitro and vivo. Taken together, the results showed that erianin had obvious antitumor effects via inhibiting the PI3K/Akt/mTOR pathway in vitro and vivo and may have potential clinical value for the treatment of lung cancer.


Assuntos
Bibenzilas/farmacologia , Neoplasias Pulmonares , Fenol/farmacologia , Transdução de Sinais/efeitos dos fármacos , Células A549 , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Dendrobium , Humanos , Pulmão , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR
9.
Clinics (Sao Paulo) ; 76: e2669, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34231706

RESUMO

OBJECTIVES: This study aimed to explore the efficacy of combination treatment with dendrobium mixture and metformin (Met) in diabetic cardiomyopathy (DCM) and its effects on NEAT1 and the Nrf2 signaling pathway. METHODS: H9c2 cells were maintained in medium supplemented with either low (5.5 mmol/L) or high (50 mmol/L) glucose. Male Sprague-Dawley rats were fed a high-glucose diet and administered a single, low dose of streptozotocin (35 mg/kg) via intraperitoneal injection to induce the development of DM. After induction of DM, the rats were treated with dendrobium mixture (10 g/kg) and Met (0.18 g/kg) daily for 4 weeks. Next, quantitative reverse transcription (qRT)-PCR and western blotting were performed to evaluate the expression levels of target genes and proteins. Flow cytometry was performed to assess apoptosis, and hematoxylin and eosin staining was performed to evaluate the morphological changes in rat cardiac tissue. RESULTS: In patients with diabetes mellitus (DM) and myocardial cells and heart tissues from rats with high glucose-induced DM, NEAT1 was downregulated, and the expression levels of Nrf2 were decreased (p<0.01, p<0.001). The combination of dendrobium mixture and Met upregulated the expression of NEAT1 which upregulated Nrf2 by targeting miR-23a-3p, resulting in reduced apoptosis and improved cardiac tissue morphology (p<0.01, p<0.001). CONCLUSION: Dendrobium mixture and Met upregulated the expression of NEAT1 in DCM, thereby inhibiting apoptosis of myocardial cells.


Assuntos
Dendrobium , Diabetes Mellitus , Cardiomiopatias Diabéticas , Metformina , MicroRNAs , RNA Longo não Codificante , Animais , Apoptose , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/genética , Humanos , Masculino , RNA Longo não Codificante/genética , Ratos , Ratos Sprague-Dawley
10.
BMC Genomics ; 22(1): 579, 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34325653

RESUMO

BACKGROUND: Dendrobium officinale, an endangered Chinese herb, possesses extensive therapeutic effects and contains bioactive ingredients such as major polysaccharides, alkaloids, and minimal flavonoids. We first obtained the protocorm-like bodies (PLBs) of this plant through tissue culture in order to determine the distribution of the main secondary metabolites in each organelle and the PLBs. We then analyzed the correlation between gene expression level from comparative transcriptome sequencing and metabolite content in different organs to identify putative genes encoding enzymes involved in the biosynthesis of polysaccharides, alkaloids, and flavonoids. RESULTS: We used seeds as explants for protocorm induction and PLB propagation of D. officinale. The optimal medium formula for PLB propagation was 1/2 MS + α-NAA 0.5 mg·L- 1 + 6-BA 1.0 mg·L- 1 + 2, 4-D 1.5-2.0 mg·L- 1 + potato juice 100 g·L- 1. Stems, PLBs and leaves of D. officinale had the highest content of polysaccharides, alkaloids and flavonoids, respectively. Naringenin was only produced in stem; however, PLBs with high alkaloid content can replace other organs producing alkaloids. The hot water extraction method outperformed the ultrasound-assisted extraction method for extracting polysaccharides from D. officinale. A comparative transcriptome analysis of PLBs and leaves of D. officinale revealed differential expression of genes encoding enzymes involved in polysaccharide, alkaloid and flavonoid biosynthetic pathways. Putative genes encoding enzymes involved in these biosynthetic pathways were identified. Notably, we identified genes encoding the alkaloid biosynthesis enzymes strictosidine ß-D-Glucosidase, geissoschizine synthase and vinorine synthase in D. officinale. CONCLUSIONS: The identification of candidate genes encoding enzymes involved in metabolite biosynthesis will help to explore and protect this endangered species and facilitate further analysis of the molecular mechanism of secondary metabolite biosynthesis in D. officinale.


Assuntos
Alcaloides , Dendrobium , Dendrobium/genética , Perfilação da Expressão Gênica , Folhas de Planta/genética , Transcriptoma
11.
Ecotoxicol Environ Saf ; 222: 112487, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34252681

RESUMO

The residual behaviors and dietary risk probability of 12 pesticides in Dendrobium officinale Kimura et Migo cultivated at two representative locations under green house conditions were investigated using liquid chromatography-tandem mass spectrometry. Field trials showed that the half-lives of 12 pesticides ranged from 0.9 to 14.4 days in fresh D. officinale stems. Based on maximum residue levels (MRLs), the ultimate residues of imidacloprid, dimethomorph, metalaxyl, tebuconazole, and cyazofamid at a pre-harvest interval (PHI) of 28 days were within acceptable limits. For abamectin, indoxacarb, and difenoconazole, 35-day PHIs were needed. The PHIs of trifloxystrobin and fluopyram were 42 days, the time required for their residues to be reduced to an MRL of 4 mg/kg. The chronic and acute risk quotients of target pesticides at PHIs of 28-42 days were below 5.929% and 0.532%, respectively, showing that the evaluated D. officinale exhibited an acceptably low dietary risk to the general population.


Assuntos
Dendrobium , Resíduos de Praguicidas , Praguicidas , Cromatografia Líquida , Humanos , Resíduos de Praguicidas/análise , Medição de Risco
12.
Artigo em Inglês | MEDLINE | ID: mdl-34287120

RESUMO

Three novel actinomycete strains, designated as DR6-1T, DR6-2 and DR6-4, isolated from the roots of Dendrobium heterocarpum Lindl in Thailand were studied using a polyphasic taxonomic approach. The strains grew at 20-37 °C, at pH 5-10 and with 5 % (w/v) NaCl. They contained meso-diaminopimelic acid in the cell-wall peptidoglycan and MK-9(H4) was a major menaquinone. Arabinose and galactose were the major sugars in the cell wall. The predominant cellular fatty acids were iso-C16 : 0 and iso-C15 : 0. The detected polar lipids were diphosphatidylglycerol, hydroxyphosphatidylethanolamine, phosphatidylethanolamine, phosphatidylinositol and phosphatidylglycerol. Strains DR6-1T, DR6-2 and DR6-4 shared 99.9-100 % 16S rRNA gene sequence similarity and were closely related to Amycolatopsis echigonensis JCM 21831T (98.7-98.8%). The approximate genome size of strain DR6-1T was 9.6 Mb with a G+C content of 69.6 mol%. The ANIb and dDDH values between genomic sequences of strain DR6-1T and Amycolatopsis echigonensis JCM21831T, Amycolatopsis rubida JCM 10871T and Amycolatopsis nivea KCTC 39515T were 90.55, 92.25, 92.60%, and 47.20, 52.10 and 52.50%, respectively. Based on the phenotypic, chemotaxonomic and genotypic characteristics, it has been concluded that strains DR6-1T, DR6-2 and DR6-4 represent a novel species of the genus Amycolatopsis for which the name Amycolatopsis dendrobii sp. nov. is proposed. The type strain is DR6-1T (=JCM 33742T=KCTC 49546T=TISTR 2840T).


Assuntos
Amycolatopsis/classificação , Dendrobium/microbiologia , Filogenia , Amycolatopsis/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Hantavirus , Peptidoglicano/química , Fosfolipídeos/química , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
13.
Molecules ; 26(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203202

RESUMO

As an alternative to Dendrobium candidum, protocorm-like bodies (PLBs) of Dendrobium candidum are of great value due to their high yield and low cost. In this work, three glycoside compounds, ß-D-glucopyranose 1-[(E)-3-(4-hydroxyphenyl)-2-propenoat] (I), ß-D-glucopyranose 1-[(E)-3-(3, 4-dihydroxyphenyl)-2-propenoat] (II), and 1-O-sinapoyl glucopyranoside (III), were extracted and isolated by ultrahigh pressure extraction (UPE) coupled with high-speed counter-current chromatography (HSCCC) from PLBs of D. officinale. First, the target compounds were optimized and prepared with 50% ethanol solution at a 1:30 (g/mL) solid/liquid ratio in 2 min under 300 MPa by UPE. Then, the crude extract was chromatographed with a silica gel column, and primary separation products were obtained. In addition, the products (150 mg) were separated by HSCCC under the solvent system of MTBE-n-butyl alcohol-acetonitrile-water (5:1:2:6, v/v/v/v), yielding 31.43 mg of compound I, 10.21 mg of compound II, and 24.75 mg of compound III. Their structures were further identified by ESI-MS, 1H NMR, and 13C NMR. The antioxidant results showed that the three compounds expressed moderate effects on the DPPH· scavenging effect. Compound II had the best antioxidant capacity and its IC50 value was 0.0497 mg/mL.


Assuntos
Dendrobium/química , Glicosídeos , Extratos Vegetais/química , Cromatografia Líquida de Alta Pressão , Distribuição Contracorrente , Glicosídeos/química , Glicosídeos/isolamento & purificação
14.
Int J Biol Macromol ; 184: 1000-1013, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34197847

RESUMO

Dendrobium officinale Kimura et Migo (D. officinale) is used as herbal medicine and new food resource in China, which is nontoxic and harmless, and can be used as common food. Polysaccharide as one of the main bioactive components in D. officinale, mainly composed of glucose and mannose (Manp: Glcp = 2.01:1.00-8.82:1.00), along with galactose, xylose, arabinose, and rhamnose in different molar ratios and types of glycosidic bonds. Polysaccharides of D. officinale exhibit a variety of biological effects, including immunomodulatory, anti-tumor, gastro-protective, hypoglycemic, anti-inflammatory, hepatoprotective, and vasodilating effects. This paper presents the extraction, purification, structural characteristics, bioactivities, structure-activity relationships and analyzes gaps in the current research on D. officinale polysaccharides. In addition, based on in vitro and in vivo experiments, the possible mechanisms of bioactivities of D. officinale polysaccharides were summarized. We hope that this work may provide helpful references and promising directions for further study and development of D. officinale polysaccharides.


Assuntos
Dendrobium/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Sequência de Carboidratos , China , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Relação Estrutura-Atividade
15.
Phytochemistry ; 190: 112858, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34246870

RESUMO

Ten undescribed picrotoxane-type sesquiterpenoids, dendrowardins A-J, together with two known ones, were isolated from the stems of Dendrobium wardianum Warner (Orchidaceae). Dendrowardins A-D feature the unusual 5,2-δ-lactone and additionally dendrowardins C-D are the first examples containing the 11,10-γ-lactone moiety. The structures were established using spectroscopic methods and by comparison with literature data. Further, dendrowardin E, amotin, and aduncin exhibited significant effects of promoting the proliferation on human lens epithelial cells (HLECs) induced by D-galactose.


Assuntos
Dendrobium , Sesquiterpenos , Lactonas , Estrutura Molecular , Caules de Planta
16.
Biomolecules ; 11(5)2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063498

RESUMO

Dendrobium officinale Kimura et Migo is a precious traditional Chinese medicine. Despite D. officinale displaying a good salt-tolerance level, the yield and growth of D. officinale were impaired drastically by the increasing soil secondary salinization. The molecular mechanisms of D. officinale plants' adaptation to salt stress are not well documented. Therefore, in the present study, D. officinale plants were treated with 250 mM NaCl. Transcriptome analysis showed that salt stress significantly altered various metabolic pathways, including phenylalanine metabolism, flavonoid biosynthesis, and α-linolenic acid metabolism, and significantly upregulated the mRNA expression levels of DoAOC, DoAOS, DoLOX2S, DoMFP, and DoOPR involved in the jasmonic acid (JA) biosynthesis pathway, as well as rutin synthesis genes involved in the flavonoid synthesis pathway. In addition, metabolomics analysis showed that salt stress induced the accumulation of some compounds in D. officinale leaves, especially flavonoids, sugars, and alkaloids, which may play an important role in salt-stress responses of leaf tissues from D. officinale. Moreover, salt stress could trigger JA biosynthesis, and JA may act as a signal molecule that promotes flavonoid biosynthesis in D. officinale leaves. To sum up, D. officinale plants adapted to salt stress by enhancing the biosynthesis of secondary metabolites.


Assuntos
Ciclopentanos/metabolismo , Dendrobium/fisiologia , Flavonoides/metabolismo , Oxilipinas/metabolismo , Vias Biossintéticas , Dendrobium/genética , Dendrobium/crescimento & desenvolvimento , Dendrobium/metabolismo , Metaboloma , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Estresse Salino , Transcriptoma
17.
Chem Biodivers ; 18(7): e2100130, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34080308

RESUMO

The polysaccharides of the Chinese herbal medicine Dendrobium huoshanense exhibit anti-inflammatory effects in multiple organs through regulating the immune responses. In the present study, we constructed ulcerative colitis (UC) model rats using dextran sulfate sodium to investigate the anti-inflammatory effects of D. huoshanense polysaccharides (DHP). After oral administration of DHP for two weeks, the indices of UC symptoms, including the ratio of colon weight to length, Disease Activity Index (DAI), and Colon Mucosal Damage Index (CMDI), all decreased significantly compared with the UC model group. The histological sections also revealed better cell orders in DHP treatments than in the UC model rats. Moreover, in treatment with high dose of DHP (200 mg/kg), the treatment efficacy arrived the similar levels to those in the treatment with 300 mg/kg sulfasalazine, which is a typical medicine to treat UC. These results indicated that DHP has a high efficacy to treat UC in model rats. Furthermore, serum levels of interleukin-1ß, tumor necrosis factor-α, interleukin-17, and transforming growth factor-ß were assessed using the enzyme linked immunosorbent assay (ELISA) method, and the levels of nuclear factor-κB in colon tissue sections were determined using the immunohistochemical method. The results showed that all these indices decreased significantly after administration of DHP in UC model rats, which might be the mechanisms underlying the DHP-suppressed UC inflammation. Overall, this study indicated that DHP might be directly used to treat UC and is a promising source to develop novel drugs against UC.


Assuntos
Colite Ulcerativa/tratamento farmacológico , Dendrobium/química , Inflamação/prevenção & controle , NF-kappa B/antagonistas & inibidores , Polissacarídeos/farmacologia , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/metabolismo , Sulfato de Dextrana/administração & dosagem , Modelos Animais de Doenças , Feminino , Masculino , NF-kappa B/metabolismo , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 261: 120070, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34153549

RESUMO

Dendrobium Sw., as a traditional herb and function food with over 1500 years of history, shows a significant effect in improving immunity and fatigue resistance. However, due of course the large number of species and the quality fluctuating in different species, a fast and effective discrimination method is in need. Recently, spectroscopic techniques combined with chemometrics have become an effective method for low-cost and fast analysis in food and herb. Nevertheless, chemometrics method which based on one-dimensional spectral dataset still encounter the difficulty that can not effectively extract useful information from the spectra. Different from one-dimensional spectra, the two-dimensional correlation spectroscopy (2DCOS) can reveal more detail information of the spectral dataset. Moreover, the appearance of convolutional neural network makes the application of deep learning in image recognition faster and more accurate. In this study, a novel method 2DCOS combined with residual convolutional neural network (ResNet) was used to discriminate the 20 species of Dendrobium. Five feature bands were selected based on spectrum standard deviation (SDD) method in NIR and MIR spectra. Moreover, the models based on full band, total five feature bands, and their fusion-bands had been compared. The results showed that two feature bands 1800-450 cm-1 and 2400-1900 cm-1 displayed 100% accuracy in both training set and test set. And also, the accurate discrimination of 10% external validation showed that these models have good generalization ability. In conclusion, 2DCOS combined with ResNet could be an effective and accurate method for classify different Dendrobium species.


Assuntos
Dendrobium , Redes Neurais de Computação , Análise Espectral
19.
Int J Mol Sci ; 22(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069261

RESUMO

The APETALA2 (AP2) transcription factors (TFs) play crucial roles in regulating development in plants. However, a comprehensive analysis of the AP2 family members in a valuable Chinese herbal orchid, Dendrobium officinale, or in other orchids, is limited. In this study, the 14 DoAP2 TFs that were identified from the D. officinale genome and named DoAP2-1 to DoAP2-14 were divided into three clades: euAP2, euANT, and basalANT. The promoters of all DoAP2 genes contained cis-regulatory elements related to plant development and also responsive to plant hormones and stress. qRT-PCR analysis showed the abundant expression of DoAP2-2, DoAP2-5, DoAP2-7, DoAP2-8 and DoAP2-12 genes in protocorm-like bodies (PLBs), while DoAP2-3, DoAP2-4, DoAP2-6, DoAP2-9, DoAP2-10 and DoAP2-11 expression was strong in plantlets. In addition, the expression of some DoAP2 genes was down-regulated during flower development. These results suggest that DoAP2 genes may play roles in plant regeneration and flower development in D. officinale. Four DoAP2 genes (DoAP2-1 from euAP2, DoAP2-2 from euANT, and DoAP2-6 and DoAP2-11 from basal ANT) were selected for further analyses. The transcriptional activation of DoAP2-1, DoAP2-2, DoAP2-6 and DoAP2-11 proteins, which were localized in the nucleus of Arabidopsis thaliana mesophyll protoplasts, was further analyzed by a dual-luciferase reporter gene system in Nicotiana benthamiana leaves. Our data showed that pBD-DoAP2-1, pBD-DoAP2-2, pBD-DoAP2-6 and pBD-DoAP2-11 significantly repressed the expression of the LUC reporter compared with the negative control (pBD), suggesting that these DoAP2 proteins may act as transcriptional repressors in the nucleus of plant cells. Our findings on AP2 genes in D. officinale shed light on the function of AP2 genes in this orchid and other plant species.


Assuntos
Dendrobium/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Dendrobium/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Família Multigênica , Filogenia , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Mapas de Interação de Proteínas , Sequências Reguladoras de Ácido Nucleico , Estresse Fisiológico/genética , Tabaco/genética , Fatores de Transcrição/metabolismo
20.
Plant Sci ; 309: 110952, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34134848

RESUMO

Linalool is an aromatic monoterpene produced in the Chinese medicinal plant Dendrobium officinale, but little information is available on the regulation of linalool biosynthesis. Here, a novel basic helix-loop-helix (bHLH) transcription factor, DobHLH4 from D. officinale, was identified and functionally characterized. The expression profile of DobHLH4 was positively correlated with that of DoTPS10 (R2 = 0.985, p < 0.01), which encodes linalool synthase that is responsible for linalool production, during floral development. DobHLH4 was highly expressed in petals, and was significantly induced by methyl jasmonate. Analysis of subcellular localization showed that DobHLH4 was located in the nucleus. Yeast one-hybrid and dual-luciferase assays indicated that DobHLH4 bound directly to the DoTPS10 promoter harboring the G-box element, and up-regulated DoTPS10 expression. A yeast two-hybrid screen confirmed that DobHLH4 physically interacted with DoJAZ1, suggesting that DobHLH4 might function in the jasmonic acid-mediated accumulation of linalool. Furthermore, transient overexpression of DobHLH4 in D. officinale petals significantly increased linalool production by triggering linalool biosynthetic pathway genes, especially DoTPS10. We suggest a hypothetical model that depicts how jasmonic acid signaling may regulate DoTPS10 by interacting with DobHLH4 and DoJAZ1. In doing so, the formation of linalool is controlled. Our results indicate that DobHLH4 is a positive regulator of linalool biosynthesis and may be a promising target for in vitro-based metabolic engineering to produce linalool.


Assuntos
Acetatos/metabolismo , Monoterpenos Acíclicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ciclopentanos/metabolismo , Dendrobium/genética , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Vias Biossintéticas , Dendrobium/química , Dendrobium/metabolismo , Flores/química , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Óleos Voláteis/metabolismo , Óleos Vegetais/metabolismo , Proteínas de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...