Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.067
Filtrar
1.
Gene ; 766: 145117, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32920039

RESUMO

The extracellular vesicles (EVs) of uterine flushing fluids (UFs) mediate intrauterine communication between conceptus and uterus in pigs. The small RNAs of UFs-EVs are widely recognized as important factors that influence embryonic implantation. However, small RNAs expression profiles of porcine UFs-EVs during peri-implantation are still unknown. In this study, cup-shaped EVs of porcine UFs on days 10 (D10), 13 (D13) and 18 (D18) of pregnancy were isolated and characterized. The expression of small RNAs in these EVs was comprehensively profiled through sequencing. A total of 152 known microRNAs (miRNAs), 43 novel miRNAs, 6248 known Piwi-interacting RNAs (piRNAs) and 110 novel piRNAs were identified. Among these small RNAs, RT-qRCR results indicated that ssc-let-7f-5p, ssc-let-7i-5p and ssc-let-7g were differentially expressed during the three stages. Bioinformatics analysis showed that the miRNAs differentially expressed in the three comparisons (D10 vs D13, D13 vs D18 and D10 vs D18) were involved in important processes and pathways related to immunization, endometrial receptivity and embryo development, which play important roles in embryonic implantation. Our results reveal that EVs from porcine UFs contain various small RNAs with potentially vital effects on implantation. This research also provides resources for studies of miRNAs and piRNAs in the cross-talk between embryo and endometrium.


Assuntos
Implantação do Embrião/genética , Vesículas Extracelulares/genética , MicroRNAs/genética , Útero/fisiologia , Animais , Desenvolvimento Embrionário/genética , Endométrio/fisiologia , Feminino , Gravidez , RNA Interferente Pequeno/genética , RNA-Seq/métodos , Suínos
2.
3.
Nat Commun ; 11(1): 4917, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004802

RESUMO

Maternal mRNA clearance is an essential process that occurs during maternal-to-zygotic transition (MZT). However, the dynamics, functional importance, and pathological relevance of maternal mRNA decay in human preimplantation embryos have not yet been analyzed. Here we report the zygotic genome activation (ZGA)-dependent and -independent maternal mRNA clearance processes during human MZT and demonstrate that subgroups of human maternal transcripts are sequentially removed by maternal (M)- and zygotic (Z)-decay pathways before and after ZGA. Key factors regulating M-decay and Z-decay pathways in mouse have similar expression pattern during human MZT, suggesting that YAP1-TEAD4 transcription activators, TUT4/7-mediated mRNA 3'-oligouridylation, and BTG4/CCR4-NOT-induced mRNA deadenylation may also be involved in the regulation of human maternal mRNA stability. Decreased expression of these factors and abnormal accumulation of maternal transcripts are observed in the development-arrested embryos of patients who seek assisted reproduction. Defects of M-decay and Z-decay are detected with high incidence in embryos that are arrested at the zygote and 8-cell stages, respectively. In addition, M-decay is not found to be affected by maternal TUBB8 mutations, although these mutations cause meiotic cell division defects and zygotic arrest, which indicates that mRNA decay is regulated independent of meiotic spindle assembly. Considering the correlations between maternal mRNA decay defects and early developmental arrest of in vitro fertilized human embryos, M-decay and Z-decay pathway activities may contribute to the developmental potential of human preimplantation embryos.


Assuntos
Blastocisto/metabolismo , Desenvolvimento Embrionário/fisiologia , Estabilidade de RNA/fisiologia , RNA Mensageiro Estocado/metabolismo , Fatores de Transcrição/metabolismo , Adulto , Animais , Técnicas de Cultura Embrionária , Feminino , Fertilização In Vitro/métodos , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Meiose/genética , Camundongos , Mutação , Oócitos/metabolismo , Cultura Primária de Células , RNA-Seq , Tubulina (Proteína)/genética , Zigoto/metabolismo
4.
Nat Commun ; 11(1): 5037, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028844

RESUMO

Pancreatic islets play an essential role in regulating blood glucose level. Although the molecular pathways underlying islet cell differentiation are beginning to be resolved, the cellular basis of islet morphogenesis and fate allocation remain unclear. By combining unbiased and targeted lineage tracing, we address the events leading to islet formation in the mouse. From the statistical analysis of clones induced at multiple embryonic timepoints, here we show that, during the secondary transition, islet formation involves the aggregation of multiple equipotent endocrine progenitors that transition from a phase of stochastic amplification by cell division into a phase of sublineage restriction and limited islet fission. Together, these results explain quantitatively the heterogeneous size distribution and degree of polyclonality of maturing islets, as well as dispersion of progenitors within and between islets. Further, our results show that, during the secondary transition, α- and ß-cells are generated in a contemporary manner. Together, these findings provide insight into the cellular basis of islet development.


Assuntos
Diferenciação Celular , Células Secretoras de Glucagon/fisiologia , Células Secretoras de Insulina/fisiologia , Pâncreas/embriologia , Animais , Linhagem da Célula/fisiologia , Simulação por Computador , Embrião de Mamíferos , Desenvolvimento Embrionário , Feminino , Genes Reporter/genética , Imageamento Tridimensional , Proteínas Luminescentes/genética , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Modelos Animais , Modelos Biológicos , Organogênese , Pâncreas/diagnóstico por imagem , Células-Tronco/fisiologia
5.
Science ; 370(6514)2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33060332

RESUMO

The microscopic environment inside a metazoan organism is highly crowded. Whether individual cells can tailor their behavior to the limited space remains unclear. In this study, we found that cells measure the degree of spatial confinement by using their largest and stiffest organelle, the nucleus. Cell confinement below a resting nucleus size deforms the nucleus, which expands and stretches its envelope. This activates signaling to the actomyosin cortex via nuclear envelope stretch-sensitive proteins, up-regulating cell contractility. We established that the tailored contractile response constitutes a nuclear ruler-based signaling pathway involved in migratory cell behaviors. Cells rely on the nuclear ruler to modulate the motive force that enables their passage through restrictive pores in complex three-dimensional environments, a process relevant to cancer cell invasion, immune responses, and embryonic development.


Assuntos
Mecanotransdução Celular , Membrana Nuclear/fisiologia , Actomiosina/metabolismo , Animais , Movimento Celular , Desenvolvimento Embrionário , Células HeLa , Humanos , Camundongos , Cadeias Pesadas de Miosina/metabolismo , Invasividade Neoplásica , Neoplasias/patologia
6.
Nat Commun ; 11(1): 5499, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33127892

RESUMO

The epiblast, which provides the foundation of the future body, is actively reshaped during early embryogenesis, but the reshaping mechanisms are poorly understood. Here, using a 3D in vitro model of early epiblast development, we identify the canonical Wnt/ß-catenin pathway and its central downstream factor Esrrb as the key signalling cascade regulating the tissue-scale organization of the murine pluripotent lineage. Although in vivo the Wnt/ß-catenin/Esrrb circuit is dispensable for embryonic development before implantation, autocrine Wnt activity controls the morphogenesis and long-term maintenance of the epiblast when development is put on hold during diapause. During this phase, the progressive changes in the epiblast architecture and Wnt signalling response show that diapause is not a stasis but instead is a dynamic process with underlying mechanisms that can appear redundant during transient embryogenesis.


Assuntos
Diapausa/fisiologia , Células-Tronco Embrionárias/metabolismo , Receptores Estrogênicos/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Desenvolvimento Embrionário , Feminino , Camadas Germinativas/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfogênese , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Estrogênicos/genética , beta Catenina/genética
7.
Nat Commun ; 11(1): 4654, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943640

RESUMO

The shift from maternal to embryonic control is a critical developmental milestone in preimplantation development. Widespread transcriptomic and epigenetic remodeling facilitate this transition from terminally differentiated gametes to totipotent blastomeres, but the identity of transcription factors (TF) and genomic elements regulating embryonic genome activation (EGA) are poorly defined. The timing of EGA is species-specific, e.g., the timing of murine and human EGA differ significantly. To deepen our understanding of mammalian EGA, here we profile changes in open chromatin during bovine preimplantation development. Before EGA, open chromatin is enriched for maternal TF binding, similar to that observed in humans and mice. During EGA, homeobox factor binding becomes more prevalent and requires embryonic transcription. A cross-species comparison of open chromatin during preimplantation development reveals strong similarity in the regulatory circuitry underlying bovine and human EGA compared to mouse. Moreover, TFs associated with murine EGA are not enriched in cattle or humans, indicating that cattle may be a more informative model for human preimplantation development than mice.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Genoma , Animais , Blastômeros , Bovinos/embriologia , Cromatina/metabolismo , Fertilização , Humanos , Camundongos , Oócitos , Especificidade da Espécie , Fatores de Transcrição/metabolismo
8.
Nat Commun ; 11(1): 4399, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32879319

RESUMO

In cnidarians, axial patterning is not restricted to embryogenesis but continues throughout a prolonged life history filled with unpredictable environmental changes. How this developmental capacity copes with fluctuations of food availability and whether it recapitulates embryonic mechanisms remain poorly understood. Here we utilize the tentacles of the sea anemone Nematostella vectensis as an experimental paradigm for developmental patterning across distinct life history stages. By analyzing over 1000 growing polyps, we find that tentacle progression is stereotyped and occurs in a feeding-dependent manner. Using a combination of genetic, cellular and molecular approaches, we demonstrate that the crosstalk between Target of Rapamycin (TOR) and Fibroblast growth factor receptor b (Fgfrb) signaling in ring muscles defines tentacle primordia in fed polyps. Interestingly, Fgfrb-dependent polarized growth is observed in polyp but not embryonic tentacle primordia. These findings show an unexpected plasticity of tentacle development, and link post-embryonic body patterning with food availability.


Assuntos
Padronização Corporal , Anêmonas-do-Mar , Animais , Padronização Corporal/genética , Padronização Corporal/fisiologia , Desenvolvimento Embrionário/efeitos dos fármacos , Comportamento Alimentar , Regulação da Expressão Gênica no Desenvolvimento , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Anêmonas-do-Mar/embriologia , Anêmonas-do-Mar/genética , Anêmonas-do-Mar/crescimento & desenvolvimento , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
9.
Chemosphere ; 258: 127385, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32947675

RESUMO

2,2,4,4-tetrabromodiphenyl ether (BDE-47) has received considerable attention because of its high detection level in biological samples and potential developmental toxicity. Here, using zebrafish (Danio rerio) as the experimental animal, we investigated developmental effects of BDE-47 and explored the potential mechanism. Zebrafish embryos at 4 h post-fertilization (hpf) were exposed to 0.312, 0.625 and 1.25 mg/L BDE-47 to 74-120 hpf. We found that BDE-47 instigated a dose-related developmental toxicity, evidenced by reduced embryonic survival and hatching rate, shortened body length and increased aberration rate. Meanwhile, higher doses of BDE-47 reduced mitochondrial membrane potential and ATP production but increased apoptosis in zebrafish embryos. Expression of genes involved in mitochondrial oxidative phosphorylation (OXPHOS) (ndufb8, sdha, uqcrc1, cox5ab and atp5fal) were negatively related to BDE-47 doses in zebrafish embryos. Moreover, exposure to BDE-47 at 0.625 or 1.25 mg/L impaired mitochondrial biogenesis and mitochondrial dynamics. Our data further showed that BDE- 47 exposure induced excessive reactive oxygen species (ROS) and oxidative stress, which was accompanied by the activation of c-Jun N-terminal Kinase (JNK). Antioxidant NAC and JNK inhibition could mitigate apoptosis in embryos and improve embryonic development in BDE-47-treated zebrafish, suggesting the involvement of ROS/JNK pathway in embryonic developmental changes induced by BDE-47. Altogether, our data suggest here that developmental toxicity of BDE-47 may be associated with mitochondrial ROS-mediated JNK signaling in zebrafish embryo.


Assuntos
Éteres Difenil Halogenados/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra/metabolismo
10.
PLoS Biol ; 18(9): e3000852, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32931487

RESUMO

Olfaction in most animals is mediated by neurons bearing cilia that are accessible to the environment. Olfactory sensory neurons (OSNs) in chordates usually have multiple cilia, each with a centriole at its base. OSNs differentiate from stem cells in the olfactory epithelium, and how the epithelium generates cells with many centrioles is not yet understood. We show that centrioles are amplified via centriole rosette formation in both embryonic development and turnover of the olfactory epithelium in adult mice, and rosette-bearing cells often have free centrioles in addition. Cells with amplified centrioles can go on to divide, with centrioles clustered at each pole. Additionally, we found that centrioles are amplified in immediate neuronal precursors (INPs) concomitant with elevation of mRNA for polo-like kinase 4 (Plk4) and SCL/Tal1-interrupting locus gene (Stil), key regulators of centriole duplication. These results support a model in which centriole amplification occurs during a transient state characterized by elevated Plk4 and Stil in early INP cells. These cells then go on to divide at least once to become OSNs, demonstrating that cell division with amplified centrioles, known to be tolerated in disease states, can occur as part of a normal developmental program.


Assuntos
Divisão Celular/fisiologia , Centríolos/fisiologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Envelhecimento/fisiologia , Animais , Ciclo Celular/fisiologia , Células Cultivadas , Embrião de Mamíferos , Desenvolvimento Embrionário/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Córtex Olfatório/citologia , Córtex Olfatório/embriologia , Mucosa Olfatória/citologia , Mucosa Olfatória/embriologia , Mucosa Olfatória/ultraestrutura , Neurônios Receptores Olfatórios/citologia , Neurônios Receptores Olfatórios/ultraestrutura
11.
Chemosphere ; 254: 126900, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32957295

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants in marine environments and have arouse great concern since they pose adverse effects to marine ecosystem. To determine the potential impacts of environmentally relevant PAHs on early life stages of marine fish, this study exposed embryos of marine medaka (Oryzias melastigma) to 0, 2, 10, 50, and 250 µg/L of phenanthrene (Phe), one of the most abundant PAHs. The results demonstrated that Phe exposure decreased hatching rates, delayed hatching time of embryos, and increased deformity rate of newly-hatched larvae. Exposure to 10 and 50 µg/L Phe decreased the survival rate of marine medaka larvae at 28 days post-fertilization (dpf), and no embryo successfully hatched in 250 µg/L Phe exposure group. Morphology results showed that 10, 50, and 250 µg/L Phe exposure significantly retarded the development of embryos, and 2, 10, and 50 µg/L caused yolk sac edema and pericardial edema in newly-hatched larvae, indicating that low concentrations of Phe could induce developmental cardiac toxicity. Furthermore, the changes in the expression of heart development-related genes were determined, and the results showed that Phe-induced cardiac malformation might be related with fgf8, bmp4, smyd1, ATPase and gata4 genes. Overall, environmentally relevant PAHs could disrupt heart morphogenesis and hatching process of marine medaka, which might have profound consequences for sustainability of fish population.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Oryzias/crescimento & desenvolvimento , Fenantrenos/toxicidade , Teratogênios/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Ecossistema , Embrião não Mamífero/anormalidades , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Coração/efeitos dos fármacos , Coração/embriologia , Larva/efeitos dos fármacos , Larva/genética , Oryzias/genética , Fenantrenos/análise , Teratogênios/análise , Poluentes Químicos da Água/análise
12.
Yi Chuan ; 42(9): 898-915, 2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32952124

RESUMO

There is heterogeneity among donor cells of the same source. Many studies have shown that donor cell affects the efficiency of somatic cell nuclear transfer (SCNT). However, the potential influence of donor cell heterogeneity on the efficiency of nuclear transplantation were rarely analyzed at the single-cell level. In this study, single-cell transcriptome sequencing was performed on 52 porcine ear fibroblasts randomly selected from the same source to compare their gene expression patterns. The results showed that 48 cells had similar gene expression patterns, whereas 4 cells (D11_1, D12_1, DW61_2, DW99_2) had significantly different gene expression patterns from those of other cells. There were no two cells with identical gene expression patterns. The gene expression patterns of D11_1, D12_1, DW61_2 and DW99_2 were analyzed, using the 48 cells with similar gene expression patterns as controls. Firstly, we used the R language statistics to select the differentially expressed genes in the 4 single cells, and identified the top 50 most significant differentially expressed genes. Then GO enrichment analysis and KEGG pathway analysis were performed on the differentially expressed genes. Enrichment analysis revealed that the main molecular functions of the differentially expressed genes included energy metabolism, protein metabolism and cell response to stimulation. The main pathways from KEGG enrichment were related to cell cycle, cell metabolism, and DNA replication. Finally, based on the above results and in consideration with the SCNT research progress, we discussed the potential effects of differential gene expression patterns of the 4 single cells on the embryonic development efficiency of nuclear transplantation. This study revealed transcriptional heterogeneity of porcine ear tissue fibroblasts and provided an effective method to analyze elite donor cells, thereby providing new ideas on improving the cloning efficiency of SCNT.


Assuntos
Transcriptoma , Animais , Blastocisto , Clonagem de Organismos , Embrião de Mamíferos , Desenvolvimento Embrionário , Feminino , Fibroblastos , Técnicas de Transferência Nuclear , Gravidez , Suínos
13.
Nature ; 585(7824): 239-244, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32879485

RESUMO

Obligate endosymbiosis, in which distantly related species integrate to form a single replicating individual, represents a major evolutionary transition in individuality1-3. Although such transitions are thought to increase biological complexity1,2,4-6, the evolutionary and developmental steps that lead to integration remain poorly understood. Here we show that obligate endosymbiosis between the bacteria Blochmannia and the hyperdiverse ant tribe Camponotini7-11 originated and also elaborated through radical alterations in embryonic development, as compared to other insects. The Hox genes Abdominal A (abdA) and Ultrabithorax (Ubx)-which, in arthropods, normally function to differentiate abdominal and thoracic segments after they form-were rewired to also regulate germline genes early in development. Consequently, the mRNAs and proteins of these Hox genes are expressed maternally and colocalize at a subcellular level with those of germline genes in the germplasm and three novel locations in the freshly laid egg. Blochmannia bacteria then selectively regulate these mRNAs and proteins to make each of these four locations functionally distinct, creating a system of coordinates in the embryo in which each location performs a different function to integrate Blochmannia into the Camponotini. Finally, we show that the capacity to localize mRNAs and proteins to new locations in the embryo evolved before obligate endosymbiosis and was subsequently co-opted by Blochmannia and Camponotini. This pre-existing molecular capacity converged with a pre-existing ecological mutualism12,13 to facilitate both the horizontal transfer10 and developmental integration of Blochmannia into Camponotini. Therefore, the convergence of pre-existing molecular capacities and ecological interactions-as well as the rewiring of highly conserved gene networks-may be a general feature that facilitates the origin and elaboration of major transitions in individuality.


Assuntos
Formigas/embriologia , Formigas/microbiologia , Bactérias , Evolução Biológica , Regulação da Expressão Gênica no Desenvolvimento/genética , Individualidade , Simbiose/genética , Animais , Formigas/citologia , Formigas/genética , Desenvolvimento Embrionário/genética , Feminino , Genes Homeobox/genética , Herança Materna/genética , Oócitos/citologia , Oócitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
14.
PLoS One ; 15(9): e0233072, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32911495

RESUMO

In mammals, the fusion of two gametes, an oocyte and a spermatozoon, during fertilization forms a totipotent zygote. There has been no reported case of adult mammal development by natural parthenogenesis, in which embryos develop from unfertilized oocytes. The genome and epigenetic information of haploid gametes are crucial for mammalian development. Haploid embryonic stem cells (haESCs) can be established from uniparental blastocysts and possess only one set of chromosomes. Previous studies have shown that sperm or oocyte genome can be replaced by haESCs with or without manipulation of genomic imprinting for generation of mice. Recently, these remarkable semi-cloning methods have been applied for screening of key factors of mouse embryonic development. While haESCs have been applied as substitutes of gametic genomes, the fundamental mechanism how haESCs contribute to the genome of totipotent embryos is unclear. Here, we show the generation of fertile semi-cloned mice by injection of parthenogenetic haESCs (phaESCs) into oocytes after deletion of two differentially methylated regions (DMRs), the IG-DMR and H19-DMR. For characterizing the genome of semi-cloned embryos further, we establish ESC lines from semi-cloned blastocysts. We report that polyploid karyotypes are observed in semi-cloned ESCs (scESCs). Our results confirm that mitotically arrested phaESCs yield semi-cloned embryos and mice when the IG-DMR and H19-DMR are deleted. In addition, we highlight the occurrence of polyploidy that needs to be considered for further improving the development of semi-cloned embryos derived by haESC injection.


Assuntos
Clonagem de Organismos/métodos , Desenvolvimento Embrionário , Haploidia , Partenogênese , Poliploidia , Animais , Linhagem Celular , Células-Tronco Embrionárias/citologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA
15.
Ecotoxicol Environ Saf ; 203: 110934, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888599

RESUMO

Pharmaceuticals and personal care products are emerging contaminants that are increasingly detected in the environment worldwide. Certain classes of pharmaceuticals, such as selective serotonin reuptake inhibitors (SSRIs), are a major environmental concern due to their widespread use and the fact that these compounds are designed to have biological effects at low doses. A complication in predicting toxic effects of SSRIs in nontarget organisms is that their mechanism of action is not fully understood. To better understand the potential toxic effects of SSRIs, we employed an ultra-low input RNA-sequencing method to identify potential pathways that are affected by early exposure to two SSRIs (fluoxetine and paroxetine). We exposed wildtype zebrafish (Danio rerio) embryos to 100 µg/L of either fluoxetine or paroxetine for 6 days before extracting and sequencing mRNA from individual larval brains. Differential gene expression analysis identified 1550 genes that were significantly affected by SSRI exposure with a core set of 138 genes altered by both SSRIs. Weighted gene co-expression network analysis identified 7 modules of genes whose expression patterns were significantly correlated with SSRI exposure. Functional enrichment analysis of differentially expressed genes as well as network module genes repeatedly identified various terms associated with mitochondrial and neuronal structures, mitochondrial respiration, and neurodevelopmental processes. The enrichment of these terms indicates that toxic effects of SSRI exposure are likely caused by mitochondrial dysfunction and subsequent neurodevelopmental effects. To our knowledge, this is the first effort to study the tissue-specific transcriptomic effects of SSRIs in developing zebrafish, providing specific, high resolution molecular data regarding the sublethal effects of SSRI exposure.


Assuntos
Encéfalo/efeitos dos fármacos , Larva/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Inibidores de Captação de Serotonina/toxicidade , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Peixe-Zebra , Animais , Encéfalo/embriologia , Biologia Computacional , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Humanos , Larva/genética , Análise de Sequência de RNA , Peixe-Zebra/genética
16.
Mar Environ Res ; 161: 105120, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32866683

RESUMO

Acanthina monodon commonly deposits its egg capsules in the intertidal zone. Capsule aerial exposure during low-tide can impact oxygen consumption rates (OCR) of embryos and intracapsular oxygen availability, and expose embryos to desiccation. OCR increased as embryonic development progressed, and was greater when capsules were submerged in seawater than when exposed to air. Oxygen available within the capsule was always less than that available in the immediate external environment, whether capsules were immersed or exposed. The highest internal oxygen concentrations were recorded during periods of air exposure for embryos in more advanced development stages. When exposed to air, capsules lost water the fastest when they contained early embryos, and suffered the highest mortalities following exposure. Collectively, these data suggest that, although encapsulation helps the embryos to develop across wildly fluctuating environmental conditions, the amount of stress the embryos experience will vary depending on their exact positioning within the intertidal zone.


Assuntos
Gastrópodes , Animais , Dessecação , Desenvolvimento Embrionário , Consumo de Oxigênio , Água do Mar
17.
Mol Cell ; 80(2): 296-310.e6, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32979304

RESUMO

Necroptosis induction in vitro often requires caspase-8 (Casp8) inhibition by zVAD because pro-Casp8 cleaves RIP1 to disintegrate the necrosome. It has been unclear how the Casp8 blockade of necroptosis is eliminated naturally. Here, we show that pro-Casp8 within the necrosome can be inactivated by phosphorylation at Thr265 (pC8T265). pC8T265 occurs in vitro in various necroptotic cells and in the cecum of TNF-treated mice. p90 RSK is the kinase of pro-Casp8. It is activated by a mechanism that does not need ERK but PDK1, which is recruited to the RIP1-RIP3-MLKL-containing necrosome. Phosphorylation of pro-Casp8 at Thr265 can substitute for zVAD to permit necroptosis in vitro. pC8T265 mimic T265E knockin mice are embryonic lethal due to unconstrained necroptosis, and the pharmaceutical inhibition of RSK-mediated pC8T265 diminishes TNF-induced cecum damage and lethality in mice by halting necroptosis. Thus, phosphorylation of pro-Casp8 at Thr265 by RSK is an intrinsic mechanism for passing the Casp8 checkpoint of necroptosis.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Caspase 8/metabolismo , Necroptose , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais , Animais , Ceco/lesões , Ceco/patologia , Linhagem Celular , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Mutação/genética , Necroptose/efeitos dos fármacos , Especificidade de Órgãos , Fosforilação/efeitos dos fármacos , Fosfotreonina/metabolismo , Proteínas Quinases/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
18.
Cell Prolif ; 53(10): e12895, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32914523

RESUMO

OBJECTIVES: DNA damage and errors of accurate chromosome segregation lead to aneuploidy and foetal defects. DNA repair and the spindle assembly checkpoint (SAC) are the mechanisms developed to protect from these defects. Checkpoint kinase 1 (CHK1) is reported to be an important DNA damage response protein in multiple models, but its functions remain unclear in early mouse embryos. MATERIALS AND METHODS: Immunofluorescence staining, immunoblotting and real-time reverse transcription polymerase chain reaction were used to perform the analyses. Reactive oxygen species levels and Annexin-V were also detected. RESULTS: Loss of CHK1 activity accelerated progress of the cell cycle at the first cleavage; however, it disturbed the development of early embryos to the morula/blastocyst stages. Further analysis indicated that CHK1 participated in spindle assembly and chromosome alignment, possibly due to its regulation of kinetochore-microtubule attachment and recruitment of BubR1 and p-Aurora B to the kinetochores, indicating its role in SAC activity. Loss of CHK1 activity led to embryonic DNA damage and oxidative stress, which further induced early apoptosis and autophagy, indicating that CHK1 is responsible for interphase DNA damage repair. CONCLUSIONS: Our results indicate that CHK1 is a key regulator of the SAC and DNA damage repair during early embryonic development in mice.


Assuntos
Quinase 1 do Ponto de Checagem/metabolismo , Reparo do DNA , Pontos de Checagem da Fase M do Ciclo Celular , Animais , Apoptose/efeitos dos fármacos , Aurora Quinase B/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Segregação de Cromossomos/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Cinetocoros/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Camundongos , Microtúbulos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Compostos de Fenilureia/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Pirazinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo
19.
PLoS One ; 15(9): e0238948, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32915925

RESUMO

Several equids have gone extinct and many extant equids are currently considered vulnerable to critically endangered. This work aimed to evaluate whether domestic horse oocytes support preimplantation development of zebra embryos obtained by intracytoplasmic sperm injection (ICSI, zebroid) and cloning, and to study the Hippo signaling pathway during the lineage specification of trophectoderm cells and inner cell mass cells. We first showed that zebra and horse sperm cells induce porcine oocyte activation and recruit maternal SMARCA4 during pronuclear formation. SMARCA4 recruitment showed to be independent of the genetic background of the injected sperm. No differences were found in blastocyst rate of ICSI hybrid (zebra spermatozoon into horse egg) embryos relative to the homospecific horse control group. Interestingly, zebra cloned blastocyst rate was significantly higher at day 8. Moreover, most ICSI and cloned horse and zebra blastocysts showed a similar expression pattern of SOX2 and nuclear YAP1 with the majority of the nuclei positive for YAP1, and most SOX2+ nuclei negative for YAP1. Here we demonstrated that horse oocytes support zebra preimplantation development of both, ICSI and cloned embryos, without compromising development to blastocyst, blastocyst cell number neither the expression of SOX2 and YAP1. Our results support the use of domestic horse oocytes as a model to study in vitro zebra embryos on behalf of preservation of valuable genetic.


Assuntos
Desenvolvimento Embrionário , Equidae/embriologia , Equidae/genética , Cavalos/fisiologia , Oócitos/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Núcleo Celular/fisiologia , Clonagem de Organismos/veterinária , Citoplasma/fisiologia , Técnicas de Cultura Embrionária/veterinária , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Espécies em Perigo de Extinção , Equidae/metabolismo , Feminino , Perfilação da Expressão Gênica , Cavalos/genética , Técnicas In Vitro , Masculino , Técnicas de Transferência Nuclear/veterinária , Fatores de Transcrição SOXB1/genética , Injeções de Esperma Intracitoplásmicas/veterinária , Sus scrofa
20.
Ecotoxicol Environ Saf ; 202: 110922, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32800257

RESUMO

Fluorene-9-bisphenol (BHPF) is a substitute for bisphenol A (BPA), which is widely used to manufacture plastic products. Previous studies indicate that BHPF has an anti-estrogenic effect and induces cytotoxicity in mice oocytes. However, the effects of acute BHPF exposure on the aquatic organism obtain little attention. In this study, a series of BHPF concentrations (1 µM, 2 µM, 5 µM, 10 µM, 20 µM) was used to exposed zebrafish embryos from 2 h post-fertilization (hpf). The results showed the LC50 at 96hpf was 2.88 µM (1.01 mg/L). Acute exposure induced malformation in morphology, and retarded epiboly rate at 10hpf, increased apoptosis. Moreover, acute BHPF exposure led cardiotoxicity, by impeding cardiac looping, decreasing cardiac contractility (reducing the stroke volume and cardiac output, decreasing fractional shortening of ventricle). Besides that, BHPF exposure altered the expression of cardiac transcriptional regulators and development related genes. In conclusion, acute BHPF exposure induced developmental abnormality, retarded cardiac morphogenesis and injured the cardiac contractility. This study indicated BHPF would be an unneglected threat for the safety of aquatic organisms.


Assuntos
Compostos Benzidrílicos/toxicidade , Fenóis/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Cardiotoxicidade/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Fluorenos/toxicidade , Camundongos , Oócitos/crescimento & desenvolvimento , Plásticos , Testes de Toxicidade Aguda , Poluentes Químicos da Água/metabolismo , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA