Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 309
Filtrar
1.
Viruses ; 13(8)2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34452405

RESUMO

Transcriptomics, proteomics and pathogen-host interactomics data are being explored for the in silico-informed selection of drugs, prior to their functional evaluation. The effectiveness of this kind of strategy has been put to the test in the current COVID-19 pandemic, and it has been paying off, leading to a few drugs being rapidly repurposed as treatment against SARS-CoV-2 infection. Several neglected tropical diseases, for which treatment remains unavailable, would benefit from informed in silico investigations of drugs, as performed in this work for Dengue fever disease. We analyzed transcriptomic data in the key tissues of liver, spleen and blood profiles and verified that despite transcriptomic differences due to tissue specialization, the common mechanisms of action, "Adrenergic receptor antagonist", "ATPase inhibitor", "NF-kB pathway inhibitor" and "Serotonin receptor antagonist", were identified as druggable (e.g., oxprenolol, digoxin, auranofin and palonosetron, respectively) to oppose the effects of severe Dengue infection in these tissues. These are good candidates for future functional evaluation and clinical trials.


Assuntos
Antivirais/uso terapêutico , Dengue/tratamento farmacológico , Transcriptoma , Adenosina Trifosfatases/antagonistas & inibidores , Antagonistas Adrenérgicos/farmacologia , Antagonistas Adrenérgicos/uso terapêutico , Antivirais/farmacologia , Encéfalo/metabolismo , Simulação por Computador , Dengue/sangue , Dengue/genética , Dengue/metabolismo , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Humanos , Fígado/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , NF-kappa B/metabolismo , Antagonistas da Serotonina/farmacologia , Antagonistas da Serotonina/uso terapêutico , Dengue Grave/sangue , Dengue Grave/tratamento farmacológico , Dengue Grave/genética , Dengue Grave/metabolismo , Baço/metabolismo
2.
BMC Infect Dis ; 21(1): 639, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215212

RESUMO

BACKGROUND: Infection by chikungunya (CHIKV) and dengue virus (DENV) can cause a wide spectrum of clinical features, many of which are undifferentiated. Cytokines, which broadly also include chemokines and growth factors, have been shown to play a role in protective immunity as well as DENV and CHIKV pathogenesis. However, differences in cytokine response to both viruses remain poorly understood, especially in patients from countries where both viruses are endemic. Our study is therefore aimed to provide a comparative profiling of cytokine response induced by acute DENV and CHIKV infections in patients with similar disease stages and in experimental in vitro infections. METHODS: By using multiplex immunoassay, we compared host cytokine profiles between acute CHIKV and DENV infections by analysing serum cytokine levels of IL-1α, IL-4, IL-5, IL-8, IL-13, RANTES, MCP-3, eotaxin, PDGF-AB/BB, and FGF-2 from the sera of acute chikungunya and dengue fever patients. We further investigated the cytokine profile responses using experimental in vitro CHIKV and DENV infections of peripheral blood mononuclear cells (PBMCs). RESULTS: We found that both CHIKV and DENV-infected patients had an upregulated level of IL-8 and IL-4, with the highest IL-4 level observed in DENV-2 infected patients. Higher IL-8 level was also correlated with lower platelet count in dengue patients. IL-13 and MCP-3 downregulation was observed only in chikungunya patients, while conversely PDGF-AB/BB and FGF-2 downregulation was unique in dengue patients. Age-associated differential expression of IL-13, MCP-3, and IL-5 was also observed, while distinct kinetics of IL-4, IL-8, and FGF-2 expression between CHIKV and DENV-infected patients were identified. Furthermore, the unique pattern of IL-8, IL-13 and MCP-3, but not IL-4 expression was also recapitulated using experimental in vitro infection in PBMCs. CONCLUSIONS: Taken together, our study identified common cytokine response profile characterized by upregulation of IL-8 and IL-4 between CHIKV and DENV infection. Downregulation of IL-13 and MCP-3 was identified as a unique cytokine response profile of acute CHIKV infection, while distinct downregulation of PDGF-AB/BB and FGF-2 characterized the response from acute DENV infection. Our study provides an important overview of the host cytokine responses between CHIKV and DENV infection, which is important to further understand the mechanism and pathology of these diseases.


Assuntos
Febre de Chikungunya/imunologia , Vírus Chikungunya/imunologia , Citocinas/metabolismo , Vírus da Dengue/imunologia , Dengue/imunologia , Adolescente , Adulto , Idoso , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/metabolismo , Febre de Chikungunya/virologia , Criança , Pré-Escolar , Estudos Transversais , Citocinas/imunologia , Dengue/epidemiologia , Dengue/metabolismo , Dengue/virologia , Feminino , Humanos , Indonésia/epidemiologia , Lactente , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Adulto Jovem
3.
Eur J Med Chem ; 221: 113527, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34020338

RESUMO

Dengue virus belongs to the class of RNA viruses and subclass of enveloped single-stranded positive-sense RNA virus. It causes dengue fever (DF), dengue hemorrhagic fever (DHF), or dengue shock syndrome (DSS), where DHF and DSS are life-threatening. Even though dengue is an age-old disease, it is still a mystery and continues to be a global threat. Numerous attempts have been carried out in the past few decades to eradicate the virus through vaccine and antiviral drugs, but still battle continues. In this review, the possible drug targets for discovery and development of potential antiviral drugs against structural proteins of dengue virus, the current development status of the antiviral drugs against dengue around the world, and challenges that need to be addressed to overcome the shortcomings in the process of drug discovery have been discussed.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Dengue/tratamento farmacológico , Desenvolvimento de Medicamentos , Proteínas Estruturais Virais/antagonistas & inibidores , Antivirais/síntese química , Antivirais/química , Dengue/metabolismo , Dengue/virologia , Vírus da Dengue/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Proteínas Estruturais Virais/metabolismo
4.
Front Immunol ; 12: 618577, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815373

RESUMO

Abnormal immune responses and cytokine storm are involved in the development of severe dengue, a life-threatening disease with high mortality. Dengue virus-induced neutrophil NETosis response is associated with cytokine storm; while the role of viral factors on the elicitation of excessive inflammation mains unclear. Here we found that treatments of dengue virus envelope protein domain III (EIII), cellular binding moiety of virion, is sufficient to induce neutrophil NETosis processes in vitro and in vivo. Challenges of EIII in inflammasome Nlrp3 -/- and Casp1 -/- mutant mice resulted in less inflammation and NETosis responses, as compared to the wild type controls. Blockages of EIII-neutrophil interaction using cell-binding competitive inhibitor or selective Nlrp3 inflammasome inhibitors OLT1177 and Z-WHED-FMK can suppress EIII-induced NETosis response. These results collectively suggest that Nlrp3 inflammsome is a molecular target for treating dengue-elicited inflammatory pathogenesis.


Assuntos
Armadilhas Extracelulares/imunologia , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Domínios e Motivos de Interação entre Proteínas/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Linhagem Celular , Dengue/imunologia , Dengue/metabolismo , Dengue/virologia , Vírus da Dengue/imunologia , Imunofenotipagem , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Proteínas Recombinantes , Proteínas do Envelope Viral/química
5.
Metabolomics ; 17(3): 34, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712974

RESUMO

BACKGROUND: Dengue virus causes dengue fever (DF)disease, transmitted by the mosquito Aedes aegypti. The symptoms could be severe and disable the affected individuals for weeks. The severe form, dengue hemorrhagic fever (DHF), can lead to death if not adequately attended to. Due to global warming, the vector mosquito will advance over new areas and expose more people to this disease over the next decades. Despite the severity, there are no treatments nor efficient vaccines available. Metabolomic studies have shown a new perspective to understand this disease better at a new molecular level. AIM OF REVIEW: Many published works rely on samples obtained from animal studies. This review will mainly focus on human samples and cell culture experiments to view how the dengue virus affects the metabolomic profile. KEY SCIENTIFIC CONCEPTS OF REVIEW: The review compiles the sample sources, metabolomic techniques used, the detected compounds, and how they behave in different DF stages. This disease causes a significant change in many metabolites, but some results are still conflicting between studies. The results gathered here show that metabolomic approaches prove to be an excellent and viable way to expand knowledge about DF.


Assuntos
Dengue/metabolismo , Metabolômica/métodos , Aedes , Aminoácidos/metabolismo , Animais , Metabolismo dos Carboidratos , Dengue/virologia , Humanos , Metabolismo dos Lipídeos , Mosquitos Vetores
6.
Int J Mol Sci ; 22(4)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669407

RESUMO

La Reunion island in the South West Indian Ocean is now endemic for dengue following the introduction of dengue virus serotype 2 (DENV-2) cosmopolitan-I genotype in 2017. DENV-2 infection causes a wide spectrum of clinical manifestations ranging from flu-like disease to severe dengue. The nonstructural glycoprotein 1 (NS1) has been identified as playing a key role in dengue disease severity. The intracellular NS1 exists as a homodimer, whereas a fraction is driven towards the plasma membrane or released as a soluble hexameric protein. Here, we characterized the NS1 glycoproteins from clinical isolates DES-14 and RUN-18 that were collected during the DENV-2 epidemics in Tanzania in 2014 and La Reunion island in 2018, respectively. In relation to hepatotropism of the DENV, expression of recombinant DES-14 NS1 and RUN-18 NS1 glycoproteins was compared in human hepatoma Huh7 cells. We observed that RUN-18 NS1 was poorly stable in Huh7 cells compared to DES-14 NS1. The instability of RUN-18 NS1 leading to a low level of NS1 secretion mostly relates to lysine residues on positions 272 and 324. Our data raise the issue of the consequences of a defect in NS1 stability in human hepatocytes in relation to the major role of NS1 in the pathogenesis of the DENV-2 infection.


Assuntos
Vírus da Dengue/metabolismo , Dengue/epidemiologia , Dengue/metabolismo , Epidemias , Genótipo , Lisina/química , Proteínas não Estruturais Virais/química , Substituição de Aminoácidos , Antígenos Virais/química , Antígenos Virais/genética , Linhagem Celular Tumoral , Dengue/virologia , Células HEK293 , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Multimerização Proteica , Estabilidade Proteica , Proteínas Recombinantes/química , Reunião/epidemiologia , Sorogrupo , Tanzânia/epidemiologia , Transfecção , Proteínas não Estruturais Virais/genética
7.
FASEB J ; 35(2): e20995, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32910509

RESUMO

Virus entry into cells is the initial stage of infection and involves multiple steps, and interfering viral entry represents potential antiviral approaches. Ion channels are pore-forming membrane proteins controlling cellular ion homeostasis and regulating many physiological processes, but their roles during viral infection have rarely been explored. Here, the functional Kv1.3 ion channel was found to be expressed in human hepatic cells and tissues. The Kv1.3 was then revealed to restrict HCV entry via inhibiting endosome acidification-mediated viral membrane fusion. The Kv1.3 was also demonstrated to inhibit DENV and ZIKV with an endosome acidification-dependent entry, but have no effect on SeV with a neutral pH penetration. A Kv1.3 antagonist PAP-1 treatment accelerated animal death in ZIKV-infected Ifnar1-/- mice. Moreover, Kv1.3-deletion was found to promote weight loss and reduce survival rate in ZIKV-infected Kv1.3-/- mice. Altogether, the Kv1.3 ion channel behaves as a host factor restricting viral entry. These findings broaden understanding about ion channel biology.


Assuntos
Vírus da Dengue/fisiologia , Dengue/metabolismo , Hepacivirus/fisiologia , Hepatite C/metabolismo , Canal de Potássio Kv1.3/metabolismo , Infecções por Respirovirus/metabolismo , Vírus Sendai/fisiologia , Internalização do Vírus , Infecção por Zika virus/metabolismo , Zika virus/fisiologia , Animais , Chlorocebus aethiops , Dengue/virologia , Endossomos/metabolismo , Ficusina/farmacologia , Células HEK293 , Hepatite C/virologia , Humanos , Concentração de Íons de Hidrogênio , Canal de Potássio Kv1.3/antagonistas & inibidores , Canal de Potássio Kv1.3/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Respirovirus/virologia , Transfecção , Células Vero , Internalização do Vírus/efeitos dos fármacos , Infecção por Zika virus/virologia
8.
J Virol ; 95(4)2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33257477

RESUMO

Positive-strand RNA viruses have been the etiological agents in several major disease outbreaks over the last few decades. Examples of this include flaviviruses, such as dengue virus and Zika virus, which cause millions of yearly infections around the globe, and coronaviruses, such as SARS-CoV-2, the source of the current pandemic. The severity of outbreaks caused by these viruses stresses the importance of research aimed at determining methods to limit virus spread and to curb disease severity. Such studies require molecular tools to decipher virus-host interactions and to develop effective treatments. Here, we describe the generation and characterization of a reporter system that can be used to visualize and identify cells infected with dengue virus or SARS-CoV-2. This system is based on viral protease activity that mediates cleavage and nuclear translocation of an engineered fluorescent protein stably expressed in cells. We show the suitability of this system for live cell imaging, for visualization of single infected cells, and for screening and testing of antiviral compounds. With the integrated modular building blocks, this system is easy to manipulate and can be adapted to any virus encoding a protease, thus offering a high degree of flexibility.IMPORTANCE Reporter systems are useful tools for fast and quantitative visualization of virus-infected cells within a host cell population. Here, we describe a reporter system that takes advantage of virus-encoded proteases expressed in infected cells to cleave an ER-anchored fluorescent protein fused to a nuclear localization sequence. Upon cleavage, the GFP moiety translocates to the nucleus, allowing for rapid detection of the infected cells. Using this system, we demonstrate reliable reporting activity for two major human pathogens from the Flaviviridae and the Coronaviridae families: dengue virus and SARS-CoV-2. We apply this reporter system to live cell imaging and use it for proof-of-concept to validate antiviral activity of a nucleoside analogue. This reporter system is not only an invaluable tool for the characterization of viral replication, but also for the discovery and development of antivirals that are urgently needed to halt the spread of these viruses.


Assuntos
COVID-19/virologia , Vírus da Dengue/isolamento & purificação , Dengue/virologia , SARS-CoV-2/isolamento & purificação , Células A549 , Animais , COVID-19/diagnóstico , COVID-19/metabolismo , COVID-19/patologia , Linhagem Celular , Chlorocebus aethiops , Dengue/diagnóstico , Dengue/metabolismo , Dengue/patologia , Vírus da Dengue/genética , Vírus da Dengue/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Sinais de Localização Nuclear/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Células Vero , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
9.
Viruses ; 12(12)2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276578

RESUMO

Dengue virus (DENV), an arbovirus, strongly activates mast cells (MCs), which are key immune cells for pathogen immune surveillance. In animal models, MCs promote clearance of local peripheral DENV infections but, conversely, also promote pathological vascular leakage when widely activated during systemic DENV infection. Since DENV is a human pathogen, we sought to ascertain whether a similar phenomenon could occur in humans by characterizing the products released by human MCs (huMCs) upon direct (antibody-independent) DENV exposure, using the phenotypically mature huMC line, ROSA. DENV did not productively infect huMCs but prompted huMC release of proteases and eicosanoids and induced a Th1-polarized transcriptional profile. In co-culture and trans-well systems, huMC products activated human microvascular endothelial cells, involving transcription of vasoactive mediators and increased monolayer permeability. This permeability was blocked by MC-stabilizing drugs, or limited by drugs targeting certain MC products. Thus, MC stabilizers are a viable strategy to limit MC-promoted vascular leakage during DENV infection in humans.


Assuntos
Vírus da Dengue/imunologia , Dengue/imunologia , Dengue/metabolismo , Endotélio Vascular/metabolismo , Mastócitos/fisiologia , Células Th1/fisiologia , Ativação Transcricional , Biomarcadores , Permeabilidade Capilar , Degranulação Celular/imunologia , Dengue/virologia , Células Endoteliais , Endotélio Vascular/imunologia , Imunofluorescência , Perfilação da Expressão Gênica , Histocitoquímica , Interações Hospedeiro-Patógeno/imunologia , Humanos , Ativação Linfocitária , Macrófagos/imunologia , Macrófagos/metabolismo , Mastócitos/citologia
10.
Viruses ; 12(12)2020 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-33322218

RESUMO

The aims of this study were to determine the involvement of interleukin 17 (IL-17) and IL-17-producing cells in dengue pathogenesis. Blood samples from dengue virus (DENV)-infected patients were collected on different days after the onset of symptoms. Patients were classified according to 1997 World Health Organization guidelines. Our study examined 152 blood samples from dengue fever (DF, n = 109) and dengue hemorrhagic fever (DHF, n = 43) patients and 90 blood samples from healthy controls (HC). High serum concentrations of IL-17A and IL-22 were also associated with DHF (IL-17A [DHF vs. DF, p < 0.01; DHF vs. HC, p < 0.0001]; IL-22 [DHF vs. DF, p < 0.05; DHF vs. HC, p < 0.0001]). Moreover, there was a positive correlation between serum levels of IL-17A and IL-23, a key cytokine that promotes IL-17-based immune responses (r = 0.4089, p < 0.0001). Consistent with the IL-17-biased immune response in DHF patients, we performed ex vivo activation of peripheral blood mononuclear cells (PBMCs) from DHF patients and flow cytometry analysis showed a robust IL-17-biased immune response, characterized by a high frequency of CD4+IL-17+ producing cells. Our results suggests IL-17-producing cells and their related cytokines can play a prominent role in this viral disease.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Vírus da Dengue/fisiologia , Dengue/etiologia , Dengue/metabolismo , Interleucina-17/metabolismo , Células Th17/metabolismo , Adolescente , Adulto , Idoso , Linfócitos T CD4-Positivos/imunologia , Criança , Citocinas/sangue , Citocinas/metabolismo , Dengue/diagnóstico , Suscetibilidade a Doenças , Feminino , Humanos , Interleucina-17/sangue , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Células Th17/imunologia , Adulto Jovem
11.
Int J Mol Sci ; 21(24)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352639

RESUMO

Dengue virus (DENV) infection is a significant public health threat in tropical and subtropical regions; however, there is no specific antiviral drug. Accumulated studies have revealed that DENV infection induces several cellular responses, including autophagy and apoptosis. The crosstalk between autophagy and apoptosis is associated with the interactions among components of these two pathways, such as apoptotic caspase-mediated cleavage of autophagy-related proteins. Here, we show that DENV-induced autophagy inhibits early cell apoptosis and hence enhances DENV replication. Later, the apoptotic activities are elevated to suppress autophagy through cleavage of Beclin-1, an essential autophagy-related protein. Inhibition of cleavage of Beclin-1 by a pan-caspase inhibitor, Z-VAD, increases both autophagy and viral replication. Regarding the mechanism, we further found that DENV nonstructural protein 1 (NS1) is able to interact with Beclin-1 during DENV infection. The interaction between Beclin-1 and NS1 attenuates Beclin-1 cleavage and facilitates autophagy to prevent cell apoptosis. Our study suggests a novel mechanism whereby NS1 preserves Beclin-1 for maintaining autophagy to antagonize early cell apoptosis; however, elevated caspases trigger apoptosis by degrading Beclin-1 in the late stage of infection. These findings suggest implications for anti-DENV drug design.


Assuntos
Proteína Beclina-1/metabolismo , Caspases/metabolismo , Vírus da Dengue/isolamento & purificação , Dengue/patologia , Dengue/virologia , Proteínas não Estruturais Virais/metabolismo , Células A549 , Aedes , Animais , Autofagia , Dengue/metabolismo , Humanos
12.
Molecules ; 25(21)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143016

RESUMO

Andrographolide is a labdene diterpenoid with potential applications against a number of viruses, including the mosquito-transmitted dengue virus (DENV). In this study, we evaluated the anti-viral activity of three 14-aryloxy analogues (ZAD-1 to ZAD-3) of andrographolide against Zika virus (ZIKV) and DENV. Interestingly, one analogue, ZAD-1, showed better activity against both ZIKV and DENV than the parental andrographolide. A two-dimension (2D) proteomic analysis of human A549 cells treated with ZAD-1 compared to cells treated with andrographolide identified four differentially expressed proteins (heat shock 70 kDa protein 1 (HSPA1A), phosphoglycerate kinase 1 (PGK1), transketolase (TKT) and GTP-binding nuclear protein Ran (Ran)). Western blot analysis confirmed that ZAD-1 treatment downregulated expression of HSPA1A and upregulated expression of PGK1 as compared to andrographolide treatment. These results suggest that 14-aryloxy analogues of andrographolide have the potential for further development as anti-DENV and anti-ZIKV agents.


Assuntos
Antivirais , Vírus da Dengue/crescimento & desenvolvimento , Dengue/tratamento farmacológico , Diterpenos , Infecção por Zika virus/tratamento farmacológico , Zika virus/crescimento & desenvolvimento , Células A549 , Antivirais/química , Antivirais/farmacologia , Dengue/metabolismo , Dengue/patologia , Diterpenos/química , Diterpenos/farmacologia , Células HEK293 , Humanos , Infecção por Zika virus/metabolismo , Infecção por Zika virus/patologia
13.
Commun Biol ; 3(1): 683, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33204009

RESUMO

Management of severe malaria remains a critical global challenge. In this study, using a multiplexed quantitative proteomics pipeline we systematically investigated the plasma proteome alterations in non-severe and severe malaria patients. We identified a few parasite proteins in severe malaria patients, which could be promising from a diagnostic perspective. Further, from host proteome analysis we observed substantial modulations in many crucial physiological pathways, including lipid metabolism, cytokine signaling, complement, and coagulation cascades in severe malaria. We propose that severe manifestations of malaria are possibly underpinned by modulations of the host physiology and defense machinery, which is evidently reflected in the plasma proteome alterations. Importantly, we identified multiple blood markers that can effectively define different complications of severe falciparum malaria, including cerebral syndromes and severe anemia. The ability of our identified blood markers to distinguish different severe complications of malaria may aid in developing new clinical tests for monitoring malaria severity.


Assuntos
Malária Falciparum/diagnóstico , Malária Falciparum/patologia , Proteômica/métodos , Anemia/diagnóstico , Anemia/patologia , Biomarcadores/sangue , Dengue/diagnóstico , Dengue/metabolismo , Dengue/patologia , Humanos , Malária Falciparum/metabolismo , Malária Vivax/sangue , Malária Vivax/metabolismo , Malária Vivax/patologia
14.
Front Immunol ; 11: 1980, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072068

RESUMO

Background: The protective or pathogenic role of T lymphocytes during the acute phase of dengue virus (DENV) infection has not been fully understood despite its importance in immunity and vaccine development. Objectives: This study aimed to clarify the kinetics of T lymphocyte subsets during the clinical course of acute dengue patients. Study design: In this hospital-based cohort study, 59 eligible Vietnamese dengue patients were recruited and admitted. They were investigated and monitored for T cell subsets and a panel of clinical and laboratory parameters every day until discharged and at post-discharge from the hospital. Results: We described for the first time the kinetics of T cell response during the clinical course of DENV infection. Severe cases showed significantly lower levels of effector CD8+ T cells compared to mild cases at day -1 (p = 0.017) and day 0 (p = 0.033) of defervescence. After defervescence, these cell counts in severe cases increased rapidly to equalize with the levels of mild cases. Our results also showed a decline in total CD4+ T, Th1, Th1/17 cells during febrile phase of dengue patients compared to normal controls or convalescent phase. On the other hand, Th2 cells increased during DENV infection until convalescent phase. Cytokines such as interferon-γ, IL-12p70, IL-5, IL-23, IL-17A showed tendency to decrease on day 0 and 1 compared with convalescence and only IL-5 showed significance indicating the production during acute phase was not systemic. Conclusion: With a rigorous study design, we uncovered the kinetics of T cells in natural DENV infection. Decreased number of effector CD8+ T cells in the early phase of infection and subsequent increment after defervescence day probably associated with the T cell migration in DENV infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Vírus da Dengue/imunologia , Dengue/imunologia , Dengue/virologia , Interações Hospedeiro-Patógeno/imunologia , Adolescente , Adulto , Biomarcadores , Linfócitos T CD8-Positivos/metabolismo , Estudos de Casos e Controles , Criança , Citocinas/sangue , Citocinas/metabolismo , Dengue/diagnóstico , Dengue/metabolismo , Vírus da Dengue/classificação , Feminino , Humanos , Contagem de Linfócitos , Masculino , Avaliação de Resultados da Assistência ao Paciente , Estudos Prospectivos , Sorogrupo , Índice de Gravidade de Doença , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Adulto Jovem
15.
Front Immunol ; 11: 1831, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903536

RESUMO

Nutrient sensor GCN2 plays a crucial role in the maintenance of cellular homeostasis during the condition of amino acid deprivation. Dysfunction in the GCN2 signaling underlies several chronic metabolic diseases. Recent studies highlight the anti-viral potential of GCN2 against RNA viruses such as Sindbis and HIV. However, its effect on dengue virus (DENV) pathogenesis remains poorly understood. Herein, we report that GCN2 deficient cells show increased DENV replication and viral yield in the culture supernatants compared to WT cells infected with DENV. Notably, enhanced DENV replication in GCN2-/- cells is associated with increased COX-2/PGE2 signaling. Conversely, GCN2 overexpression/activation effectively contains DENV infection by inhibiting COX-2/PGE2 signaling. Mechanistically, deletion of GCN2 triggers enhanced production of COX-2/PGE2 through profound activation of Iκκ-NF-κB signaling pathway. Altogether our results unveil a hitherto unrecognized role of GCN2 in DENV pathogenesis, thereby suggesting that targeting the GCN2 pathway might offer a novel therapeutic intervention against DENV infection.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Dengue/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Transdução de Sinais/imunologia , Células Cultivadas , Dengue/metabolismo , Vírus da Dengue/imunologia , Humanos , Proteínas Serina-Treonina Quinases/metabolismo
16.
Commun Biol ; 3(1): 518, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948809

RESUMO

Competition between viruses and Wolbachia for host lipids is a proposed mechanism of Wolbachia-mediated virus blocking in insects. Yet, the metabolomic interaction between virus and symbiont within the mosquito has not been clearly defined. We compare the lipid profiles of Aedes aegypti mosquitoes bearing mono- or dual-infections of the Wolbachia wMel strain and dengue virus serotype 3 (DENV3). We found metabolic signatures of infection-induced intracellular events but little evidence to support direct competition between Wolbachia and virus for host lipids. Lipid profiles of dual-infected mosquitoes resemble those of DENV3 mono-infected mosquitoes, suggesting virus-driven modulation dominates over that of Wolbachia. Interestingly, knockdown of key metabolic enzymes suggests cardiolipins are host factors for DENV3 and Wolbachia replication. These findings define the Wolbachia-DENV3 metabolic interaction as indirectly antagonistic, rather than directly competitive, and reveal new research avenues with respect to mosquito × virus interactions at the molecular level.


Assuntos
Aedes/metabolismo , Vírus da Dengue/genética , Metabolismo dos Lipídeos/genética , Wolbachia/genética , Aedes/microbiologia , Aedes/patogenicidade , Aedes/virologia , Animais , Dengue/genética , Dengue/metabolismo , Dengue/microbiologia , Dengue/virologia , Vírus da Dengue/metabolismo , Vírus da Dengue/patogenicidade , Humanos , Insetos Vetores/genética , Insetos Vetores/microbiologia , Insetos Vetores/virologia , Controle Biológico de Vetores , Replicação Viral/genética , Wolbachia/metabolismo , Wolbachia/patogenicidade
17.
PLoS Pathog ; 16(8): e1008754, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32776975

RESUMO

Arbovirus infection of Aedes aegypti salivary glands (SGs) determines transmission. However, there is a dearth of knowledge on SG immunity. Here, we characterized SG immune response to dengue, Zika and chikungunya viruses using high-throughput transcriptomics. We also describe a transcriptomic response associated to apoptosis, blood-feeding and lipid metabolism. The three viruses differentially regulate components of Toll, Immune deficiency (IMD) and c-Jun N- terminal Kinase (JNK) pathways. However, silencing of the Toll and IMD pathway components showed variable effects on SG infection by each virus. In contrast, regulation of the JNK pathway produced consistent responses in both SGs and midgut. Infection by the three viruses increased with depletion of the activator Kayak and decreased with depletion of the negative regulator Puckered. Virus-induced JNK pathway regulates the complement factor, Thioester containing protein-20 (TEP20), and the apoptosis activator, Dronc, in SGs. Individual and co-silencing of these genes demonstrate their antiviral effects and that both may function together. Co-silencing either TEP20 or Dronc with Puckered annihilates JNK pathway antiviral effect. Upon infection in SGs, TEP20 induces antimicrobial peptides (AMPs), while Dronc is required for apoptosis independently of TEP20. In conclusion, we revealed the broad antiviral function of JNK pathway in SGs and showed that it is mediated by a TEP20 complement and Dronc-induced apoptosis response. These results expand our understanding of the immune arsenal that blocks arbovirus transmission.


Assuntos
Aedes/imunologia , Apoptose , Febre de Chikungunya/imunologia , Proteínas do Sistema Complemento/imunologia , Dengue/imunologia , Sistema de Sinalização das MAP Quinases , Glândulas Salivares/imunologia , Infecção por Zika virus/imunologia , Aedes/virologia , Animais , Febre de Chikungunya/metabolismo , Febre de Chikungunya/prevenção & controle , Febre de Chikungunya/virologia , Vírus Chikungunya/imunologia , Proteínas do Sistema Complemento/metabolismo , Dengue/metabolismo , Dengue/prevenção & controle , Dengue/virologia , Vírus da Dengue/imunologia , Feminino , Interações Hospedeiro-Patógeno , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Insetos Vetores/imunologia , Insetos Vetores/virologia , Glândulas Salivares/virologia , Transcriptoma , Replicação Viral , Zika virus/imunologia , Infecção por Zika virus/metabolismo , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/virologia
18.
Sci Rep ; 10(1): 12933, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737386

RESUMO

Viruses manipulate the life cycle in host cells via the use of viral properties and host machineries. Development of antiviral peptides against dengue virus (DENV) infection has previously been concentrated on blocking the actions of viral structural proteins and enzymes in virus entry and viral RNA processing in host cells. In this study, we proposed DENV NS1, which is a multifunctional non-structural protein indispensable for virus production, as a new target for inhibition of DENV infection by specific peptides. We performed biopanning assays using a phage-displayed peptide library and identified 11 different sequences of 12-mer peptides binding to DENV NS1. In silico analyses of peptide-protein interactions revealed 4 peptides most likely to bind to DENV NS1 at specific positions and their association was analysed by surface plasmon resonance. Treatment of Huh7 cells with these 4 peptides conjugated with N-terminal fluorescent tag and C-terminal cell penetrating tag at varying time-of-addition post-DENV infection could inhibit the production of DENV-2 in a time- and dose-dependent manner. The inhibitory effects of the peptides were also observed in other virus serotypes (DENV-1 and DENV-4), but not in DENV-3. These findings indicate the potential application of peptides targeting DENV NS1 as antiviral agents against DENV infection.


Assuntos
Antivirais , Vírus da Dengue/fisiologia , Dengue , Sistemas de Liberação de Medicamentos , Biblioteca de Peptídeos , Proteínas não Estruturais Virais , Replicação Viral/efeitos dos fármacos , Antivirais/química , Antivirais/farmacologia , Linhagem Celular Tumoral , Dengue/tratamento farmacológico , Dengue/metabolismo , Humanos , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
19.
J Clin Invest ; 130(10): 5223-5234, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32644974

RESUMO

Dengue virus (DENV) infection requires cholesterol as a proviral factor, although statin treatment did not show antiviral efficacy in patients with dengue. Here, we show that DENV infection manipulated cholesterol metabolism in cells residing in low-oxygen microenvironments (hypoxia) such as in the liver, spleen, and lymph nodes. DENV infection induced expression of proprotein convertase subtilisin/kexin type 9 (PCSK9), which reduces low-density lipoprotein receptor (LDLR) recycling and hence cholesterol uptake. We found that, whereas LDLR uptake would have distributed cholesterol throughout the various cell compartments, de novo cholesterol synthesis enriched this lipid in the endoplasmic reticulum (ER). With cholesterol enrichment in the ER, ER-resident STING and type I IFN (IFN) activation was repressed during DENV infection. Our in vitro findings were further supported by the detection of elevated plasma PCSK9 levels in patients with dengue with high viremia and increased severity of plasma leakage. Our findings therefore suggest that PCSK9 plays a hitherto unrecognized role in dengue pathogenesis and that PCSK9 inhibitors could be a suitable host-directed treatment for patients with dengue.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/patogenicidade , Dengue/tratamento farmacológico , Dengue/metabolismo , Pró-Proteína Convertase 9/metabolismo , Adolescente , Adulto , Hipóxia Celular , Linhagem Celular , Criança , Colesterol/metabolismo , Dengue/etiologia , Farmacorresistência Viral , Feminino , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Masculino , Células Mieloides/metabolismo , Células Mieloides/virologia , Pró-Proteína Convertase 9/sangue , Receptores de LDL/metabolismo , Adulto Jovem
20.
Sci Rep ; 10(1): 10835, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616772

RESUMO

Infections with the mosquito-transmitted dengue virus (DENV) are a pressing public health problem in many parts of the world. The recently released commercial vaccine for DENV has encountered some problems, and there is still no effective drug to treat infections. Vitamin D has a well characterized role in calcium and phosphorus homeostasis, but additionally has a role in the immune response to bacterial and viral pathogens. In this study a number of fused bicyclic derivatives of 1H-pyrrolo[1,2]imidazol-1-one with vitamin D receptor (VDR) agonist activity were evaluated for possible anti-DENV activity. The results showed that five of the compounds were able to significantly inhibit DENV infection. The most effective compound, ZD-3, had an EC50 value of 7.47 µM and a selective index of 52.75. The compounds were only effective when used as a post-infection treatment and treatment significantly reduced levels of infection, virus output, DENV protein expression and genome copy number. These results suggest that these VDR agonists have the potential for future development as effective anti-DENV agents.


Assuntos
Vírus da Dengue/efeitos dos fármacos , Dengue/tratamento farmacológico , Imidazóis/farmacologia , Imunossupressores/farmacologia , Receptores de Calcitriol/agonistas , Replicação Viral/efeitos dos fármacos , Calcitriol/análogos & derivados , Calcitriol/farmacologia , Células Cultivadas , Dengue/metabolismo , Dengue/virologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...